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Tsunami damage, fragility, and vulnerability functions are statistical models that provide
an estimate of expected damage or losses due to tsunami. They allow for quantification
of risk, and so are a vital component of catastrophe models used for human and
financial loss estimation, and for land-use and emergency planning. This paper collates
and reviews the currently available tsunami fragility functions in order to highlight the
current limitations, outline significant advances in this field, make recommendations for
model derivation, and propose key areas for further research. Existing functions are first
presented, and then key issues are identified in the current literature for each of the
model components: building damage data (the response variable of the statistical model),
tsunami intensity data (the explanatory variable), and the statistical model that links the
two. Finally, recommendations are made regarding areas for future research and current
best practices in deriving tsunami fragility functions (see Discussion, Recommendations,
and Future Research). The information presented in this paper may be used to assess
the quality of current estimations (both based on the quality of the data, and the quality
of the models and methods adopted) and to adopt best practice when developing new
fragility functions.

Keywords: tsunami, vulnerability, fragility functions, damage, stochastic model

INTRODUCTION

Tsunami are long propagating waves generated by large scale underwater displacements (eg.
earthquake, underwater explosions), or aerial impacts (eg. landslides), which travel at high speeds
across large bodies of water. When they reach coastal areas, large tsunami can inundate up to
several kilometers inland causing many deaths and costly damage or destruction to buildings and
infrastructure in the coastal region.

Figure 1 shows a widely accepted definition of risk to natural hazards in the built environment
(Crichton, 1999) applied to tsunami. Following recent large tsunamis (e.g., Indian Ocean, 2004;
Chile, 2010 and Japan, 2011) significant resources have been dedicated worldwide to improve
tsunami hazard models (Suppasri et al., 2016). This has resulted in significant advances being
made in the identification of tsunamigenic earthquake sources and their activity (Yamazaki and
Cheung, 2011; Satake et al., 2013), and in the modeling of tsunami propagation and inundation
both numerically (Synolakis et al., 2008) and experimentally (Rossetto et al., 2011; Goseberg et al.,
2013; Foster et al., 2017). Less effort has been dedicated to the prediction of damage to the built
environment from tsunami inundation and the accurate evaluation of tsunami risk.
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FIGURE 1 | The components of tsunami risk. Fragility is highlighted as it is the focus of this paper.

While some vulnerability assessment methods may directly
relate probable losses to tsunami intensity (direct vulnerability),
more detailed assessments (indirect vulnerability) separate the
assessment of likely building damage (fragility assessment) from
the estimation of losses due to that damage (the loss model), as
shown in Figure 2. Fragility (sometimes referred to as “physical
vulnerability”) relates an indicator of building damage to a mea-
sure of the tsunami intensity at the location of each considered
building.

Fragility functions are a family of cumulative distribution func-
tions that provide the probability of a given type of building
exceeding specified damage states (where each individual curve
represents a specific damage state, such as “collapse” or “heavy
damage”) over a range of values of a tsunami intensity mea-
sure (TIM, e.g., inundation depth). In order to derive fragility
functions, three components are required: damage data, tsunami
inundation data, and the statistical model linking them (i.e., a rep-
resentation of the mean damage exceedance probabilities and the
associated uncertainty). There are in the literature a small number
of tsunami damage functions, which relate a TIM directly to
mean damage (Ruangrassamee et al., 2006; Valencia et al., 2011);
however, these do not consider aleatoric uncertainty at a given
TIM value so can be considered superseded by fragility functions,
and so they will not be considered further. Vulnerability functions
relate a TIM directly to financial loss or casualties (Berryman,
2005; Reese et al., 2007; Masuda et al., 2012) though very few exist
in the literature (due partly to challenges in obtaining financial
data), and so the remainder of this paper will focus only on
fragility functions.

Functions can be classified according to how the damage data
are gathered (regardless of how the inundation data are gathered)
(D’Ayala et al., 2013; Rossetto et al., 2014). Empirical fragility
functions derive damage data from post-tsunami assessments (or
physical experiments); judgment-based functions derive damage
estimates from expert elicitation; analytical functions use numer-
ical simulations of structural damage (Dias et al., 2009; Park et al.,
2013; Kircher and Bouabid, 2014; Macabuag and Rossetto, 2014);
and hybrid functions use a combination of these techniques.

FIGURE 2 | Example fragility functions. IM, intensity measure; DS, damage
state. The y-axis represents the probability of damage exceedance for each
damage state (P{ds<DS} versus IM).

Empirical fragility functions make up the overwhelming majority
of the available functions, and so will be the focus of this paper.

The field of tsunami fragility assessment is relatively new when
compared to seismic fragility, and there are, therefore, many
lessons that can be learned from the seismic field. However,
tsunami fragility assessment has access to damage data of better
quality (primarily from the 2011 Great East Japan Earthquake
and Tsunami) and so new statistical approaches have been devel-
oped that would not have been feasible using currently available
earthquake damage datasets.

Tarbotton et al. (2015) give a review of existing literature on
tsunami fragility curves, noting trends and comparing existing
fragility curves in order to highlight variability in the mean func-
tion across a range of studies. However, they do not provide
guidance on how to interpret and tackle such variability, nor draw
on literature from other fields (such as earthquake engineering),
nor include the most recent research that has made significant
leaps forward in areas such as critical assessment of the statistical
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models, multivariate methods, treatment of missing data, and
quantification of uncertainty in both the explanatory and response
variables of the fragility functions. Note that the terminology
used by Tarbotton et al. (2015) to classify fragility functions is
different to that of the Global Earthquake Model (GEM), though
to be consistent with best practice functions will be classified as
empirical or analytical as per the GEM guidance throughout this
paper.

The present review provides the most comprehensive review
of existing studies to-date and provides a deeper understand-
ing of what drives the epistemic (systematic) uncertainty in
existing models, and how to practically reduce it, focusing on
sources of uncertainty which can be addressed. Key empiri-
cal fragility models from existing literature have been chosen
for this purpose, representing a variety of locations, events,
statistical approaches, intensity measures, and building stocks
most commonly investigated. Drawing upon experience of a sim-
ilar exercise for the development of the GEM compendium, this
paper formulates recommendations consistent with the estab-
lished best-practice in the seismic field (PAGER, GEM).

The aim of this paper is to collate and summarize existing
empirical tsunami fragility functions for buildings, to outline lim-
itations and significant advances in the field, and to propose key
areas for further development. The information presented in this
paper will allow the reader to assess the quality of current estima-
tions (both based on the quality of the data, and the quality of the
models and theories adopted), and to adopt best practice when
developing new fragility functions and, therefore has significant
implications for those using, assessing, or developing empirical
tsunami fragility functions.

EXISTING EMPIRICAL TSUNAMI
FRAGILITY FUNCTIONS

Empirical fragility functions are based on observed damage data
from tsunami events. Table 1 shows existing empirical tsunami
fragility functions for the 1993 Japan tsunami, 2004 Indian
Ocean tsunami, 2009 Samoa Tsunami, and 2010Chilean Tsunami.
Table 2 shows existing empirical tsunami fragility functions for
the 2011 Japan tsunami.

In Tables 1 and 2, TIM indicates the TIM assigned to each
building, discussed in detail in Section “The Explanatory
Variables: Tsunami Intensity Measures” (h, inundation depth;
v, velocity; F, drag force; MF, momentum flux; MMF, moment
of momentum flux, FQS, a new proposed quasi-steady force
estimate). The explanatory variable data-source describes how
the TIM was determined for each building (sim., numerical
inundation simulation). The response-variable data-points
indicate the number of buildings in the study (−= data not given
in the reference, Aggr.= aggregated, note that all data are aggre-
gated when used in OLS models, see Model Quality). Response
variable data-source indicates how damage data were collected
(remote= satellite or aerial imagery, survey= visual inspection in
the field). #DS indicates number of damage states (including DS0,
so that #DS= 2 indicates 1 fragility curve, generally collapse).
The model column indicates the statistical model describing the
fragility function (OLS= standard linear model with parameters

estimated via ordinary least squares (OLS), generalized linear
model (GLM) using maximum likelihood parameter estimation
with various link functions, see Section “Model Quality”).

It can be seen that there are many more fragility functions
derived from data for the 2011 Japan tsunami (19 fragility func-
tions) than for all previous tsunamis combined (11 fragility func-
tions), which is indicative of the unprecedented quantity and
quality of data that have become available following the 2011
Japan tsunami. Furthermore, it can also be seen that the majority
of damage data from the 2011 Japan tsunami which has been
used in fragility functions is from field surveys, again due to
the unprecedented scale of the surveys conducted, such as that
conducted by Japan’sMinistry of Land Infrastructure Tourism and
Transport (MLIT) which provided a database of all of the houses
(over 200,00) within the tsunami inundation zone.

Existing fragility functions cover several construction types,
including engineered structures in Japan (RC, steel, masonry,
and timber), and primarily non-engineered structures of Thai-
land, Indonesia, and Samoa. Some studies consider construction
year (Amakuni and Terazono, 2011; Suppasri et al., 2014) and
number of stories (Suppasri et al., 2013, 2014), though most do
not make this distinction. The majority of studies use normal or
lognormalmodels withOLS parameter estimation, with improved
models (e.g., GLM) becoming more widely used in more recent
studies.

Alongside the published studies presented in Tables 1 and
2, there are also substantial proprietary investigations carried
out by commercial catastrophe risk modeling companies using
confidential insurance loss information. While these cannot be
included in this paper, the comprehensive review and recom-
mendations presented here are of significance to modelers and
model developers interrogating or developing these proprietary
functions.

A critical review of this literature is now presented accord-
ing to the three fundamental components of tsunami fragility
functions. Building damage data are discussed in Section “The
Response Variable: Building Damage Data,” tsunami intensity
data in Section “The Explanatory Variables: Tsunami Intensity
Measures,” and the statistical model that links the two in Section
“Model Quality.” Finally, recommendations are made regarding
areas for future research and current best practices in deriving
tsunami fragility functions.

THE RESPONSE VARIABLE: BUILDING
DAMAGE DATA

Fragility functions express the probability that a building may
reach or exceed a set of damage states, for a given value of a TIM
(e.g., inundation depth). Damage states represent the response
variable in regression analysis, and each curve of a family of
fragility functions represents a different damage state. This section
sets out the criteria that an optimal damage scale should meet for
fragility function derivation and discusses the current literature
in relation to these criteria, highlights shortcomings in damage
data collection, and highlights that currently used building classi-
fications miss features of the building that make it vulnerable to
tsunami.
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TABLE 1 | Published empirical fragility functions for the 1993 Japan tsunami, 2004 Indian Ocean tsunami, 2009 Samoa Tsunami, and 2010 Chilean Tsunami.

Reference Explanatory variable Response variable Model Comments

Tsunami
event

Tsunami
intensity
measure

Data-source Data-points #DS Data-source

EF1 Koshimura and Kayaba
(2010)

Japan 1993 h,v,F sim. 769 2 Remote Ordinary least
squares (OLS)

In Japanese. Curves for Hokkaido,
Japan

EF2 Pomonis and Peiris (2005)

Indian
Ocean
2004

h Survey

45,714 4

Survey

OLS Curves for SW and SE coast of
Sri Lanka

EF3 Dias et al. (2009) 33,900 2 Curves for Sri Lanka, compared with
analytically derived curves

EF4 Koshimura et al. (2009b)
h,v,F

sim.

48,910 Curves for Banda Aceh, Indonesia

EF5 Suppasri et al. (2009) – Remote Curves for Phang Nga, Thailand

EF6 Murao and Nakazato (2010) h 1,535 4 Survey Compares curves with other authors’

EF7 Suppasri et al. (2011) h,v,F 4,596 2 Remote Compares curves for Phang Nga and
Phuket, Thailand

EF8 Valencia et al. (2011) h Survey 2,576 6 Survey, Remote Error about datapoints and mean curve
indicated (Banda Aceh, Indonesia)

EF9 Gokon et al. (2009)

Samoa 2009

h,v sim. 902 2 Remote OLS Curves for Tutuila Island, American
Samoa

EF10 Reese et al. (2011) h, debris Survey 201 5 Survey Generalized linear
model (GLM)

First use of GLM (American Samoa).
Considers curves w/wo debris and
sheltering.

EF11 Mas et al. (2012) Chile 2010 h sim. 915 2 Remote OLS Curves for Dichato, Chile. Visually
compares curves from various countries
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TABLE 2 | Published empirical fragility functions derived from data for the 2011 Great East Japan Earthquake and Tsunami.

Reference Explanatory variable Response variable Model Comments

Tsunami intensity
measure (TIM)

Data-source Data-points #DS Data-source

EF12 Amakuni and Terazono (2011) h,v,F

Survey

8,653

2

Remote OLS Compares multiple locations (Miyagi, Japan) and multiple
construction years

EF13 Nihei et al. (2012)

h

~5,000
Survey, Remote

Curves for Natori, Japan (in Japanese)

EF14 Koshimura and Gokon (2012) 157,640 Compares curves for various locations across Japan (in Japanese)

EF15 Yanagisawa and Yanagisawa (2012) 202

Survey

Curves for Sendai, Japan (in Japanese)

EF16 Suppasri et al. (2012b)
189 5

Visually compares curves from Sri Lanka and Miyagi (Sendai and
Ishinomaki), Japan

EF17 Suppasri et al. (2012a) 251,301 (aggr.) 6 Uses aggregated government survey data

EF18 Maruyama et al. (2013)

h,v,F
>335

2

Curves using data for Chiba prefecture, Japan. Does not specify
number of non-collapsed buildings in survey

EF19 Hayashi et al. (2013) 8,244 Flow velocities validated against observations

EF20 Suppasri et al. (2014)

h

63,605

6

Compares topography, number of floors, building use, construction
year, material (Ishinomaki, Japan), using disaggregated data

EF21 Charvet et al. (2014a)
178,448 (aggr.)

Generalized linear
model (GLM)

Compares ordered and partially ordered models, various link
functions, and quantifies inclusion of building class, for aggregated
data

EF22 Charvet et al. (2014b)
56,950

Separates data by terrain type: plain, narrow coast (backed up by
high topography), and river, for Ishinomaki, Japan, for
disaggregated data

EF23 Narita and Koshimura (2015)
64,860 2 OLS

Damage data for each curve collated according to topographic
features, building distribution, sea defenses, ground elevation and
slope

EF24 Charvet et al. (2015) h, v, debris

sim.

19,815 6 GLM
Kesennuma, Japan (disaggregated data). Concludes that debris
has significant effect on fragility functions. Fragility surfaces also
presented

EF25 Tanaka and Kondo (2015) MF, MMF

– 2

OLS Recommends switching between fragility functions for high and low
Froude cases. Does not specify the number of buildings surveyed

EF26 Tanaka et al. (2015) h, MF, MMF

EF27 Macabuag et al. (2016a) h, v, MF, F, Fr, FQS

Survey sim. 67,125

6

OLS GLM
General additive
models (GAM)

Treatment of missing data. Proposed TIM and model optimization
method. First use of GAMs for tsunami fragility

EF28 Macabuag et al. (2016b) h, v, MF, F, Fr, FQS, debris GLM GAM Inclusion of debris has large effect on fragility, which can be
quantified.

EF29 De Risi et al. (2017a,b) h Survey 147,668 OLS GLM First use of Bayesian methods to investigate the effect of uncertainty
in inundation observations. Effect on loss estimates also considered

EF30 De Risi et al. (2017a,b) h,v sim. >200,000 GLM Fragility surfaces. Show velocity important in coastal plains
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Damage Scale
Damage scales define the set of damage states into which tsunami-
affected buildings are classified. McCullagh and Nelder (1983)
states fundamental rules that damage scales must follow, and Hill
and Rossetto (2008) proposed a ranking system for “scoring”
existing seismic damage scales based on the key characteristics
required for use in loss modeling. The rules and characteristics
relevant for tsunami fragility function derivation are shown in
Table 3 and the damage mechanisms to be captured by fragility
functions are defined and characterized in Table 4. All of the
fragility functions derived from data for the Great East Japan
Earthquake and Tsunami (Table 2) use the damage scale proposed
by the Japan Cabinet Office (2013) shown in Table 5.

The damage scale in Table 5 (and many of the scales presented
in Table 1) violates the first rule set out by McCullagh and Nelder
(1983) (CH1.1, Table 3). For example, buildings with inundation
below the ground floor ceiling (DS3) could also experience col-
lapse (DS5). Therefore, surveyors inspecting a building that falls
into multiple damage state categories is presented with a sub-
jective choice as to which damage state to assign. Charvet et al.
(2014a,b) highlight that the descriptions of DS5 and DS6 also
violate the second rule (CH1.2, Table 3). The damage scale in
Table 5 also does not directly address global and local damage
nor distinguish between structural and non-structural damage but
instead shows an assumed direct correlation between the hazard
intensity (inundation depth in this case) and damage in that depth
is specified directly in the damage state descriptions for DS1-
DS4, and so structural response is not actually considered by these
definitions.

The shortcomings of the damage scale in Table 5 have implica-
tions for the uncertainty in the observations for empirical studies
and, therefore, raises questions about the reliability of existing
functions derived from data for the Great East Japan Earthquake
and Tsunami (Table 2). Furthermore, the remaining building
damage scales that can be found in the literature for tsunami

TABLE 3 | Important characteristics of a damage scale for tsunami fragility function
derivation.

Characteristic Description

Damage CH1.1 Mutual exclusivity Levels of response (i.e., the damage
states) are mutually exclusive

CH1.2 Damage
progression

Each new damage state
corresponds to an increase in
intensity (i.e., an increase in the TIM)

CH1.3 Ease of
measurement

States are clearly distinguishable
and can be easily applied to
populations of buildings

CH1.4 Coverage Descriptions capture the full range
of damage to the building type

CH1.5 Global Global damage is considered

CH1.6 Local Local damage is considered

CH1.7 Non-structural Non-structural damage is
considered and distinguished from
structural damage

Adapted from McCullagh and Nelder (1983) (CH1.1 and CH1.2) and Hill and Rossetto
(2008) (all other characteristics). The definitions of “global,” “local,” and “non-structural,”
damage are given in Table 4.

(Table 1) are often not consistent, having different damage state
definitions and a varying number of damage states, or otherwise
fail to meet the criteria set out above. An improved and unified
damage scale is, therefore, required for future studies.

Damage Data: Quality and Collection
Method
Empirical building damage data post-tsunami is collected either
via ground survey (visual inspection), or remotely (aerial or satel-
lite photography). Remote sensing allows for the rapid collection
of large amounts of data. However, the limitation on satellite
remote sensing damage surveys is that the only detectable damage
state is often “total collapse” (and where intermediate damage

TABLE 4 | Tsunami-induced damage and failure mechanisms (photos: EEFIT).

Damage mechanisms

Non-structural
Damage

DM1: flooding damage DM2: damage to cladding/finishes

Local
Structural
Damage

DM3: member failure DM4: load-bearing wall failure

Global
Structural
Failure

DM5: global lateral deflection/failure DM6: progressive collapse

DM7: foundation Failure

Note that all of these failures may have been caused by a combination of several tsunami
effects (lateral fluid forces, buoyancy, debris impact and foundation effects) and ground
shaking.
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states are included, their accuracy is low), meaning that accurate
fragility functions cannot be formed for partial collapse states
(e.g., all studies in Table 1 utilizing remote sensing consider
only two damage states). Construction material can often not
be determined remotely. Ground surveys can determine material

TABLE 5 | Damage state definitions used by the Japanese Ministry of Land Infras-
tructure Tourism and Transport following the 2011 Great East Japan Earthquake
and Tsunami.

Damage State Description Use Image

DS1 Minor
damage

Inundation
below ground
floor. The
building can be
reused by
removing mud
below the floor
boards

Possible to use
immediately
after minor floor
and wall
cleanup

DS2 Moderate
damage

The building is
inundated less
than 1m above
the floor

Possible to use
after moderate
repairs

DS3 Major
damage

The building is
inundated more
than 1m above
the floor (below
the ceiling)

Possible to use
after major
repairs

DS4 Complete
damage

The building is
inundated
above the
ground floor
level

Major work is
required for
re-use of the
building

DS5 Collapsed The key
structure is
damaged, and
difficult to repair
to be used as it
was before

Not repairable

DS6 Washed
away

The building is
completely
washed away
except for the
foundation

Not repairable

Descriptions from Japan Cabinet Office (2013), usage descriptions from Suppasri et al.
(2014). This damage scale violates several of the rules set out in McCullagh and Nelder
(1989), so it is not proposed that this scale be used in future studies.

and intermediate damage states, though they take more time than
remote sensing. Ground surveys can be conducted by surveyors
with different levels of training and expertise. They are com-
monly carried out for purposes other than the construction of
fragility functions (e.g., for safety evaluations) hence they may
not record appropriate damage. Further sources of uncertainty are
introduced due to the typical issues highlighted in Table 6.

In the case of an earthquake-generated tsunami where damage
is surveyed in the near-field regions, it is likely that the earthquake
has damaged buildings before the tsunami’s arrival. Park et al.
(2013) considered previous seismic damage in an analytical study
of tsunami fragility. However, for empirical studies, it is difficult
to separate tsunami-induced damage from earthquake-induced
damage, which creates bias in the data (Rossetto et al., 2012) and
so likely affects the applicability to estimating tsunami-only risk
(e.g., for far-field tsunamis) for all of the fragility functions derived
from the 2011 Japan tsunami to some degree.

Empirical fragility functions can be very specific to the location
from where the damage data were gathered. Suppasri et al. (2014)
and Charvet et al. (2014b) compare fragility functions formed
using data from areas within the same city (Ishinomaki, Japan)
but with different topographies. Narita and Koshimura (2015)
separate building damage data by location according to four broad
factors: bathymetric features, distribution of buildings, coastal
protection facilities, topographic features. Such studies show that
fragility functions cannot typically be generalized or applied to
similar structures in a different geographical location.

Empirical fragility studies based on field measurements all face
the issue of data analysis with missing attributes, and existing
studies [e.g., Suppasri et al. (2013)] generally conduct complete-
case analysis, i.e., they remove any partial data, such as buildings
of unknown material, from their fragility analysis. However, this
may lead to a loss of statistical power, loss of precision, and
introduction of bias if the missing data are informative. Missing
data can be assigned to one of three categories [Ware et al. (2012)]:
Missing Completely At Random (MCAR), Missing At Random
(MAR), or Missing Not At Random (MNAR). MCAR refers to
the case where the data are missing purely by chance. MNAR
refers to the case where the missing information is related to the
reason that the information is missing (e.g., if wooden buildings
had been removed from the dataset because they were wooden).
MAR refers to the case where the information is not MCAR but
can be accounted for by using other attributes. The only study to
analyze and treatmissing data before conducting fragility function
derivation is Macabuag et al. (2016a). All other studies that pro-
duce fragility functions for various building classifications based
on data from existing fragility functionsmay be susceptible to bias
introduced by the removal of incomplete data-entries.

TABLE 6 | Database typologies and their main characteristics [adapted from Rossetto et al. (2014)].

Survey method Typical sample
sizes

Typical building
classes

Typical no. of
damage states

Reliability of
observations

Typical issues

Rapid Surveys Large All buildings 2–3 Low Safety, not damage evaluations
Detailed “Engineering” Large to small Detailed classes 5–6 High Possibility of unrepresentative samples
Surveys by Reconnaissance Teams Very small Detailed classes 5–6 High Possibility of unrepresentative samples
Remotely Sensed Very large All buildings 3–5 Low Only collapse or very heavy states may

be reliable. Misclassification errors
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Building Classification
In order for the fragility results to be representative of the different
structural responses to tsunami loading, typically buildings are
classified according to structural properties and analysis is carried
out on each class separately. Suppasri et al. (2014) considers struc-
tural material, height, occupancy, and date of construction (con-
cluding that date of construction did not greatly affect tsunami
performance). All other existing studies consider structural mate-
rial only. However, the building classifications are not consistent
between studies. For example, Tinti et al. (2011) divides masonry
buildings into five sub-classes of structures with varying construc-
tion materials and numbers of stories, and Valencia et al. (2011)
consider two types ofmasonry-structures (class B andC). Fragility
functions from different studies can often not be compared for
this reason.

The purpose of a building classification system is to allow
buildings to be grouped according to their likely performance in
the case of tsunami, i.e., so that they can be represented by a single
set of fragility curves. Current building classes that have been used
in tsunami fragility studies are based on classification systems for
earthquakes and do not take into account the building charac-
teristics that make buildings susceptible to damage from tsunami
(e.g., openings, soil type, foundation type, cladding system). This
means that they may cluster together buildings that will perform
differently in tsunami, into the same building class. For example,
an RC structure with and without large openings will behave very
differently in tsunami, or a structure founded on piles verses one
on raft foundations may behave very differently even if it has the
same superstructure. Therefore, a building classification system
that accounts for the features of the building that make it vul-
nerable to tsunami (so grouping buildings of similar performance
together) is presented in Section “Assessment/Improvement of the
Quality of Building Damage Data.”

THE EXPLANATORY VARIABLES: TIMs

Tsunami intensity measures (represented as the x-axis of fragility
curves) should provide the best possible representation of the
damage potential of the tsunami. In this respect, they can be
considered as trying to represent the structural demand that a
given tsunami places on the building being investigated. However,
existing studies vary in their selection of TIMs and derivation of
intensity data. This section, therefore, compares the various TIMs
used in the literature, highlights challenges in their methods of
derivation, and highlights that the optimal TIM depends on the
particular dataset being used.

Summary of Intensity Parameters
Tsunami-induced building damage can arise due to hydro-
static forces (including buoyancy), hydrodynamic effects (drag
and bore impact), and debris (impact and damming), and the
severity of these effects are determined by a number of flow
parameters.

The majority of existing tsunami fragility curves adopt only
the local maximum inundation depth as the TIM (Tables 1
and 2), often because it is the most readily definable param-
eter from post-tsunami surveys [e.g., residue lines in houses,

Suppasri et al. (2012a,b)] and can be calculated from numerical
inundation simulations more accurately than other flow param-
eters (discussed below, Section “Determination of Inundation
Parameters”). Flow depth is indeed the main parameter driving
lateral hydrostatic forces, buoyancy forces, and it also determines
the size of debris that can be carried by the flow. However,
a wide range of velocities (and so hydrodynamic forces) can
exist for a given inundation depth, and indeed various studies
have indicated that the sole use of inundation depth does not
adequately describe observed damage at higher damage states
(Charvet et al., 2014a; Macabuag et al., 2016a,b). Note also that
various definitions and names for inundation depth can be found
in the literature [water level (Reese et al., 2007), inundation depth
(Inoue et al., 2007), tsunami depth, or water depth (Tanaka et al.,
2007)], and so caution should be exercised when referring to these
studies.

Flow velocity influences the hydrodynamic force, the surge
force, the debris impact, and damming forces. Studies that have
compared TIMs have generally concluded that velocity alone is
less effective than depth as an indicator of damage for buildings
for the datasets investigated (Koshimura et al., 2009a,b; Macabuag
et al., 2016a). However, velocity is often used to calculate the fluid
force TIMs shown in Table 7.

Froude number indicates the flow regime such that Fr< 1
indicates sub-critical flow (where the flow velocity is less than the
wave velocity and so behaves in a slow or stable way) and Fr> 1
indicates choked or supercritical flow (where flow is dominated by
inertia forces, so behaving as a rapid or unstable flow). Macabuag
et al. (2016a) is the only study to consider Froude Number as a
TIM and found it to be a poor indicator of building damage when
used alone, for the dataset considered. However, Froude Number
is used to calculate the quasi-steady force discussed below (Qi
et al., 2014; Foster et al., 2017), and Tanaka and Kondo (2015)
recommend using different fragility curves for flow conditions
characterized by high and low Froude numbers.

Momentum flux is proportional to hydrodynamic form-drag
(Table 7) and so they can be considered equivalent TIMs
[i.e., fragility functions derived from momentum flux and drag
force will give identical goodness-of-fit results, Macabuag et al.
(2016a)]. Park et al. (2014) compares damage estimates for a
case-study town in the USA using fragility functions for depth,
velocity, and momentum flux, concluding that velocity and
momentum flux provide the most realistic damage estimates,
though this is only based on a qualitative visual assessment of
damage locations and the authors acknowledge that this conclu-
sion must be verified with field data. Tanaka and Kondo (2015)
are the only empirical study to consider moment of momentum
flux in their fragility curves. Note that nearly all current studies
that consider force are using the standard drag equation (all except
Macabuag et al. (2016a), below, and Tanaka and Kondo (2015)
who additionally consider moment of momentum flux), however,
this does not account for alternative estimations, such as equiva-
lent hydrostatic methods (MLIT, 2011), bore impact (Robertson
and Riggs, 2011), or changes in flow regime (Qi et al., 2014; Foster
et al., 2017).

Macabuag et al. (2016a) derived fragility functions using an
equivalent quasi-steady force proposed by Qi et al. (2014) and

Frontiers in Built Environment | www.frontiersin.org August 2017 | Volume 3 | Article 368

http://www.frontiersin.org/Built_Environment
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive


Charvet et al. Tsunami Fragility Functions: Critical Review

TABLE 7 | Tsunami Intensity Measures (TIMs) used in the current literature.

TIM Description

Inundation depth Peak observed or simulated inundation depth (hpeak )
at each building location.

Flow
velocity

Peak velocity Peak velocity (vpeak ), generally calculated from
numerical simulation as the vector sum of the
velocity components in the directions of the two
orthogonal axes of the 2D flow calculation.

Froude number A measure of flow velocity non-dimensionalized by
the gravity-wave velocity:

Fr =

(
v√
gh

)
peak

Fluid
forces

Momentum flux A vector in the direction of flow, of magnitude equal
to the mass-flow per unit area:

MF =
(
hv2
)
peak

Form drag The force exerted on an object (per unit width
perpendicular to the direction of flow) due to the
movement of a surrounding fluid of density ρ:

Fdrag =
1

2
ρCd

(
hv2
)
peak

. . .where the drag coefficient (CD) is a function of
the object shape and orientation

Moment of
momentum flux

The product of momentum flux and inundation
depth, considered a proxy for the overturning
moment induced by the flow:

MMF =
(
h.hv2

)
peak

Quasi-steady
Tsunami force

Alternative steady-state force estimation
considering choked and sub-critical flow for a body
of width b in a channel of width w:

FQS =

{
1
2

[
CD0

(
1 + CD0

2

{
b
w

})]
ρv2h, Fr < Frc

λρg1/3v4/3h4/3, Fr ≥ Frc

. . .where:

– λ is a function of hydrostatic and form drag
coefficients, and up- and down-stream Froude
Numbers.

– Frc is a function of drag coefficient and blockage
ratio (b/w).

See Foster et al. (2017) for calculation procedure.

In-flow debris A measure of whether a building is thought to have
been struck by large debris.

All TIMs represent a peak value measured at each building location. Tables 1 and 2 show
which existing studies use each TIM.

shown by Foster et al. (2017) to represent the force of a tsunami
inundation on buildings. It is evaluated via two different flow
regimes determined by Froude number. The equations relate
depth, velocity, and blockage ratio (buildingwidth/channel width)
to the force. Increasing the blockage ratio generally has the effect
of increasing the force on the structure, and readers are referred
to Qi et al. (2014) for the calculation procedure. Macabuag et al.
(2016a) found that measures of force appear to provide the most
efficient TIMs, if the inundation simulation from which they

are derived is sufficiently accurate, or simulated velocity can be
validated, and, furthermore, that flow regime (indicated by Froude
number) appears to be a significant consideration when conduct-
ing fragility assessments, or quantifying tsunami-induced forces
on structures.

Debris impact has been shown to have a significant influence
on tsunami-induced damage and has been considered in fragility
function derivation by Charvet et al. (2015), Macabuag et al.
(2016b), Reese et al. (2011). However, all current studies simply
use a binary indicator defining whether a building is thought to
have been impacted or not, and further work is needed in order to
more fully capture the characteristics of the likely forces imposed
by debris on the structure.

Overall, the literature does not show a consensus as to
which flow parameter is the most appropriate TIM to estimate
fragility, though Macabuag et al. (2016a) proposed a rigorous
methodology for determining the optimum TIM for any given
dataset.

Tsunami magnitude is not considered a TIM as it is a function
of offshore wave characteristics only and is not building specific.
Run-up is also not considered a TIM as it is not building-specific,
though it can be used to estimate building-specific inundation
depths.

Not all tsunami loads and effects are necessarily captured by
any single TIM used in the current literature (Table 7). For
example, duration of immersion (and number of waves) is not
captured in existing TIMs. This is significant as additional waves
provide multiple impulsive impacts on the structure, the structure
experiences load-reversal due to both the inflow and draw-down,
and increases degradation of non-engineered structural materials
(e.g., wood). Scott and Mason (2017) propose multi-hazard inten-
sity measures considering both seismic and tsunami demand in a
single parameter, though this concept has not been explored for
fragility analysis. In fluvial flood modeling, Kreibich et al. (2009)
compare Flood Intensity Measures of depth, velocity, momentum
flux, and energy head according to the Bernoulli Equation, con-
cluding that for fluvial flooding depth and energy head have
the strongest correlation with observed damage, although it is
acknowledged that a much larger sample size is required in order
to draw conclusive results.

Froude Number and all of the force TIMs presented in Table 7
are all complex TIMs that represent information of both depth and
velocity. However, even a complex TIM may not capture all the
relevant tsunami information necessary to predict structural dam-
age, and so it would be beneficial to consider additional intensity
measures simultaneously. Multiple regression techniques allow
for several intensitymeasures to be included in themodel simulta-
neously. Charvet et al. (2015) and De Risi et al. (2017a,b) generate
fragility surfaces considering depth and velocity simultaneously
(Figure 3), both concluding that such multiple regression mod-
els are more accurate than considering either TIM in isolation.
However, surfaces are currently seldom used in practice for quan-
titative loss estimation and it is always the aim to develop a
“parsimonious model” (the best model for the fewest predictors)
as using additional intensity measures requires more data points
and difficulties of obtaining these additional tsunami parameters
must be overcome.
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FIGURE 3 | Example tsunami fragility surface showing building collapse probability conditional on two key intensity measures, flow depth and velocity. Adapted from
Charvet et al. (2015).

Determination of Inundation Parameters
For the derivation of fragility functions, the flow conditions at
each building location (i.e., the TIM values) must be measured
or estimated. These flow conditions may be obtained from post-
tsunami field surveys, or they can be calculated using empiri-
cal flow estimation methods or numerical inundation modeling
techniques. Calculation of onshore flow, by either empirical or
numerical methods, requires information of offshore conditions
obtained by modeling propagation from source to the coastline.
Source and deep-sea propagation modeling is beyond the scope
of this study, but methods of inundation estimation based on
offshore conditions will be briefly discussed here, as the accuracy
of the resulting TIM values directly impacts the reliability of the
final fragility functions.

Field Surveys
In post-tsunami field surveys, flow depth can be measured using
for example local water marks, or debris hanging on trees. If flow
depth cannot be measured directly from an affected building (for
example, the building has been washed away) various interpola-
tion methods can be employed to estimate parameters between
observation location (Mas et al., 2012; De Risi et al., 2017a,b),
though there will be error introduced by the interpolation. Note
that run-up may also be obtained from field surveys in order to
validate numerical inundation results, either by direct observa-
tion immediately post-tsunami or by examining tsunami deposits,
particularly for historic tsunamis.

Flow velocity is difficult to determine from observations in
sufficient accuracy and resolution (EEFIT, 2006; Reese et al.,
2007), and so is always calculated numerically for fragility func-
tion derivation. However, observation methods are often used to
validate numerical results (Adriano et al., 2016).

Tsunami-induced forces on buildings have never been directly
measured, and although some studies have attempted to estimate
tsunami forces from observed damage to onshore structures
(TokyoUniversity and BRI, 2011; Chock et al., 2013), force-related
TIMs for fragility analysis have always been based on numerical
inundation modeling.

Empirical Flow Estimation
Several studies and guidelines provide empirically based
approaches for the estimation of onshore depth, velocity, and
force.

Inundation depth values used in existing empirical fragility
studies have all been derived using either field surveys or numer-
ical modeling, and all velocity values obtained from numerical
modeling. However, empirical methods may be used to verify
numerical results in specific locations. These empirical meth-
ods include, for example, empirical formulae to estimate run-up
from off-shore flow parameters [Charvet et al. (2013)], formulae
provided by FEMA (2012) for determining the peak depth and
velocity field from the run-up, or the energy grade-line method
proposed by ASCE 7-16 (Kriebel et al., 2017) using offshore
tsunami amplitude and run-upmaps to define peak onshore depth
and velocity fields.

However, depths and velocities are obtained, all of the fragility
studies using any measure of force as a TIM generally use empir-
ical formulations to estimate forces (Table 7) based on the peak
depth and velocity flow-fields.

Numerical Inundation Modeling
Numerical modeling of tsunami inundation can provide estimates
of onshore flow conditions across large areas as well as at single
sites but poses a complex problem in computational fluid dynam-
ics. Inundation models can vary in complexity from detailed 3D
models considering flow around individual buildings to simplified
2D models modeling built-up areas using a roughness factor and
making assumptions regarding the depth distribution of velocities
and pressures (Table 8).

Tables 1 and 2 show which existing fragility studies obtain
TIMs from numerical inundation. Where simulation has been
used, simplified 2D models have been utilized as detailed topo-
graphical data are often lacking, and more complex models are
still prohibitively costly in computation time and the required
resources in accurately modeling a location with all buildings
and obstacles to the required resolution. The required TIMs are
calculated for each grid, and for each timestep, though over a large
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TABLE 8 | A summary of numerical methods that have been used to define tsunami-induced forces on structures.

Inundation
modeling
methodology

Model
complexity

Formulation Modeling of
buildings

Force resolution Advantages Disadvantages Example
software/

applications

2D model (no
buildings)

Simplest Non-linear shallow water
equations, or Boussinesq
equation. Calculate
depth-averaged flow
properties.

Model topography only.
Model urban areas as
roughness factor, either
one factor for whole
zone.

2 methods:

– Difference in hydrostatic
pressures on front face
(calculated using Bernoulli’s
equation assuming
stagnation at the face) and
rear face of building
(undisturbed flow depth).

– Form drag equation using
undisturbed flow depth and
velocity.

Simplest method (therefore,
most used in practice)

Accuracy of velocity calculation
difficult to verify/validate in
practice. Cannot capture any
vertical components of flow.
Cannot capture flow over/under
structures.

Software: TUNAMI,
MOST, COMCOT.
Force resolution
method 2 is that
advocated in FEMA
646 and new ASCE
7-16.

2D model (with
buildings)

As above Buildings included in
the model. Modify
roughness factor per
grid square based on
the presence/absence
of buildings

Difference in hydrostatic
pressures on front face and rear
face of building (depths taken
directly from the model)

Effects of urban
environment on inundation
more accurately captured

Above cons of 2D modeling
apply. Time-consuming to input
individual buildings. Difficult to
obtain accurate shape-size
data for all buildings. Modeling
grid resolution required to be
adequately fine to allow
individual buildings to be
resolved

Muhari et al. (2011)
Software: as above.

Hybrid 2D-3D
analysis

As above, for several
vertical layers. Calculated
quantities at the boundary
of each layer, is used as the
boundary condition for
adjacent layer

Both 2D methods
above can be utilized

As in 2D methods, for each
vertical layer

More vertical resolution of
flow parameters. Flow
over-under structures can
be captured given sufficient
vertical layer resolution.

More complex (set-up and
computation) than 2D models

Pringle and
Yoneyama (2013)

3D model using
Navier–Stokes
equations

Most complex Navier–Stokes equations Buildings/structures in
model

Pressure distributions at
structure surfaces taken directly
from model

Removal of 2D
assumptions. Can capture
turbulence complexities.
Can capture flow
over/under/through
structure.

Computation prohibitively
expensive for all but
small-specific areas of interest
(not practical for large-scale
inundation calculation)

Software: DELFT
3D, STOC.
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inundation area this would represent a prohibitively large dataset,
and so only peak TIM values are retained.

Existing studies using a force-related TIM (and Froude Num-
ber) all rely on empirical formulae to calculate force from depth
and velocity. Peak depth and peak velocity generally do not occur
at the same time (Chock, 2016), so peak force should not be calcu-
lated from the peak values of depth and velocity, but instead force
should be calculated at each timestep with the peak force value
over the inundation duration being retained for each calculation
grid.

Numerical inundation estimates are seen to be highly sensitive
to the uncertainties/inaccuracies in the initial properties of the
tsunami (shape and total energy), the near-shore bathymetry, the
effect of wave breaking, the on-shore topography, the effect of
buildings and other obstacles, which may move or alter through-
out the inundation period. Furthermore, while it is possible to
validate simulated inundation depth results, there is generally
insufficient velocity observation data to conduct a meaningful
validation (Macabuag et al., 2016a,b). Park et al. (2013) compare
simulated depth, velocity, and momentum flux values to experi-
mental results, and Park et al. (2014) conduct a sensitivity analysis
of the same TIMs to friction coefficient and modeling software.
Both studies find that a change in simulation parameters can lead
to small changes in depth, but result in much greater changes in
velocity and momentum flux (e.g., they report a 15% change in
depth corresponded to a change in velocity and momentum flux
of 95% and 208%, respectively).

Therefore, the reliability of the existing fragility functions
based on velocity or force is very dependent on the accuracy
of those inundation models, which is determined by a number
of factors. such as quality/reliability/resolution of the topogra-
phy/bathymetry data, quality/reliability of the source and propa-
gation models, the software used, the resolution of the calculation
grid, and so on.

MODEL QUALITY

Fragility functions are derived by applying statistical model fitting
techniques on building damage data. They are expressed as a
function of the chosen TIMs for the purpose of making dam-
age predictions under future tsunamis. In this context, statistical
model fitting assumes that the probability of damage exceedance
PDS is a function of the TIM:

PDS = P(ds ≥ DS|TIM) = f(TIM) (1)

In Eq. 1, ds is the observed damage state and DS the classifica-
tion label given by the damage scale.

Three types of statistical models have been used in the
literature:

• Linear models that utilize linear least squares regression—most
commonly applied in fragility studies (Tables 1 and 2),

• GLM (e.g., Reese et al., 2011; Charvet et al., 2014a;Muhari et al.,
2015; Macabuag et al., 2016a,b; De Risi et al., 2017a,b),

• Generalized Additive Models (Macabuag et al., 2016a,b).

This section describes methods of statistical model fitting
and model diagnostics used in tsunami fragility studies to date,

highlighting potential shortcomings of each method as well as
potential solutions and proposed best-practice.

Traditional Fragility Estimation: Simple
Linear Regression
Lognormal cumulative distribution functions have been the most
popular form of tsunami fragility functions in the literature. This
approach is typically attractive given the following three properties
of this distribution (Ioannou et al., 2012):

• The lognormal distribution is constrained in the y-axis between
[0, 1] which is suitable for fitting data points expressing aggre-
gated probabilities,

• Values of the dependent variable are constrained in [0, +∞],
which is sensible when considering parameters such as flow
depths,

• This distribution appears to be skewed to the left, thus, it
can provide a better estimate for the smaller intensities, where
typically the majority of the data lie.

This has become a standard assumption, however, not well
justified in the literature [e.g., “The capacity of the structure is
generally assumed to be lognormally distributed” (Valencia et al.,
2011); “(. . .) we develop the fragility functions for structural dam-
age and casualties throughout the statistical analysis under the
assumption that they can be represented by normal or lognormal
distribution functions (. . .)” (Koshimura et al., 2009a,b)].

However, this distribution applies to a continuous response
and, therefore, is not a suitable representation of discrete, classi-
fied outcomes such as a damage scale.

Simple linear regression applies when only one explanatory
variable at a time can be considered as the TIM (i.e., for defining
curves rather than functions of multiple TIMs, such as fragility
surfaces). When a lognormal distribution is assumed, the fragility
function or expected probability of damage exceedance P̂DS is
expressed as follows:

P̂DS (IM) = Φ
[
log (IM) − μ

σ

]
(2)

The parameters μ and σ of the distribution can be estimated
using least squares regression by linearizing equation (2), where
Φ is the normal distribution function:

log (IM) = σΦ−1 + μ (3)

Unfortunately, this model is unable to deal with probabilities
of 0 and 1 (the inverse normal distribution function does not con-
verge for those values), thus disaggregated data cannot be analyzed
directly. The data need to be aggregated into bins across the TIM
to define a total number of buildings (across all damage states),
and the number of buildings corresponding to each damage state
DS. The observed probability of damage is then calculated as
follows:

PDS (IM) =
nDS
nTotal

(4)

However, aggregation introduces uncertainty: for example, the
distribution of the TIM within each bin is unknown, which may
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affect the shape of the curve, or the number of points in all bins
may not be equal. In addition, data aggregation does not prevent
some bins from having either a very low or a very high number
of damaged buildings, which means that probabilities of 0 and 1
may still exist in the dataset. This issue is usually overcome by
dismissing the corresponding data points and has consequences
on model performance (Charvet et al., 2014a; Macabuag et al.,
2016a).

New Fragility Estimation: GLM
Overview
The aforementioned issues associated with linear models have
been addressed in recent research, by using a different class of
models, namely GLM. GLMs relax many of the assumptions
associated with linear regression and allow the response variable
to follow various distributions (McCullagh and Nelder, 1989).
Contrary to linear models, GLMs provide a better representation
of the post-tsunami data because:

1. Discrete probability distributions (binomial or multinomial)
can be used directly to model discrete outcomes, such as a
damage level.

2. The linearity assumption (which may not hold) between the
response and the explanatory variable (TIM) is relaxed through
the use of a linear predictor.

3. More than one TIM can be included in the linear predictor,
thus the model is not limited to one explanatory variable.

4. Model fitting does not require aggregation of the observations.
5. If only aggregated data are available, the binomial distribution

can be used directly, without the need of a weighting system.

Parameter Estimation
In GLM regression, the assumption that the explanatory variable
x is linearly related to the probability of damage P̂DS is relaxed by
using a linear predictor η, which relates the probability of damage
to all J available explanatory variables xj through a link function g:

g
(
P̂DSk = μk

)
= ηk = θ0,k +

J∑
j=1

θj,kxj (5)

Equation 5 is the systematic component of the model, where μk
represents the expected damage probability function (i.e., fragility
function) for each k non-zero damage level. θ0,k and θj ,k are the
parameters of the model to be estimated through maximum like-
lihood estimation (McCullagh and Nelder, 1989; Myung, 2003),
commonly abbreviated as MLE.

In Eq. 5, g is the link function relating the linear predictor to the
mean of the chosen distribution and can take one of the following
forms for discrete outcomes:

Probit g (μk) = Φ−1 (μk) (6)

Logit g (μk) = log
(

μk
1 − μk

)
(7)

Cloglog g (μk) = log(−log(1 − μk)) (8)

This model requires the response to be expressed in terms of
the counts of buildings that have been damaged to a level equal

or exceeding a predetermined damage state. The response can be
considered to follow either a binomial ormultinomial distribution
for every level of intensity, and the random component of the
model is the chosen distribution.

Logistic regression is the name given to GLM regression when
the distribution is assumed binomial and the link function is
the logit. It is appropriate when we assume the response vari-
able is binary. However, the ordered nature of damage states is
not represented. This may lead to inconsistent results, such as
fragility functions that cross (Figure 4, left panel), implyingDSk+1
is reached before DSk as the intensity measure increases. Multi-
nomial or Ordinal regression are both used when the response
variable is defined as a categorical outcome, or classification;
however, ordinal regression is a method specific to cases where
such outcome is ordered (1, 2, 3. . .etc.), resulting in the so-
called cumulative link model. In ordinal regression, θj ,k (the rate
of change of response probability for a unit increase in xj) is
fixed across damage levels (θ1,k = θ1), which preserves response
ordering. Figure 4, right panel shows the fragility curves obtained
using an ordinal model on the same sample data as in Figure 4,
right panel. Table 9 summarizes the components and concepts
behind GLM regression.

Generalized Additive Models and
Non-Parametric Models
One key assumption made in GLMs is that all explanatory vari-
ables are linearly related through the predictor (Eq. 5), which may
not be the case. If rigorous diagnostics reveal that the chosenGLM
do not provide a satisfactory fit to the data, alternative meth-
ods such as general additive models (GAM) or non-parametric
regression can be used (Macabuag et al., 2016a).

Generalized additive models [developed by Hastie and
Tibshirani (1990)] are semi-parametric models that fit GLMs in a
piecewise regression system with a number of separation points
(or knots). While there are dangers in using non-parametric
and semiparametric methods for prediction purposes due to
overfitting (Chandler, 2014), methods for overcoming this issue
are demonstrated in Macabuag et al. (2016a). Rossetto et al.
(2014) recommend that GAMs can be used if the data do not
have a strictly monotonic trend which can be captured by GLMs,
and when the data are densely distributed in the available TIM
range (>100 data points). The reader is referred to Wood (2006)
for detailed instruction on the fitting of GAMs.

When all assumptions cannot be met, an alternative approach
is to use non-parametric regression, as non-parametric regression
does not require a set of assumptions to bemet for the results to be
accurate and meaningful. The local polynomial kernel method is
presented in Rossetto et al. (2012), this approach consists in using
a well-known function (kernel) which is successively centered on
each data point and uses a number of surrounding data points
(bandwidth) to estimate the resulting function. Kernels are typ-
ically used as smoothers in signal processing (Schuenemeyer and
Drew, 2011). The issue with this approach is the final, curve is
very sensitive to the choice of bandwidth if the latter is too small,
the resulting function will pick up unnecessary local variations in
the data, if it is too large, the trend might be too general. There-
fore, if all parametric alternatives fail to provide a satisfactory
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FIGURE 4 | Left—Crossing Fragility Functions—An unrealistic result which can be rectified by using ordinal regression. Here, the binomial logistic model has been
fitted to a representative sub-sample of the data used in Charvet et al. (2014b) for illustrative purposes. Right—The same data analyzed using ordinal regression. The
cross-over cannot take place.

TABLE 9 | GLMs used for fragility function derivation.

Number of
damage levels

0 to K damage states ⇔⇔⇔ K+++ 1 damage levels (k= {1, . . . ,K+++ 1})

Type of damage response Binary Multi-level classification*

Yk =

{
1 if ds ≥ DSk

0 if ds < DSk Yk =


1 if ds ≤ DS1

2 if DS1 < ds ≤ DS2

. . . . . .

K + 1 if DSk < ds ≤ DSk+1

Random component (i.e., statistical
distribution)

Binomial distribution Multinomial distribution

P (Yk = 1) =(
ntrials
nsuccess

)
pnsuccesss (1 − ps)

ntrials−nsuccess

P (Y1 = 1, . . . , Yk+1 = K + 1) = ntrials!
K+1∏
i=1

pnsuccesss
nsuccess!

Linear Predictor η ηk = θ0,k +
J∑

j=1
θj,kxj Ordinal regression Multinomial regression

ηk = θ0,k +
J∑

j=1
θjxj ηk = θ0,k +

J∑
j=1

θj,kxj

Explanatory variables (TIMs) x xj

Link function g (see also Eq. 6 to 8) Logit (canonical link), probit or complementary loglog

Fragility Function μ P̂DSk = μk = g−1 (ηk)

Note that in existing literature J (the number of TIMs) is generally 1, with the exception of Charvet et al. (2014a), for which J= 3 [x1 = tsunami flow depth, x2 = velocity, and x3 =building
class (dummy coded variables {0,1})]. * Note also that because the theoretical multinomial response gives the probability of damage being smaller than or equal to a given level, the
exceedance damage probability will be obtained by using the complimentary cumulative distribution, i.e., P (ds ≥ DSk) = 1 − P (ds ≤ DSk).
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fit to the data non-parametric regression can be a useful
alternative.

Model Diagnostics
Unfortunately, the evolution of fragility studies applied to tsunami
induced damage is still at an early stage and adequate model
assessment is seldom carried out. This leads to the impossi-
bility of identifying sources of uncertainty in the probability
estimations, thus preventing model improvement. In order for
fragility results to be exploited further, it is necessary to per-
form model diagnostics to reveal if the model used gives a sat-
isfactory representation of the data, identify sources of uncer-
tainty, and assess the adequacy of the systematic and random
components.

Diagnostics of Linear Models
For such models, the goodness-of-fit is typically assessed by
reporting the value of the coefficient of determination, or R2 [e.g.,
Gokon et al. (2010) and Suppasri et al. (2011)]. However, this
assessment of model performance is insufficient in the light of the
shortcomings previously outlined in this section.

In addition, when using any form of parametric regression,
assumptions should be systematically validated as part of the
analysis, as they can be easily violated (Charvet et al., 2013). Linear
regression requires several assumptions to be met (Chatterjee and
Hadi, 2006), which are typically not checked in practice.

Diagnostics of GLM
For binomial models, it is necessary to graphically examine the
model errors (or Pearson residuals, McCullagh and Nelder, 1989)
for each curve, which may reveal:

• The non-linear contribution of an additional variable/effect on
the model (identification of a trend in the errors),

• Potential inadequacy of the link function,
• Influential points or outliers,
• Over-dispersion (the values of the residuals or errors are more

than two standard deviations away from the mean, thus indi-
cating a potential issue in the choice of distribution),

For ordinal and multinomial models, expected versus observed
probabilities or counts graphs can be used [Figure 5: Expected
versus observed probabilities after fitting an ordinal model to the
building damage data, as per Charvet et al. (2014b)—Figure].

Model accuracy (the proportion of correctly classified out-
comes) can be used as a quantitative indicator of the performance
of the model. It is directly related to the prediction error rate
(the proportion of incorrectly classified outcomes). Charvet et al.
(2015) propose a penalized accuracy measure (accounting for
the distance between observed and expected outcomes) estimated
through 10-fold cross-validation, which provides a quantitative
assessment of goodness-of-fit of the model and an indication of
predictive power. This methodology was applied by Macabuag
et al. (2016a) to assess model performance, as well as prevent
overfitting with the use of GAMs.

FIGURE 5 | Expected versus observed probabilities after fitting a multinomial model to the building damage data used in Charvet et al. (2014b), for 1 storey timber
buildings. The green, light blue, dark blue, and red color codes correspond respectively to DS1, DS2, DS3, DS4 and over, as per damage descriptions in Table 6.
A good fit is indicated by counts following closely the 45 line.
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Measures such as the AIC (Akaike Information Criterion) or
likelihood ratio tests based on deviance for nested models are
useful measures for model comparison. These can only be used
to compare two models that have been fitted on the same data and
with the same choice of statistical distribution:

• The likelihood ratio test (Rossetto et al., 2014) can be used
to assess whether a model with more parameters provides a
significantly better fit in comparison to a simpler model with
less parameters (i.e., nested models). For example, it can be
used to assess whether a model with an additional explanatory
variable fits the data significantly better. It can also be used
to test the relative goodness-of-fit of the multinomial model
compared to the ordinal model, its simpler alternative. Indeed,
in an ordinal model, the free parameters for each class are fixed,
which leads to a smaller number of parameters in comparison
with the multinomial alternative (see Table 9).

• The AIC (Akaike, 1974) can be used, for example, to compare
two identical models but differing only by their link function. It
can also be used for nested models. The AIC can be calculated
as follows:

AIC = 2p − 2 log(L) (9)

L(θ, φ|DS) = P(ds = DS|θ, φ) (10)

In Eq. (9), −2ln(L) is the model’s deviance (a measure of the
model error), p is the number of parameters in the model, φ is
the dispersion parameter (a function of the model’s variance), and
L is the likelihood function (McCullagh and Nelder, 1983). The
model that provides the best fit to the data is the model with the
smallest AIC.

Various options for model configuration and selection method
are presented in Table 10.

Further Considerations for Statistical
Modeling
Sample Size
A low number of data points may lead to a spuriously well-fitted
model (over-prediction). While a minimum sample size must be

used to yield reliable results, little guidance is available on its
determination (Rossetto et al., 2012).

Comprehensive studies on the topic of sample size have been
carried in the context of linear regression, although these consid-
erations also apply to the context of generalized linear modeling.
In the context of simple or multiple regression such as linear
regression, a rule of thumb states there should be no less than
50 data points for a regression, with the number increasing with
larger numbers of independent variables. VanVoorhis andMorgan
(2007) and Green (1991) provide a more detailed guidance in the
context of regression analysis, based on power considerations.

Leveraging on the results from Cohen (1988), Green (1991)
provides power tables that give the required sample size according
to the number of predictors and expected effect size, i.e., the
strength of the relationship between the predictor(s) and the
response. If we assume that, for example, the damage state of a
building is strongly related to the tsunami flow depth (i.e., the
effect size is large), and flow depth is the only available predictor
variable, the aforementioned power table recommends a mini-
mum of 24 points. It should be noted that this study focused on
the analysis of data for behavioral sciences, such thresholds should
be investigated in the context of the typical relationships expected
in physical sciences. Other studies have recommended to use
anything from a minimum of 10 (Miller and Kunce, 1973; Harrell
et al., 1985; Bartlett et al., 2001; Babyak, 2004) to a minimum of
100 (the case of small effect size or large number of predictors in
Green, 1991) or even 200 data points (Guadagnoli and Velicer,
1988; Nunnally and Bernstein, 1994). Ideally, the analyst should
carry out their own sensitivity study prior to fitting a statistical
model, the minimum number of data points required to construct
a vulnerability or fragility function depending on the level of
uncertainty the analyst is willing to accept.

However, the scarcity of data is often a limitation and current
rules-of-thumb have to be used.

In the case of fragility curves for earthquakes, a minimum of
100 observations is recommended (Rossetto et al., 2014) and at
least 30 of them should have reached or exceeded a given damage
state (Noh et al., 2014), with the data points spanning a wide range
of TIM values. Although there is a reasonable starting point to

TABLE 10 | Statistical model types and model comparison methodologies [adapted from Macabuag et al. (2016a)].

Class Model Configuration
options

Selection
method

Reference

Parametric (OLS not suitable for fragility function derivation) Suppasri et al. (2012a); Suppasri et al.
(2009); Tanaka and Kondo (2015)

Generalized Linear Model (GLM)
or Cumulative Link Model

Transformation of
explanatory variables

AICa Charvet et al. (2015); Leelawat et al. (2014);
Muhari et al. (2015); Reese et al. (2011)

Link function AIC
Ordered or partially
ordered models

LRT

Semi-parametric Generalized Additive Model
(GAM)

Transformation of
explanatory variables

AICa Wood (2006)

Link function AIC
Number of knots KFCV error ratesb

Non-parametric Kernal Smoother (See reference for information on fitting these models) Noh et al. (2014)

a It is noted that fragility functions are generally fit to the natural logarithm of the explanatory variable.
b If conducting trend analysis using GAMs it is recommended to simply select a preliminary number of knots (e.g., four knots).
AIC, Akaike Information Criteria; LRT, Likelihood Ratio Test; KFCV, K-Fold Cross-Validation.
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guide tsunami fragility function derivation, research is needed to
assess the minimum sample size for tsunami fragility.

Aggregation of Data
When data are aggregated over bins of the TIM (such as flow
depth), it is assumed that the distribution in each bin is normal or
uniform (as the value of TIM for each bin is taken as its median).
This definition affects both the shape of the function and the
confidence intervals. For instance, Valencia et al. (2011) generated
0.1mwide bins fromminimum tomaximum flowdepth recorded.
Similarly Koshimura et al. (2009b) generated 0.2m bins in order
to separate the building damage data into groups of roughly equal
size. The definition of bins of arbitrary sizes (x-axis) typically leads
to an inconsistent number of buildings in each sample, without
the model accounting for points of different weights. This issue
may be addressed by weighting the Ni data points in each sample.
However, if both a large and small number of data points are used,
i.e., 10<Ni < 100; the smaller samples will not have any influence
on the curve and may have to be removed (Ioannou et al., 2012).

Data are also aggregated, at the collection stage, by location,
by damage level, or by building class. Aggregation of data over
real areas, including variable inundation depths introduces sig-
nificant uncertainty in the TIM (x-value) at any specific location
(Koshimura et al., 2009a). Charvet et al. (2014a,b) found the
analysis of the 2011 Japan tsunami damage data aggregated over
Japan led to a significant amount of uncertainty in the results, and
Macabuag et al. (2016a) quantified the uncertainty related to data
aggregation by showing a clear reduction in predictive accuracy of
the model.

Finally, data from different sources (for example, different
events or survey teams) are often grouped and analyzed as a single
entity. This practice does not account properly for all sources of
uncertainty. In such cases, it is appropriate to use generalized
linear mixed models. These models introduce a random intercept
for each group in Eq. (5) to explicitly account for the group (event
or survey) as an explanatory variable (Rossetto et al., 2014).

Missing Data
Macabuag et al. (2016a) demonstrate techniques to classify miss-
ing data and complete the database accordingly (Table 11).Where
data are identified as MCAR complete-case analysis may be con-
ducted without introducing bias in the results. For data that are
MNAR, complete-case analysis would introduce bias and missing
data cannot be estimated, and so the dataset must be supple-
mented with additional information to address this issue before
fragility analysis can be conducted. For data that are MAR, the
missing data may be estimated by Multiple Imputation (MI)
techniques. MI involves replacing missing observed data with
substituted values estimated multiple times via stochastic regres-
sion models built on the other attributes (used as explanatory
variables), with all of the imputations being combined in order
to derive the final estimate (Rubin, 1987).

Figure 6 demonstrates the effect of bias due to complete-
case analysis on fragility function derivation. Macabuag et al.
(2016a), therefore, recommends that existing fragility assessments
should be re-examined for potential bias if they have been based
on complete-case analysis of data subsets (e.g., construction
material).

TABLE 11 | Classification and treatment of missing data (adapted from Macabuag
et al., 2016a).

Classification Method of
identification

Recommended
action

Missing Completely
At Random (MCAR)

Test whether the
missing data
distribution is the same
as for the complete
dataset
(Kolmogorov–Smirnov
test for disaggregated
data, or χ2-test for
aggregated data)

Conduct Complete-Case
Analysis (i.e., remove
datapoints with missing
information and perform
regression analysis on
the remaining dataset),
or estimate missing data
using Multiple
Imputations (MIs)
techniques

Missing Not at
Random (MNAR)

Is the missing
information related to
the reason that the
information is missing?

Fragility analysis cannot
be conducted without
introducing bias. Revisit
data-collection process
to complete missing
data.

Missing at Random Not MCAR or MNAR Estimate missing data
using MIs techniques

FIGURE 6 | The effect of ignoring incomplete datasets. Dashed-lines show
curves formed using complete-case analysis for steel and RC buildings from
the 2011 Japan Tsunami (i.e., ignoring all buildings for which the construction
material was unknown). Solid lines show a range of mean curves for the
imputed dataset (i.e., with building material for “unknown” buildings estimated
using MI). Colours indicate the individual damage states, from light damage
(dark green) to collapse (red). (Adapted from Macabuag et al., 2016a).

DISCUSSION, RECOMMENDATIONS,
AND FUTURE RESEARCH

Existing tsunami fragility functions are concisely presented in
Tables 1 and 2, which summarize the key features of the damage
datasets, inundation datasets, and statistical models used by each
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TABLE 12 | Issues with current fragility functions, organized by model component.

Issues Identified in Existing Fragility Functions

Damage data
(response variable)

• Inconsistency in building classes
• Inconsistency in damage scales
• Separation of structural and non-structural damage in

damage scales
• Specificity of the derived function to the area and

environmental conditions being surveyed
• Incomplete data omitted

Intensity measures
(explanatory
variable)

• Some inconsistencies in definitions of flow depth
• Depth is generally the only intensity measure used in

existing studies
• Velocity and force-related TIMs are difficult to validate
• Limitations of empirical tsunami data (measuring

Inundation)
• Limitations of physical inundation modeling

(experiment-derived tsunami data)
• Limitations of numerical inundation modeling

(simulation-derived tsunami data)

Model quality
(statistical
treatment)

• Before model fitting:
◦ Inadequate distribution assumptions
◦ Inadequate sample size
◦ Data aggregation
◦ Dismissal of data and improper treatment of

missing data
◦ Improper treatment of multiple data sources

• After model fitting:
◦ Lack of model diagnostics
◦ No comparison of different regression techniques
◦ Limited quantification of model performance
◦ No representation of uncertainty

function. Generally, there is considerable variability in terminol-
ogy within the studies presented in Table 1. In order to compare
and combine fragility functions it is important that consistent
terminology is used, and so recommended terminology has been
presented for tsunami risk and vulnerability (Figure 1), and the
various methods for presenting damage and loss estimates.

The key issues with existing studies, as identified in previ-
ous sections, are summarized in Table 12. This section provides
recommendations on both the assessment of existing fragility
functions and the derivation of new fragility functions.

Assessment/Improvement of the Quality
of Building Damage Data
In order to compare and combine fragility functions, a unification
of building classifications for tsunami fragility analysis is needed.
Following the example of the seismic building classifications rec-
ommended by the GEM (Brzev et al., 2013), it is recommended
that tsunami building classifications follow the building attributes
that govern performance under tsunami loading as summarized
in Table 13.

Similarly, unification of tsunami damage scales is required
and many of the issues highlighted with existing damage scales
have been addressed by Fraser et al. (2013) [adapted from EEFIT
(2006)] who propose improved damage scales, based on the
familiar EMS-98 damage scales, for RC, steel, and timber. This
damage scale only goes part way to fulfilling the needs of a
damage scale suitable for use in the future development of tsunami
fragility functions from both empirical and analytical approaches.

Specifically, it includes descriptions of visual damage but does
not define a set of engineering demand parameter thresholds
that can be used to determine a building’s damage state from an
analysis of its tsunami response using software. Hence, research
is still required in order to deliver an appropriate damage scale,
adhering to the rules set out inTable 3, for use in fragility function
derivation.

Typical issues associated with post-tsunami damage data col-
lection have been summarized in Table 6. To obtain more reliable
field-survey, data measures must be taken to limit uncertainties
due to combining data from surveyors of differing experience,
errors in survey forms, or combination of data from different
surveys. It is, therefore, necessary to develop universal guidance
for tsunami damage data collection. Consistent and adequate
training for surveyors is required but may be difficult to achieve
for large-scale disasters where a large number of surveyors from
different professional backgrounds will be deployed rapidly in the
immediate aftermath of the disaster. An example of guidance used
for Japanese surveyors following the 2011 Tohoku earthquake and
tsunami is presented in EEFIT (2013).

So as not to introduce biases in the data, it is also important to
include all buildings in a survey and not segregate data collected
to damaged buildings only. Aggregation of data (by location)must
also be limited where possible, so as to reduce uncertainty when
pairing damage and inundation data. It is recommended that
incomplete data are investigated and treated as perMacabuag et al.
(2016a).

As empirical fragility functions have been shown to be very sen-
sitive to the location fromwhere their damage data were collected,
in order to quantify fragility in the many at-risk locations around
the world without available damage data, analytical methods
for fragility function derivation based on structural analysis are
required.

Assessment/Improvement of the Quality
of Tsunami Intensity Data
Although inundation depth is used as the only TIM for the major-
ity of existing tsunami fragility functions, this does not capture all
of the relevant tsunami informationnecessary to predict structural
damage. Therefore, for future studies numerical modeling should
be conducted in order to obtain TIMs other than depth (validated
against values measured or inferred from observations). If the
inundation simulation from which they are derived is sufficiently
accurate, then force estimates often provide the most efficient
TIMs. These and other additional TIMs should be compared
and the optimal defined for a given dataset according to the
methodology set out in Macabuag et al. (2016a).

Fragility functions incorporating multiple TIMs (e.g., fragility
surfaces), should be considered also.

Debris has been shown to significantly affect the fragility of
buildings, and further research is needed to fully capture the
damage potential that debris presents.

The reliability of the existing fragility functions based on veloc-
ity or force is very dependent on the accuracy of the inunda-
tion models on which those TIMs are based. Reviewing current
best-practice for numerical inundation modeling is outside the
scope of this paper, but it is recommended that the quality of
inundation models used in existing studies be examined against
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TABLE 13 | Building attributes which govern tsunami performance (BA1-BA10).

Building Attribute Description Example

BA1 Material of the Lateral Load-Resisting System Structural material RC

BA2 Lateral Load-Resisting System Structural system for resisting lateral loads Shear-wall

BA3 Redundancy of Vertical Load Paths When a building is only supported by a limited number of structural
elements (e.g., four columns), floating debris damaging one or two
columns may trigger disproportionate collapse of the structure

3% wall-density on plan

BA4 Building Height Number of stories. Will govern member sizes (Suppasri et al., 2013) Low-rise

BA5 Openings (and break away walls) Reduce the visible cross-sectional area to oncoming flow, so allows for
the hydrostatic and hydrodynamic pressures not to accumulate on the
front face of the building (EEFIT, 2006; Ruangrassamee et al., 2006;
Suppasri et al., 2012a,b)

10% openings

BA6 Shape and Orientation Building orientation has a direct effect on induced drag forces
(Dominey-Howes and Papathoma, 2006; Lloyd, 2014) with bluff bodies
experiencing a greater force than those with leading walls that are not
orthogonal to the flow

Bluff

BA7 Foundations Deep foundations will reduce the vulnerability of the structure to scour
around the base (Jackson et al., 2005; Ghobarah et al., 2006;
Ruangrassamee et al., 2006; EEFIT, 2011)

Shallow

BA8 Soil Conditions Uplift forces will develop more quickly for buildings founded on porous
soils (Yeh et al., 2014). Scour will be enhanced by erodible soils such as
sand, and a lack of protection such as pavements (EEFIT, 2011)

Sand

BA9 Date of Construction Affects the design standards followed during construction (e.g.,
pre/post seismic codes) and the likelihood that materials have degraded
during the lifetime of the building

Pre-code

BA10 Occupancy Building use or line of business (for insurance modeling). Commercial

BA11 Material of External Envelope Lower damage states are generally defined by water ingress into the
building footprint. Some building enveloped are more permeable (e.g.,
light cladding panels) than others (e.g., solid masonry)

Timber cladding

Note that material is the only attribute considered in existing studies, with the exception of Suppasri et al. (2014).

a number of factors, such as quality/reliability/resolution of the
topography/bathymetry data, quality/reliability of the source and
propagation models, the software used, the resolution of the
calculation grid, and so on.

In order to improve the accuracy of numerical inundationmod-
els, better understanding is needed of tsunami near and onshore
processes and on the determination of actions on structures.
Physical experiments can give an insight into the complex pro-
cesses involved in flow–structure interactions onshore, however,
most large-scale laboratory facilities to-date do not allow for the
reproduction of some keys characteristics of tsunami, such as their
wavelengths. Some work on tsunami forces has been done using
solitarywaves or similar, but results involving long (shallowwater)
waves is limited. This leads to a lack of experimental validation of
current fragility and damage relationships. There are several stud-
ies to address this gap (Rossetto et al., 2011; Charvet, 2012; Lloyd
and Rossetto, 2012; Foster et al., 2017), and this area should be the
focus of further research to improve the accuracy of inundation
models and the understanding of tsunami-effects on buildings,
both crucial for accurate fragility function derivation.

Assessment/Improvement of the Quality
of Statistical Modeling
It is recommended that data aggregation be avoided and that
missing data be classified and treated prior to regression analysis,
as set out in section “Model Quality.”

A case is made to show that existing fragility studies using
GLMs are more reliable than those employing linear models with
linear least squares parameter estimation. The optimalmodel con-
figurations for a given dataset can be determined using the tests
shown in Table 10. Semi-parametric GAMs may also be used if
overfitting is avoided using the cross-validation methods outlined
in Macabuag et al. (2016a). If all parametric alternatives fail to
provide a satisfactory fit to the data non-parametric regression can
be a useful alternative.

For new studies, missing data should be analyzed and treated
as set out in Table 11 and it is recommended that existing fragility
assessments should be re-examined for potential bias if they
have been based on complete-case analysis of data subsets (e.g.,
construction material).

It is recommended that uncertainty of themean fragility curves
should always be presented and one such technique is to con-
fidence intervals derived by bootstrap methods as outlined in
Charvet et al. (2014b). Furthermore, rigorous diagnostics of the
final model should be employed in order to assess likely model
accuracy.

Multivariate regression can be achieved using GLM regression
techniques and any number of intensity measures can be included
in the model. However, it is always the aim to develop a “par-
simonious model” (the best model for the fewest predictors) as
using additional intensitymeasures requiresmore data points, and
difficulties of obtaining these additional tsunami parametersmust
be overcome. In addition, the representation of a fragility surface
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in more than three dimensions (i.e., with more than two TIMs)
is challenging and it is necessary to find a representation method
giving interpretable and useful results.

CONCLUSION

This paper collates and summarizes existing empirical tsunami
fragility functions for buildings, to outline limitations and
significant advances in the field, and to propose key areas for
further development. A number of key issues and recommenda-
tions for each component of tsunami fragility functions have been
presented (damage data, tsunami intensity data, and the statistical
model).

The information presented in this paper may be used to assess
the quality of current estimations (both based on the quality of
the data, and the quality of the models and theories adopted), and
to adopt best practice when developing new fragility functions.

This paper, therefore, has implications for those using, assessing,
or developing tsunami fragility functions.
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