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Design of economic structures adequately resistant to withstand during their service life,
without catastrophic failures, all possible loading conditions and to absorb the induced
seismic energy in a controlled manner, was subjected to intensive research so far. Costly
and extremely sensitive equipment, vital in commerce, business, education, and/or health
care represent the contents of the contemporary structural systems. Frequently, struc-
tures themselves are less valuable than their contents. Moreover, following a catastrophic
natural disaster, local communities requires that communication and emergency centers,
hospitals, police, and fire stations to be fully operational. In conventional constructions,
high floor accelerations are encountered in case of stiff buildings or large interstory
drifts in flexible ones. These structural performance characteristics cause difficulties in
protecting both building and its contents. As an efficient alternative design practice,
base-isolated structures are considered, compared to the conventional fixed-base one.
A critical evaluation of optimized fixed and base-isolated reinforced concrete buildings is
performed in this study, with respect to the initial and total cost taking into account the
life-cycle cost.

Keywords: base isolation, performance-based design, structural optimization, probabilistic life-cycle cost analysis,
dynamic loading, metaheuristics

INTRODUCTION

According to the contemporary seismic design approaches, structures need to comply with multiple
performance-based criteria described for various hazard levels ranging from earthquakes with low
intensity and small return period tomore destructive events with large return periods. US guidelines
(ATC-40, 1996; ASCE/SEI Standard 41-06, 2007), that define the current state of practice, do not
differ conceptually and introduce practices and can be considered as a significant diversification
from current design codes (EC8, 2004; IBC, 2015), which implement partially performance-based
procedures, since they attempt to combine all design criteria to one performance level only, usually
that of life safety or collapse prevention. Furthermore, recent advances in the field of computational
mechanics and more specifically in design optimization resulted to the transition from the tradi-
tional trial and error design procedures to automated ones where powerful search algorithms are
used. This ismostly attributed to the progress onmetaheuristic search algorithms in the optimization
literature.

The design procedure of new seismically isolated buildings is governed by the international build-
ing code (IBC-2000) (EC8, 2004) and by the provisions of its predecessor (UBC-97) (UBC, 1997).
The design philosophy of IBC-2000 and UBC-97 is that an isolated building should outperform its
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corresponding fixed-base one, both in moderate and large earth-
quake events by minimizing the damages of the structural system
and its contents. So far, various studies have been presented
dealing with the problem of optimum design of base-isolated
systems. Constantinou and Tadjbakhsh (1984) considered a lin-
ear multistorey structure with a seismic base-isolated system
consisting of rubber bearings and frictional elements where the
isolation system was optimally designed. Jangid (1996) aiming
to define the minimum acceleration of a base-isolated structure
investigated the optimum isolation damping, obtained through
the minimization of top floor root mean square acceleration.
Sorace and Terenzi (2001) applied a non-linear dynamic design
procedure of fluid viscous spring-dampers into two case studies.
Fragiacomo et al. (2003) studied passive base-isolation systems
characterized by a bilinear hysteretic behavior aiming to mini-
mize input energy and displacement of the superstructure. Kim
and Roschke (2006) used a genetic algorithm for optimizing of
the friction pendulum system. Scruggs et al. (2006) proposed a
probability-based active control system where the performance
objective was theminimization of the probability of failure. Jangid
(2007) investigated an analytical seismic response of multistorey
buildings isolated by lead–rubber bearings (LRB) under near-fault
motions. Sorace and Terenzi (2008) developed a final experimen-
tal campaign to assess the interference of the dissipative actions
of the two component devices. Pourzeynali and Zarif (2008)
implemented genetic algorithms for finding the optimal values of
the parameters of the base-isolation system and simultaneously
minimizing the top storey displacement of the building and that
of the base-isolation system. Zou (2008) and Zou et al. (2010)
presented an optimization technique for the seismic design of
base-isolated concrete buildings aiming to minimize the total cost
subject to design performance and reliability criteria. Huang and
Ren (2011) presented a reliability-based optimization technique
for the seismic design of base-isolated structures. Zhang et al.
(2011) studied the influence of the action of earthquake to sliding
base-isolation structure in order to improve its capacity to reduce
by means of optimizing its major parameters. Fujita and Take-
waki (2011) presented an efficient methodology to evaluate the
robustness of an uncertain base-isolated building; it was shown
that the critical combination of the structural parameters can be
derived explicitly in order to maximize the approximate objective
function by 2nd-order Taylor series expansion. Nemoto et al.
(2011) proposed a design method to control the displacement of
base-isolation systems using an oil damper that can change its
damping properties in accordance to the displacement, while an
optimization method was employed to obtain an optimum set
of parameters. Murase et al. (2013) investigated a new hybrid
passive control system in order to compensate for base-isolated
buildings’ deficiencies, where a base-isolated building is con-
nected to another building with oil dampers; as an extension
Kasagi et al. (2016) presented an automatic generation algorithm
of this kind of smart structures of base-isolation and building-
connectionhybrid systems. Castaldo andTubaldi (2015), Castaldo
and Ripani (2016), and Castaldo et al. (2016) studied fric-
tion pendulum devices aiming to optimize their performance
and also to implement seismic fragility and reliability analysis
studies.

In this work, an integrated and objective assessment of the
performance of multistorey 3D reinforced concrete (RC) build-
ings is presented, considering fully fixed and base-isolated
support conditions. For this purpose, performance-based opti-
mized designs are obtained with respect to minimum initial
cost for both types of buildings. The buildings are designed fol-
lowing a non-linear static analysis procedure subject to inter-
story drift limitations for different hazard levels. The optimized
designs are obtained by means of the differential evolution (DE)
algorithm.

In construction industry, losses resulting from earthquakes
that are possible to occur during the lifespan of a structure
require to be taken into account for the case of structural sys-
tems situated in seismically active regions when decision-making
approaches are implemented. Therefore, life-cycle cost analysis
(LCCA) enhanced into an essential part of the design process
associated with the future operational cost of structural systems.
In early 1960s, LCCA was applied in the commercial area and
particularly in the design of products, while LCCAwas introduced
in construction industry as an investment assessment tool. In this
study, LCCA is used for assessing the optimized performance-
based designs based on the total cost which accounts for the
initial and the life-cycle cost of the structures. LCCA refers to
the possible damages caused by earthquake events that might
occur during the life span of the structure (Mitropoulou Ch
et al., 2011). Therefore, non-linear dynamic analyses are per-
formed for computing the structural response in strong seismic
events.

BASE-ISOLATION

Types
Various base-isolation systems have been implemented so far
mainly driven by engineering judgment. Sliding systems such as
pure friction type, friction pendulum, sliding isolation pendulum,
and resilient friction base systems, represent one category. Elas-
tomeric bearing systems represent a second category, which are
constructed with a series of alternating rubber and steel layers.
The rubber offers lateral flexibility while steel provides vertical
stiffness. Low-damping rubber bearing system belong to the cate-
gory of elastomeric bearing systems, where the rubber is bonded
to the steel end plates, which prevent bulging of the rubber and
provide higher vertical stiffness. The elastomeric bearing systems
with high-damping natural rubber bearings (HDNR) and the
LRB were used in this study. In the case of HDNR systems,
the natural rubber compound is used in order to have adequate
inherent damping; while in the case of LRB systems, similar to
low-damping rubber bearings, a central lead plug is used in order
to increase the initial stiffness and energy dissipation capacity of
the bearing. Many studies contributed to the evolution of base
isolation during the last decades, in particular (Kelly, 1986, 1999;
Constantinou et al., 1990; Mokha et al., 1990; Skinner et al.,
1992; Nagarajaiah et al., 1993; Naeim and Kelly, 1999; Symans
and Constantinou, 1999; Providakis, 2008; Kilar and Koren, 2009;
Morgan and Mahin, 2010; Pant et al., 2013; Sorace and Terenzi,
2014; Mazza and Mazza, 2016).
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Modeling
It is common practice to use bilinear constitutive models for
simulating isolation bearings, these models are defined by three
parameters (K1, K2, and Q) corresponding to the elastic stiff-
ness, the post elastic stiffness, and the characteristic strength (see
Figure 1). Parameter K1 is estimated either from hysteretic loops
obtained through elastomeric bearing tests or as a multiplier ofK2
for lead-plug bearing and friction pendulum-bearing systems. The
characteristic strength Q is estimated from hysteresis loops of the
elastomeric bearings. In the case of lead-plug bearings, strength
Q corresponds to the yield stress of lead core, while in the case
of friction pendulum bearings, corresponds to the load carrying
capacity of bearing. Furthermore, the non-dimensional character-
istic strength α is calculated using the hysteretic properties of the
bearing’s material [α = (K1 −K2)/K2] and is an important factor
during the design of base-isolation systems.

Design Framework
The design framework followed for base-isolated structures
involves a two-stage approach that of the preliminary and the final
design one. The demand levels used for the two stages are (i) the
design basis earthquake (DBE), referring to hazard level with 10%
probability of being exceeded in 50 years and (ii) the maximum
considered earthquake (MCE), referring to hazard level with 2%
probability of being exceeded in 50 years, respectively.

The preliminary design stage aims to design the isolated struc-
ture in such a way that for the DBE will vibrate with fundamental
period equal toTD. For this purpose, the damping coefficientBD of
the isolation system is selected first (or the damping factor βD that
is defined as a function of BD) and the base target displacement
DD that is developed by the base-isolated structure for the DBE is
calculated as a function ofBD andTD (see Eq. 1).TD is definedwith
a random selection in the range 2.0–3.0 s, since this is the desirable
range according to Naeim and Kelly (1999). The definition of DD
with reference to TD and BD is given by the following expression:

DD =
(g/4π2)SA,D · TD

BD
(1)

Next, the effective stiffness of the isolation system KD,max is
defined from TD and the lateral forces of the isolation system Vb

Force

Displacement
D

Q

K2

-D

K1

Keff

Dy

Fy

FIGURE 1 | Parameters of basic hysteresis loop of the isolation
system.

and the superstructure Vs are calculated as follows:

Vb = KD,max · DD (2a)

Vs =
KD,max · DD

RI
(2b)

where RI is a design force reduction factor ranging from 1.4 to 2.0
(Naeim and Kelly, 1999). The structural elements of the super-
structure are designed to withstand Vs based on drift constraints
(0.010/RI in case of linear static analysis procedure, 0.015/RI in
case of response spectrum analysis, or 0.020/RI in case of dynamic
time-history analysis). Aiming to resist the gravity loads, lateral
loads, and displacement requirements, the design of the isolation
system is based on the base displacement DD, stiffness, force, and
damping properties of the isolation system. The final design stage
is also a trial and error procedure where the force-displacement
characteristics of isolation bearings defined during the prelimi-
nary design stage are implemented into the numerical model of
the structural system. Eigen characteristics of the structure are
calculated first, and they are used to define the seismic demand
using the MCE. Based on the numerical model and the seismic
demand, a series of analysis and designs steps are performed. The
targeted final values for the positive (maximum) and negative
(minimum) values of the effective stiffness of the structural system
are given as follows:

KD,max = KD,min =
Vb,DBE
DD

(3a)

KM,max = KM,min =
Vb,MCE
DM

(3b)

where
DM =

(g/4π2)SAM · TM

BM
(3c)

Through this trial and error procedure, the characteristics of the
isolation systems along with the size of the structural elements are
defined. The parameters of isolation systems are compared with
those suggested by the prototype bearing test results, in case of dif-
ference, the numerical model is revised. In the case of elastomeric
isolators, the final design contains additional checks: (i) influence
of vertical load on horizontal stiffness and (ii) stability under large
lateral displacement.

STRUCTURAL DESIGN OPTIMIZATION

Formulation
Structural optimization problems are formulated using constraint
and objective functions, usually non-linear functions of the design
variables. The expression inmathematical terms of structural opti-
mization problems with reference to design variables, objective,
and constraint functions depend on the type of the application.
However, many engineering optimization problems are expressed
as non-linear programing problems. Amixed continuous-discrete
structural optimization problem is formulated as follows:

F(s) → min

gj(s) ≤ 0, j = 1, 2, ...,m

sd = [sd,1, ..., snd ]
T, sc = [sc,1, ..., snc ]

T

sd ∈ Dnd, sc ∈ Cnc (4)
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where s= [sd, sc]T is the vector of design variables of the optimiza-
tion problem, sd and sc are the vectors of discrete and continuous
design variables respectively, gj(s) are equality or inequality con-
straints, whileD and C are the discrete and continuous design sets
of size nd and nc, respectively.

Following this general description of the optimization prob-
lem, the formulation of the performance-based design optimiza-
tion problem for fixed-based RC-framed structures used in the
current study is defined as follows (Lagaros and Papadrakakis,
2007):

min CIN(s)

subject to θ50/50
max < 0.4%

θ10/50
max < 1.8%

θ2/50
max < 3.0%

s = [sd, sc]T

sd = [h1, b1, ..., hn, bn]T

sc = [reinf1, ..., reinfn]T (5)

where CIN is the construction cost of structural and non-
structural elements, the dimensions of the columns and beams
(hi,bi) together with longitudinal steel rebar (reinfi) consti-
tute the discrete and continuous design variables, respec-
tively. θ50/50

max , θ10/50
max , and θ2/50

max denote the maximum inter-
story drifts developed for the three hazard levels considered
(50/50, 10/50, and 2/50), respectively. The limitations of the
drift constraints are obtained according to the study by Gho-
barah (2004). Similar to the fixed-based formulation the corre-
sponding formulation for the isolated structures is defined as
follows:

min CIN(s)
subject to

DD < 500 mm

θ10/50
max ≤ 0.01

R1
≤

{
2.5%,Tfixed ≤ 0.7s
2.0%,Tfixed > 0.7s

 Preliminary design stage

θ10/50
max < 0.4%

θ2/50
max < 1.8%
buckling

lateral displacement

 Final design stage

s = [sd, sc]T

sd = [h1, b1, ..., hn, bn]T

sc = [reinf1, α1, ..., reinfn, αn]T (6)

where, similar to the problem formulation of Eq. 5 CIN is the
construction cost of the structural and non-structural elements
along with the cost of the isolation systems, while the dimensions
of the beams and columns (hi, bi) along with the steel longi-
tudinal reinforcement (reinfi) and the dimensionless character-
istic strength a, constitute the discrete and continuous design
variables, respectively. The design formulation given in Eq. 6
is also supported by the procedure given in Section “Design
Framework.”

Metaheuristic Search
During the last decades, multiple search algorithms have been
developed tomeet the demands of structural design optimization.
These algorithms are classified into gradient-based or derivative-
free ones. Mathematical programing methods represent the most
popularmethods of the first category. Heuristic andmetaheuristic
probabilistic algorithms belong to the second category and are
nature-inspired as they are based on the successful behavior of
natural systems by learning from nature. In previous studies of the
authors, it was found that the DE outperformed othermetaheuris-
tic search algorithms (Lagaros and Karlaftis, 2011; Lagaros and
Papadrakakis, 2012), and, for this purpose, it is adopted for per-
forming the optimization runs of the structures considered herein.

Differential evolution utilizes a population of NP parameter
vectors si ,g (i= 1, . . . , NP) for each generation g. New vectors
are generated by adding the weighted difference between two
members of the population to a third one. If the resulting vector
corresponds to a better design compared to the worst population
member, the newly generated vector replaces this member. Sev-
eral variants of DE have been proposed in the past, one of themost
widely used is subsequently presented. In the first step, before
defining the ith parameter vector si,g+1, a donor vector vi,g+1 is
generated first according to

vi,g+1 = sr1,g + F × (sr2,g − sr3,g) (7)
This is equivalent to the mutation operator of genetic algo-

rithms or evolution strategies. Integers r1, r2, and r3 are selected
randomly in the interval [1, NP] while i ̸= r1, r2, and r3. In order
to control the amplification of the differential variation (sr2,g-sr3,g)
the mutation factor F is used, defined in the range [0, 2]. Subse-
quently, the crossover operator is used that generates the trial vec-
tor ui ,g+1 = [u1,i ,g+1, u2,i ,g+1, . . . , uD ,i ,g+1]T and is defined from the
elements of vectors si ,g and vi ,g+1, with probability CR as follows:

uj,i,g+1 =

{
vj,i,g+1 if randj,i ≤ CR or j = Irand
sj,i,g if randj,i > CR or j1Irand

i = 1, 2, ...,NP and j = 1, 2, ..., n (8)
where randj ,i ~U[0, 1], Irand is a random integer from [1, 2, . . . ,
n] ensuring thatV i ,g+1 ̸= Si ,g, i.e., a certain sequence of the vector
elements of u are identical to the elements of v, the other elements
of u acquire the original values of si ,g. The selection operator
corresponds to the last step of the generation phase where vector
si,g, is compared to trial vector ui ,g+1:

si,g+1 =

{
ui,g+1if f(ui,g+1) ≤ f(si,g)
si,g otherwise

where i = 1, 2, ...,NP (9)

THE LIFE-CYCLE COST ANALYSIS MODEL

The total cost CTOT of a structural system, refers either to the
design-life period of a new structural system or to the remaining
life period of an existing or retrofitted one. This cost is defined
as a function of design vector s and time, as (Wen and Kang,
2001):

CTOT(t, s) = CIN(s) + CLC(t, s) (10)
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where CIN represents the initial cost of a new or retrofitted struc-
tural system, CLC denotes the life-cycle cost in present value; s
is the vector of design parameters (i.e., resistance and material
characteristics that influence the performance of the system),
while t is the time period. The construction cost is referred to
with the term “initial cost.” The initial cost is associated to mate-
rial and labor cost required for the construction. The potential
damage cost from earthquakes that may occur during the lifes-
pan of the structure is denoted with the term “life-cycle cost.”
It accounts for the damage-repair cost (Cdam), the loss of con-
tents cost due to structural damages that are quantified by the
maximum inter-storey drift (Cθ

con) and due to floor acceleration
(Cacc

con), the cost of injury recovery (Cinj) or human fatality (Cfat)
and other direct or indirect economic losses after an earthquake,
related to rental (Cren), and loss of income (Cinc), as shown in

CLC = Cdam + Cθ
con + Cacc

con + Cren + Cinc + Cinj + Cfat (11)

In economic terms, the calculation of losses relies on socioe-
conomic parameters, and a regularization factor is used for con-
verting costs in present values. The loss of a human life represents
the quantity that is the most difficult to justify. There are differ-
ent approaches for its estimation, ranging from purely economic
reasoning to more sensitive ones that consider human loss as
irreplaceable. The flowchart of Figure 2 depicts the three steps
of the LCCA, while a more details of the calculation procedure
can be found in (Lagaros, 2007). In the first step of Figure 2,
the characteristics of the problem are defined; i.e., the numerical
model, the uncertainties considered and their type, the intensity
measure adopted, and the engineering demand parameters used

for deriving the capacity curve. Details on the limit states, the
basic limit state costs and the limit state parameters can be found
in Mitropoulou Ch et al. (2010). In step 2, a number of seismic
records are used for each hazard level in order to calculate the
response parameters, which are subsequently used in step 3 for
calculating CLC for each record.

NUMERICAL TESTS

For the purposes of this study, two test examples shown in
Figure 3 are considered: a three- and a six-storey 3D RC build-
ing. For each building, the optimized designs were obtained first
through the performance-based design formulations presented in
Eqs 5 and 6. Then, they are critically assessed with respect to
their initial and total cost taking into account the life-cycle cost
of the optimized structures. More specifically, the test examples
are optimally designed considering both fixed support and base-
isolated conditions. In the latter case, LRB and HDNR isolation
systems are implemented.

Description of the Structural Models
Concrete of class C20/25 (nominal cylindrical strength of 20MPa)
and class S500 steel (nominal yield stress of 500MPa) are assumed.
Slab thickness of 18 cm is considered, contributing to the beams
moment of inertia with an effective flange width. Due to floor
finishing and partitions, distributed dead load of 2 kN/m2 is
considered further to self-weight of beams and slabs, together
with 1.5 kN/m2 live load. These loads are combined with gravity
loads (persistent design situation), and load factor multipliers of
1.35 and 1.5 for nominal dead and live loads, respectively, are

Step 1: Problem characterisctics

Numerical models

Uncertainties (epistemic & aleatory)

IMs: intensity measures

EDPs: Engineering demand parameters

LS: limit states [see in Nemoto et al. (2011) and Murase et al. (2013)]

Basic limit state costs [see in Nemoto et al. (2011) and Murase et al. (2013)]

Limit state parameters [see in Nemoto et al. (2011) and Murase et al. (2013)]

Step 2: Nonlinear incrementral analysis 

For irec=1 to NR

Perform incremental 

analysis

Step 3: Calculate LCC

For irec=1 to NR

Calculate annual exceedance 

probability of the ith damage level 

NR: number of records
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For i=1 to LS

Calculate exceedance probability 

given occurrence over a period [0,t]

Calculate life-cycle cost

Calculate probabilistic 

characteristics of life-cycle cost

FIGURE 2 | Flowchart of the life-cycle cost analysis calculation procedure [more details in Mitropoulou Ch et al. (2011)].
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FIGURE 3 | 3D view of (A) the three-storey and (B) the six-storey test example.

TABLE 1 | PGA according to the frequency of the seismic hazard.

Event Recurrence interval
(years)

Probability of
exceedance

PGA (g)

Occasional 72 50% in 50 years 0.11
Rare 475 10% in 50 years 0.31
Very rare 2475 2% in 50 years 0.78

implemented. According to the seismic design combination, dead
loads are considered with their nominal value, while live loads
with 30% of their nominal value.

In case of fixed-based RC buildings target displacement for
each hazard level is calculated using the target displacement
method and the response spectrums for the three correspond-
ing hazard levels; with 2, 10, and 50% probability of exceedance
(Somerville and Collins, 2002). Base shear is obtained from EC8
elastic response spectrum for soil type B (characteristic periods
TB = 0.15 s and TD = 2.00 s), while the importance factor γI was
taken equal to 1.0. Peak ground acceleration (PGA) is taken from
Table 1 for three hazard levels with 2, 10, and 50% probability
of exceedance in 50 years. The response spectrum for the fixed,
HDNR and LRB isolations was used for damping factors β = 5%,
β = 10%, β = 20%, respectively. In this study, three sets of nat-
ural records are used, i.e., sets with their longitudinal and their
transverse components, selected from the database of Somerville
and Collins (2002). The basic characteristics of these records are
provided in Tables 2–4 corresponding to the three hazard levels,
50, 10, and 2% in 50 years, respectively. A strength reduction factor
of 0.75 was used for both fixed-base system and the superstructure
of the seismically isolated one, while the behavior factor of the
structure q for both systems was taken equal to 1.0.

Numerical Modeling and Finite Element
Analysis
In regions where inelastic deformations are expected to develop,
non-linear static or dynamic analyses are implemented requiring

TABLE 2 | Natural records representing the 50% in 50-year hazard level
(Somerville and Collins, 2002).

Earthquake Station Distance Site

Cape Mendocino (CM) 25th
April, 1992

Butler Valley 37 Rock
Eureka School 24 Soil

Cape Mendocino (C1)
aftershock, 26th April, 1992
0741 GMT

Ferndale 34 Soil

Cape Mendocino (C2)
aftershock, 4/26/92 1118 GMT

Ferndale 34 Soil

TABLE 3 | Natural records representing the 10% in 50-year hazard level
(Somerville and Collins, 2002).

Earthquake Station Distance Site

Tabas (TB) 16th
September, 1978

Tabas 1.1 Rock

Cape Mendocino (CM) 25th
April, 1992

Cape Mendocino 6.9 Rock
Petrolia 8.1 Soil

Chi-Chi (CC), Taiwan 20th
September, 1999

TCU067 2.4 Soil
TCU074 12.2 Soil
TCU078 6.9 Soil

specialized numerical simulation like the plastic-hinge or fiber
approaches. The first one, although computationally efficient, has
limitations with respect to the accuracy compared to the fiber
approach. According to the later one, each structural element is
discretized into integration sections and each section is divided
into fibers having specificmaterial properties (concrete, structural
steel, or steel reinforcement). The sections are located at the
Gaussian integration points of the elements. The main advantage
of fiber approach is that every fiber has a simple uniaxial material
model allowing a simple implementation of inelastic behavior
subjected to dynamic loading (Lagaros and Fragiadakis, 2011).

OpenSEES software platform (McKenna and Fenves, 2001) was
used for performing all analyses. Each structural element was

Frontiers in Built Environment | www.frontiersin.org November 2016 | Volume 2 | Article 276

http://www.frontiersin.org/Built_Environment
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive


Mitropoulou and Lagaros Design Optimization of Base-Isolated Buildings

modeled with one force-based, fiber beam-column element. The
simulation of concrete fibers is based on the modified Kent–Park
model, where the monotonic envelope of concrete in compression
follows the model of Kent and Park (1971) as extended by Scott
et al. (1982). This model was chosen due to its ability to predict
with acceptable accuracy the demand for flexure-dominated RC
members. The Menegotto–Pinto model (Menegotto and Pinto,
1973) was used for simulating the transient behavior of the
reinforcing bars neglecting the effects of shear and bond-slip.
Second-order effects are considered using the complete geometric
stiffness matrix. The simulation of the bearings was implemented
using zero length elements with a uniaxial material lawwith linear
kinematic and isotropic hardening.

Optimized Designs
Based on previous studies by the authors (Lagaros and Karlaftis,
2011; Lagaros and Papadrakakis, 2012), the DE optimization algo-
rithm was found to be superior, and, for this reason, it is selected

TABLE 4 | Natural records representing the 2% in 50-year hazard level
(Somerville and Collins, 2002).

Earthquake Station Distance Site

Valparaiso (VL), Chile 3rd
May, 1985

Vina del Mar 30 Soil
Zapaller 30 Rock

Michoacan (MI), Mexico
19th September, 1985

La Union 22 Rock

for solving the optimization problem at hand. Based on a param-
eter study in Pedersen (2010) the parameters used for DE algo-
rithm are as follows: the population size NP= 100, the probability
CR= 0.90, the constant F= 0.47 and the control variable λ = 0.2.
The simple, yet effective, multiple linear segment penalty function
(Lagaros, 2014) is used in this study for handling the constraints.
According to this technique if no violation is detected, then no
penalty is implemented to the objective function. If any of the
constraints is violated, a penalty factor is applied to the objective
function, controlled by the degree of constraints’ violation. The
optimization procedure is terminated when the best value of the
objective function in the last 20 generations remains unchanged.

The dimensions of the design components (i.e., columns,
beams, steel reinforcement, and dimensions of the bearings) are
presented in Tables 5 and 6. Element group 1 in the three-
storey buildings refers to the four corner columns, group 2 to all
other external columns, and group 3 to the internal columns (see
Figure 4A). The same element groups refer to the lower three
levels of the six-storey building, while in the upper three levels the
element groups are 4, 5, and 6, respectively. For both test examples,
the cross-section x refer to the horizontal beams and the cross-
section y to the vertical ones (see Figure 4B). The initial cost of
the optimized designs for the fixed and the isolated buildings is
presented in Table 7.

Figures 5–7 depict the time histories of the roof acceleration
of the fixed and isolated three-storey buildings. Comparing the
results of the analysis, as expected, significant decrease on the

TABLE 5 | Dimensions of the structural elements of the three-storey fixed RC fame (in meters).

Fixed building Isolated building (LRB) Isolated building (HDNR)

hi bi reinfi hi bi reinfi hi bi reinfi

1 0.50 0.60 0.010 0.55 0.70 0.011007 0.50 0.55 0.012657
2 0.60 0.40 0.010 0.60 0.40 0.010993 0.50 0.30 0.010839
3 0.45 0.40 0.0116 0.45 0.40 0.013404 0.40 0.35 0.012219
x 0.35 0.30 0.010 0.65 0.35 0.010483 0.30 0.25 0.01061
y 0.55 0.35 0.010 0.65 0.35 0.010847 0.55 0.30 0.010216
D – 0.35 0.40
d – 0.15 –
h – 0.25 0.25
α – 8.20 3.80

TABLE 6 | Dimensions of the structural elements of the six storey fixed RC frame (in meters).

Fixed building Isolated building (LRB) Isolated building (HDNR)

hi bi reinfi hi bi reinfi hi bi reinfi

1 0.55 0.70 0.011007 0.45 0.60 0.011386 0.45 0.80 0.011988
2 0.60 0.40 0.010993 0.60 0.40 0.010498 0.55 0.40 0.011028
3 0.45 0.40 0.013404 0.45 0.35 0.015549 0.40 0.40 0.015771
4 0.40 0.35 0.011660 0.30 0.30 0.013320 0.35 0.35 0.012013
5 0.40 0.35 0.011866 0.40 0.35 0.014537 0.40 0.35 0.012348
6 0.40 0.35 0.011088 0.40 0.35 0.012117 0.35 0.35 0.014285
x 0.65 0.35 0.010483 0.55 0.35 0.010593 0.35 0.35 0.014835
y 0.65 0.35 0.001085 0.50 0.35 0.011154 0.60 0.35 0.013649
D – 0.50 0.50
d – 0.20 –
h – 0.25 0.25
α – 6.50 3.40
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FIGURE 4 | Six-storey test example – plan of the (A) first and (B) second level of the building.

TABLE 7 | Initial cost of the optimum designs (in MU).

Structural
model

Design Superstructure Foundation Base-
isolation

Total initial
cost

Three-
storey RC
frame

Dfixed 143,500 35,000 – 178,500
DLRB 147,000 23,600 27,000 197,600
DHDNR 151,500 24,500 29,000 205,000

Six-storey
RC frame

Dfixed 279,500 71,000 – 350,500
DLRB 273,000 47,500 54,000 374,500
DHDNR 275,000 47,700 45,000 367,700

maximum floor accelerations is observed in the base-isolated
buildings. As far as the maximum interstory drift is concerned,
the reduction observed for the design with LRB isolation system
(DLRB), compared to the fixed design (Dfixed), is almost the same
with that observed with HDNR isolation system (DHDRN). It can
be seen observed that the two isolated structures exhibit a more
flexible response with lower acceleration frequency and amplitude
compared to the fixed structure. This leads to a significant reduc-
tion in the seismic design forces and hence to reduced risk of
structural and non-structural damages. Figures 8–10 depict the
maximum roof drifts of the three-storey buildings where the use
of seismic isolation system leads to reduced drift values for the
superstructure, especially for the case of the 2/50 hazard level
seismic records. It is worth mentioning also that for both DLRB
and DHDRN designs the interstory drift has a uniform distribution
trend at each floor while for the case of Dfixed the interstory drift
presents a reduced trend from bottom to roof.

Figures 11–13 demonstrate for the three seismic hazard levels
(2/50, 10/50, and 50/50) the maximum values of the interstory
drifts as well as the maximum values of the roof accelerations for
the six-storey test example. Comparing the results obtained for
the isolated structures with those of the fixed structure, significant
decrease of the maximum interstory drift and acceleration is
observed. As far as the maximum roof acceleration is concerned,
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FIGURE 5 | Three-storey test example – roof acceleration time history
of the fixed and isolated buildings along the (A) x and (B) y directions
(Michoacan, Mexico, La Union record, of the 2/50 hazard level,
Table 4).

the reduction observed for DHDNR is more significant compared
to that observed for DLRB. Similar to this observation for the case
of the three-storey test example, the two isolated designs present
a more flexible response with lower frequency and acceleration
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FIGURE 6 | Three-storey test example – roof acceleration time history
of the fixed and isolated buildings along the (A) x and (B) y directions
(Tabas record, of the 10/50 hazard level, Table 3).

amplitude compared to the fixed structure. Figures 14–16 show
the maximum roof drifts of the six-storey buildings. The results
obtained for this example verify quantitatively that seismic iso-
lation highly reduces the drifts of the superstructure, especially
for the use of HDNR isolators, particularly in the case of strong
earthquakes (2/50). It is also observed that in 2/50 hazard level
the maximum floor acceleration is distributed uniformly along
height in the case of DLRB. Thus, it can be said that with reference
to maximum floor acceleration the use of base isolation becomes
more active in the case of strong groundmotions (i.e., 2/50 hazard
level), especially in the case of LRB, because they are charac-
terized by a higher damping capacity as compared to HDNR
bearings.

Life-Cycle Cost Assessment Results
In this part of the study, the optimized designs are assessed by
means of LCCA. For this purpose, the values of the maximum
interstory drifts and floor accelerations need to be calculated
for three hazard levels (2/50, 10/50, and 50/50). The structural
performance of each optimized design and for each hazard level is
obtained by means of multi-stripe incremental dynamic analysis
(Mitropoulou Ch et al., 2011) using scaled natural records for
each hazard level (see Tables 2–4); relying on SA(T1, 5%) of
the Eurocode 8 response spectrum for each hazard level, respec-
tively. The relative scale of records’ two components is preserved
implementing the following procedure, the record’s component
with the highest SA(T1, 5%) is scaled first, and the same scaling
factor is assigned to the second component in order to preserve
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FIGURE 7 | Three Three-storey test example – roof acceleration time
history of the fixed and isolated buildings along the (A) x and (B) y
directions (Cape Mendocino, Ferndale-C1 record, of the 50/50 hazard
level, Table 2).
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FIGURE 8 | Three-storey test example – maximum interstory drifts of
the fixed and isolated buildings (Michoacan, Mexico, La Union record
of the 2/50 hazard level, Table 4).

their relative ratio. For the calculation of the initial construction
cost, that includes concrete and steel reinforcement material cost,
labor cost, as well as the non-structural component cost; it was
assumed that the concrete cost is 100MU/m3, the steel reinforce-
ment cost is 2.5MU/kg, while the infill and bearing costs are
35MU/m2 and 60MU/lt, respectively; given in monetary units
(MU, corresponding to Euros or Dollars).
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FIGURE 9 | Three-storey test example – maximum interstory drifts of
the fixed and isolated buildings (Chi–Chi, Taiwan, TCU078 of the 10/50
hazard level, Table 3).
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FIGURE 10 | Three-storey test example – maximum interstory drifts of
the fixed and isolated buildings (Cape Mendocino (C1), Ferndale
record of the 50/50 hazard level, Table 2).

In case of retrofit interventions, the cost component of an added
reaction wall needs to be included in the construction cost for
a base-isolated structure. Moreover, it should also be mentioned
that for the retrofit application to a base-isolated structure the
costs largely depends on the presence or not of an existing under-
ground (basement, garage) story; and that the costs of installation
or replacement of HNRB isolators can significantly differ from
those of LRB isolators, not only in terms of price of the devices,
but also for the different types of equipment to be used for the
installation or removal.

Figure 17 depicts the total cost breakdown of the optimized
designs of the three-storey buildings (Dfixed, DHDNR and DLRB),
along with the life-cycle cost components calculated based on the
drift limits given in Ghobarah (2004). It can be seen in Figure 17,
that DHDNR is 9% cheaper compared to DLRB and 17% cheaper
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FIGURE 11 | Six-storey test example – (A) roof floor acceleration and
(B) roof drift time histories of the fixed and isolated buildings for the
Valparaiso, Chile, Vina del Mar record (2/50 hazard level, Table 4).
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compare to Dfixed, with reference to the life-cycle cost, while
DLRB is by 9% cheaper compared to Dfixed. Figure 18 shows the
contribution of initial and life-cycle cost components to the total
life-cycle cost. The initial cost (CIN) represents the 52% of the total
cost for Dfixed, while for DLRB and DHDRN represents the 57 and
60%, respectively. The dominant contributor for all designs is the
initial cost; the second dominant contributor is the loss of contents
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FIGURE 15 | Six-storey test example – maximum interstory drifts of the
fixed and isolated buildings (for the bin of records of the 10/50 hazard
level, Table 3).
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FIGURE 16 | Six-storey test example – maximum interstory drifts of the
fixed and isolated buildings (for the bin of records of the 50/50 hazard
level, Table 2).

due to floor acceleration, while the third dominant contributor
is damage/repair cost. CIN for the Dfixed design is 10% lower than
DHDNR, and 13% lower than DLRB. Worth mentioning is that the
loss of contents components is four times that of the repair cost;
while, the loss of contents contribution due to the maximum
interstory drift is insignificant compared to the losses due to
the floor acceleration. It appears that the injury (minor/major)
and fatality costs represent a minor part of the total cost for all
three designs (less than 0.1%). Comparing the three designs with
reference to the total cost it can be seen that they are almost
the same.

The results obtained for the six storey building are shown in
Figure 19 regarding the optimized designs obtained with refer-
ence to the type of foundation (Dfixed, DHDNR, and DLRB), along
with the life-cycle cost components. The initial cost represents the
54% of the total cost for Dfixed while for DLRB and DHDRN repre-
sents the 66 and 72%, respectively. In term of the life-cycle cost
DHDNR andDLRB are 51 and 34% cheaper compared toDfixed while
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FIGURE 17 | Three-storey test example – contribution of the initial cost and life-cycle cost components to the total cost for different types of
foundation.

FIGURE 18 | Three-storey test example – life-cycle cost components for different types of foundation.

DHDNR is 25% cheaper compared to DLRB. Figure 20 shows the
contribution of initial and life-cycle cost components to total life-
cycle cost. Although the initial cost is the dominant contributor
for all designs, in the case of the life-cycle cost components the
dominant contributor for all designs is the loss of contents due to
floor acceleration, while damage/repair cost represents the second
dominant contributor. Similar to the previous test example, the
loss of contents components is four times that of the repair cost.
The numerical results for this example confirms the observation
obtained for the three-storey building that the loss of contents due
to maximum interstory drift is not significant compared to that of

the floor acceleration while the injury cost and the fatality costs
represent only a small portion of the total cost for all three designs
(less than 0.1%). More specifically, comparing Dfixed, DHDNR, and
DLRB with reference to CIN, it can be seen that Dfixed is 5 and
7% cheaper compared to the two isolated designs, respectively;
while DHDNR is cheaper 2% compared to the DLRB. Comparing
the three designs with reference to the total cost it can be seen
that contrary to the observations reported for the three-storey
test example they vary significantly. In particular, Dfixed is 13 and
21% more expensive compared to the DLRB and DHDNR designs,
respectively.
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CONCLUDING REMARKS

The performance of 3D RC buildings designed with fixed or base-
isolation support conditions is assessed on the basis of a total
cost criterion where both the initial cost and the life-cycle cost
are considered. For the purposes of this study, a three- and a six-
storey RC building is considered. In order to achieve an objective
assessment of the performance of the two buildings, they are
designed via a performance-based optimum design formulation
taking into consideration the initial cost and maximum inter-
story drift performance constraints of the superstructure assessed
for different hazard levels. More specifically, both test examples

are optimally designed considering fixed as well as base-isolated
support conditions with both LRB and HDNR isolation systems.
The numerical results depict significant decrease in terms of the
maximum interstory drift and floor accelerations for the base-
isolated models.

Furthermore, it is demonstrated that the isolated structures
present more flexible response where the frequency of the
acceleration motion is lower compared to that of the fixed
structure. The initial cost of the isolated structure with LRB is less
compared to that of the correspondingwithHDNR. Both isolation
systems are considerably more expensive than the fixed support
building in terms of initial cost. However, when the life-cycle
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cost is taken into consideration, then base-isolated buildings pro-
vide a more economical alternative to the fixed support one,
particularly when LRB are used. It appears that themost dominant
cost for all designs is the loss of contents due to floor accelera-
tion, while damage/repair cost represents the next dominant cost
contributor. Worth mentioning also that the loss of contents cost
due to the maximum interstory drift is insignificant compared to
that associated with the floor accelerations. In all test cases, injury
(minor/major) and fatality costs represent an insignificant part of
the total cost. The numerical test also demonstrated that between
the two base-isolated structures the onewith theHDNR is cheaper
than the one with LRB.
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