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The current work introduces a novel combination of two Bayesian tools, Gaussian
Processes (GPs), and the use of the Approximate Bayesian Computation (ABC) algorithm
for kernel selection and parameter estimation for machine learning applications. The
combined methodology that this research article proposes and investigates offers the
possibility to use different metrics and summary statistics of the kernels used for Bayesian
regression. The presented work moves a step toward online, robust, consistent, and
automated mechanism to formulate optimal kernels (or even mean functions) and their
hyperparameters simultaneously offering confidence evaluation when these tools are
used for mathematical or engineering problems such as structural health monitoring
(SHM) and system identification (SI).

Keywords: kernel selection, hyperparameter estimation, approximate Bayesian computation, sequential Monte
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1. INTRODUCTION AND MOTIVATION

Regression analysis or classification using Bayesian formulation and specifically Gaussian Processes
(GPs) or relevance vector machines (RVMs) is becoming very popular and attractive due to
incorporation of uncertainty and the bypassing of unattractive features from methods like neural
networks. Regression using neural networks for example, although they present a very powerful
tool, sometimes canmake it difficult and demanding to achieve the right tuning. The hard questions
that have to be asked while multi-layer perceptrons (MLPs) are implemented are: which is the right
architecture? How many nodes? What transfer functions? What momentum or learning rate? How
many times they should run for different initial conditions?

The use of Gaussian processes is a current research area of increasing interest, not only for
regression but also for classification purposes (Dervilis et al., 2015). Gaussian processes (GPs) are
a stochastic non-parametric Bayesian approach to regression and classification problems. These
Gaussian processes are computationally very efficient, and non-linear learning is relatively easy.
Gaussian process regression takes into account all possible functions that fit to the training data
vector and gives a predictive distribution around a single prediction for a given input vector. A
mean prediction and confidence intervals on this prediction can be calculated from the predictive
distribution. Due to its simplicity and desirable computational performance, GP has been applied in
numerous domains particularly in structural health monitoring (Cross, 2012; Dervilis et al., 2016;
Worden and Cross, 2018) and civil and structural engineering to construct surrogate models, which
can mimic the real behavior of large-scale complex systems/structures and then make predictions.
In Su et al. (2017), GPmodel has been coupled withMonte Carlo simulations to perform a reliability
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analysis of complex engineering structures. An application of
GP to control an existing building can be found in Ahn et al.
(2015). In Wan et al. (2014), a surrogate model based on GP has
been established to deal with uncertainty quantification formodal
frequencies. An interesting application of GP to deal with finite
element model updating for a civil structures is presented in Wan
and Ren (2015).

The initial and basic step in order to apply Gaussian process
regression is to obtain a mean and covariance function. These
functions are specified separately, and consist of a specification of
a functional form and a set of parameters called hyperparameters.
When the mean and covariance functions are specified, then one
can infer model hyperparameters by minimization of the log-
marginal likelihood. The software used for the implementation of
GP regression was provided by Rasmussen and Williams (2006).

However, as mentioned, a covariance or kernel function has to
be defined and the new questions that one has to ask: how one
chooses the kernel function for a GPs? And of course one could
say, well the people running or providing the code are experts on
GPswhy they donot include a defaultmechanism to choose kernel
and it is user oriented and free choice?

The answer is that the choice of any covariance function or
kernel, determines in the authors opinion, almost all the gener-
alization properties of GPs, but here one is talking about a black
box model and the user might not be an expert, or not have a deep
data or physics understanding or the modeling challenge. In turn,
if one is not qualified to choose the proper covariance function
as an expert, then this work is adding an important practical and
sophisticated approach in order to choose a sensible kernel.

The article starts out with an introduction to the GPs and
approximate Bayesian computation based on Sequential Monte
Carlo (ABC-SMC) algorithm and the selection of the differ-
ent hyperparameters required for its implementation. Then, in
Section Simple Demonstration Example, the application of the
ABC algorithm is illustrated and investigated through two illus-
trative examples using simulated and real data and forms the core
of the article. Finally, the article is closed with some conclusions
about the strengths of the method and future discussion.

2. GAUSSIAN PROCESSES (GP)

Rasmussen andWilliams (2006) define a Gaussian process (GP) as
“a collection of random variables, any finite number of which have
a joint Gaussian distribution.” In recent years, GPs are gaining a lot
of attention in the area of regression (or classification) analysis as
they offer fast and simple computation properties (Dervilis, 2013).
The core of the algorithm is coming fromRasmussen andWilliams
(2006).

2.1. Algorithm Theory
The initial step in order to apply Gaussian process regression is
to define a prior meanm({x}) and covariance function k({x},{x′}),
as GPs are completely specified by them, {x} represents the input
vector. For any real process f ({x}) one can define:

m({x}) = E[ f({x})] (1)

k({x}, {x′}) = E[( f({x}) − m({x}))( f({x′} − m({x′})] (2)

where E represents the expectation. Often, for practical reasons,
because of notation purposes (simplicity), and lack of prior knowl-
edge for the overall trend of the data, the prior mean function is
set to zero. The Gaussian processes can then be defined as

f({x}) ∼ GP(0, k({x}, {x′})). (3)

Assuming a zero-mean function, the covariance function could
be described as

cov( f({x}p), f({x}q)) = k({x}p, {x}q)

= σ2exp
(

−1
2

∥∥∥{x}p − {x}q
∥∥∥2

)
. (4)

This is the squared-exponential covariance function (although
not the only option). It is very important to mention an advantage
of the previous equation as the covariance is written as a function
only of the inputs. For the squared-exponential covariance, it can
be noted that it takes nearly unit values between variables where
their inputs are very close and starts to decrease as the variable
distance in the input space increases.

Assuming now that one has a set of training outputs { f } and a
set of test outputs { f}∗ one has the prior:[

{ f}
{ f}∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
(5)

where the capital letters represent matrices. A zero-mean prior
has been used for simplicity, and K(X, X) is a matrix whose
i, jth element is equal to k(xi, xj). And K(X, X*) is a column
vector whose ith element is equal to k(xi; x*), and K(X*, X) is the
transpose of the same. The covariancematrixmust be symmetrical
about the main diagonal.

As the prior has been generated by the mean and covariance
functions, in order to specify the posterior distribution over the
functions, one needs to limit the prior distribution in such a way
that it includes only these functions that agree with actual data
points. An obvious way to do that is by generating functions from
the prior and selecting only the ones that agree with the actual
points. Of course, this is not a realistic way of doing it as it would
consume a lot of computational power. In a probabilistic manner,
the operation can be done easily via conditioning the joint prior
on the observations and this will give (for more details see Bishop
(1995), Nabney (2002), and Rasmussen and Williams (2006)):

{ f}∗|[X]∗, [X], { f}

∼ N
(
K([X∗], [X])K([X], [X])−1{ f},K([X∗], [X∗])

−K([X∗], [X])K([X], [X])−1K([X], [X∗])

)
. (6)

Function values { f}∗ can be generated by sampling from the
joint posterior distribution and at the same time evaluating the
mean and covariance matrices from equation (6).

The covariance functions used in this study are usually con-
trolled by some hyperparameters in order to obtain a better
control over the types of functions that are considered for the
inference. One of themost commonly employed kernels for GPs is

Frontiers in Built Environment | www.frontiersin.org August 2017 | Volume 3 | Article 522

http://www.frontiersin.org/Built_Environment
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive


Abdessalem et al. Automatic Kernel Selection for Gaussian Processes

the squared-exponential covariance function, which can take the
following form:

ky(xp, xq) = σ2
f exp

(
− 1

2l2 (xp − xq)2
)

+ σ2
n δpq (7)

where ky is the covariance for the noisy target set y (i.e.,
y= f ({x})+ ε, where {x} is input vector and ε is the noise).
The length scale l (determines how far one needs to move in
input space for the function values to become uncorrelated), the
variance σ2

f of the signal and the noise variance σ2
n are free

parameters that can be varied. These free parameters are called
hyperparameters.

The tool that is usually applied for choosing the optimal hyper-
parameters forGP regression is themaximummarginal likelihood
of the predictions p({y}|[X], {θ}) with respect to the hyperparam-
eters θ:

log p({y}|[X], {θ}) = −1
2
{y}T[K]−1

y {y}

− 1
2

log |[Ky]| − n
2

log 2π (8)

where [Ky] = [Kf] + σ2
nI is the covariance matrix of the noisy test

set {y} and [Kf] is the noise-free covariance matrix. In order
to optimize these hyperparameters through maximizing the
marginal log likelihood, the partial derivatives give the solution,
via gradient descent:

∂

∂θj
log p({y}|[X], {θ}) =

1
2
{y}T[K]−1 ∂[K]

∂θj
[K]−1{y}

− 1
2
tr

(
[K]−1 ∂[K]

∂θj

)
=

1
2
tr

(
(ααT − [K]−1)

∂[K]
∂θj

)
(9)

where {α}= [K]–1{y}. Of course this solution is not a trivial pro-
cedure, and for specific details, readers are referred to Rasmussen
and Williams (2006).

3. APPROXIMATE BAYESIAN
COMPUTATION (ABC)

As stated in the previous section, by default GPs need a selection
of a kernel which for either SI or SHM might be of great interest
as it may affect not only the mean prediction and actual accuracy
but also the confidence bounds of the prediction. This creates a
model selection and comparison problem, especially when several
competing models—kernels in our case (or even expanded to the
mean function)—are consistent with the selection criterion and
could potentially explain the data reasonably well (this will be
expanded later in the section Discussion).

In reality, selecting the most likely model or kernel among a
family of competing models (big or small) may be quite challeng-
ing, especially with black box methods where deep understanding
of the physics is not obvious.

Several methods have been proposed in the literature, and
someone can start fromMarkov chainMonteCarlo (MCMC) vari-
ants to evolutionary algorithms like genetic algorithms or particle

swarm. The reader can refer to the following references: Schwarz
et al. (1978), Bishop (1995),Green (1995), Kullback (1997), Akaike
(1998), Doucet et al. (2000, 2001), Au and Beck (2001), Nabney
(2002), Lawrence (2003), Marjoram et al. (2003), Ching et al.
(2006), Rasmussen and Williams (2006), Skilling (2006), Gretton
et al. (2007), Beaumont et al. (2009), Toni et al. (2009), Toni and
Stumpf (2010), Barnes et al. (2011), Worden et al. (2011), Neath
and Cavanaugh (2012), Turner and Van Zandt (2012), Filippi
et al. (2013), Hensman et al. (2013), Wilson and Adams (2013),
Chiachio et al. (2014), Ben Abdessalem et al. (2016), and the
references therein, where many varied examples illustrating the
use of the Bayesianmethod are investigated. As GPs are an elegant
Bayesian method, it fits very well to adopt a Bayesian approach
for kernel selection and hyperparameter estimation as this shall
give some uncertainty evaluation around the kernel parameters
as well.

In this contribution, the approximate Bayesian computation
(ABC) algorithm is used for the first time in order to deal with
kernel selection and hyperparameter estimation. ABC offers a
series of advantages over MCMC (or reversible jump MCMC
(RJMCMC) in this context (Green, 1995)). ABC is as general as
a Bayesian method can be as there is no need to evaluate any
extra criterion to discriminate between competing kernels and the
inference can be calculated for any different number of suitable
metric regarding the similarity between the observed and mod-
eled data, bypassing issues associated with intractable likelihood
functions and Gaussian assumptions, which are not always valid.

Another major advantage offered by the ABC algorithm is its
independence of the dimensionality of the competing model, as
ABC is able to jump between the different kernel hyperparameter
spaces without any need of a specific mapping function that
assures continuing of dimension; this is a critical advantage when
dealing with large numbers of kernels with different dimensions.
In practice, the ABC algorithm compares the competing models
simultaneously and eliminates progressively the least likely mod-
els, to converge to the most appropriate ones. For much deeper
evaluation of ABC, the reader is referred to Toni et al. (2009) and
Ben Abdessalem et al. (2016, 2017).

3.1. Quick Overview of ABC Algorithm
For a deep and detailed analysis of the algorithm, the reader is
redirected to Schwarz et al. (1978), Bishop (1995), Green (1995),
Kullback (1997), Akaike (1998), Doucet et al. (2000, 2001), Au
and Beck (2001), Nabney (2002), Lawrence (2003), Marjoram
et al. (2003), Ching et al. (2006), Rasmussen and Williams (2006),
Skilling (2006), Gretton et al. (2007), Beaumont et al. (2009), Toni
et al. (2009), Toni and Stumpf (2010), Barnes et al. (2011),Worden
et al. (2011), Neath and Cavanaugh (2012), Turner and Van Zandt
(2012), Filippi et al. (2013), Hensman et al. (2013), Chiachio et al.
(2014), and Ben Abdessalem et al. (2016) as the purpose of this
work is not to repeat the great advantages and theory behind
ABC-SMC, but for the readers’ convenience, a brief introduction
is given.

In the ABC algorithm, the objective is to obtain a “proper” and
computationally efficient approximation to the posterior distribu-
tion:

π(ξ|u∗, M) ∝ f(u∗|ξ, M)π(ξ|M) (10)
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where M is the model based on a set of parameters (or kernel
function) {ξ}, π(ξ|M) denotes the prior distribution over the
parameter space, and f(u∗|ξ, M) is the likelihood of the observed
data u* for a given parameter set {ξ}.

FIGURE 1 | Training data for example 1.

To overcome the issue of intractable likelihood functions, the
ABC algorithm bypasses the problem by utilizing systematic com-
parisons between observed and output data. The main objective
consists of comparing the simulated data,u, with observed datau*,
and accepting simulations if a suitable distance measure between
them, ∆(u, u*), is less than a specified threshold defined by the
user, ε (for more information check Toni and Stumpf (2010) and
Ben Abdessalem et al. (2016, 2017)). The ABC algorithm, as a
result, gives a sample from the approximate posterior of the form

π(ξ|u∗, M) ≈ πε(ξ|u∗, M) ∝
∫

f(u∗|ξ, M)I
(
∆(u, u∗) ≤ ε

)
× π(ξ|M)du (11)

where I(a) is an indicator function returning unity if the condition
a is satisfied and a zero otherwise; when ε is small enough,
πε(ξ|u∗, M) is a good approximation to the true posterior dis-
tribution.

In this work, the ABC-SMC algorithm presented in Toni
and Stumpf (2010) will be used to make Bayesian inference for
kernel selection and parameter estimation. Generally speaking,
the algorithm works as a particle filter (Schwarz et al., 1978;
Bishop, 1995; Green, 1995; Kullback, 1997; Akaike, 1998; Doucet
et al., 2000, 2001; Au and Beck, 2001; Nabney, 2002; Lawrence,

FIGURE 2 | Model posterior probabilities.
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FIGURE 3 | Kernel parameter distributions.

FIGURE 4 | Model 1, SE.
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2003; Marjoram et al., 2003; Ching et al., 2006; Rasmussen and
Williams, 2006; Skilling, 2006; Gretton et al., 2007; Beaumont
et al., 2009; Chatzi and Smyth, 2009, 2013; Toni et al., 2009; Toni
and Stumpf, 2010; Barnes et al., 2011; Worden et al., 2011; Neath
and Cavanaugh, 2012; Turner and Van Zandt, 2012; Filippi et al.,

2013; Hensman et al., 2013; Chiachio et al., 2014; Ben Abdessalem
et al., 2016) and is based on the sequential importance sampling
(SIS) algorithm, which is a Monte Carlo (MC) method that con-
stitutes the basis for most sequential MC filters developed over
the last decades (see Schwarz et al. (1978), Bishop (1995), Green

FIGURE 5 | Model 2, MATERN.

FIGURE 6 | Model 3, RQ.
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(1995), Kullback (1997), Akaike (1998), Doucet et al. (2000, 2001),
Au and Beck (2001), Nabney (2002), Lawrence (2003), Marjoram
et al. (2003), Ching et al. (2006), Rasmussen and Williams (2006),
Skilling (2006), Gretton et al. (2007), Beaumont et al. (2009), Toni
et al. (2009), Toni and Stumpf (2010), Barnes et al. (2011),Worden
et al. (2011), Neath and Cavanaugh (2012), Turner and Van Zandt
(2012), Filippi et al. (2013), Hensman et al. (2013), Chiachio et al.
(2014), and Ben Abdessalem et al. (2016)). The key idea of ABC-
SMC is to provide an approximation of the posterior density
function by a set of random samples with associated weights. The
algorithm converges through a number of intermediate posterior
distributions before converging to the optimal approximate pos-
terior distribution satisfying a convergence criterion defined by
the user. In a nutshell, starting from the first iteration, one can
choose an arbitrarily large tolerance threshold ε1 to avoid a low
acceptance rate and computational inefficacy. One selects directly
from the prior distributions π(m) and π({ξ}), evaluates the dis-
tance ∆(u*, u), and then compares this distance to ε1, in order to
accept or reject the (m, {ξ}) selection. This process is repeated until
N particles distributed over the competing models are accepted.
One then assigns equal weights to the accepted particles for each
model. For the next iterations (t> 1), the tolerance thresholds are
set such that ε1 >ε2 > . . . > εt. The choice of the final tolerance
schedule, denoted here by εt, depends mainly on the goals of the
practitioner.

4. SIMPLE DEMONSTRATION EXAMPLE

In the next two sections, two illustrations of the ABC-SMC algo-
rithm applied to kernel selection for GPs are presented. For ABC-
SMC implementation, one sets the prior probabilities of each
model to be equal. A population of N = 1,000 particles is used

here, and the marginal likelihood given by equation (8) is used
as a metric to measure the level of agreement between the train-
ing and simulated data. Furthermore, the sequence of tolerance
ε1, ε2,. . ., εt is selected in adaptive way instead of having a prede-
fined sequence of tolerances towalk through. For the first iteration
(population in the ABC jargon), one chooses a high value of the
log-marginal likelihood |log p(y, X, θ)| (set to 1,000 in the present
examples). For the subsequent iterations, one selects εt according
to the distribution of {∆= |log p(y, X, θi)|; i= 1,. . .,N}. For the
next iteration, t= 2, the tolerance εt = 2 is set to the 30 percentile
of ∆ values obtained from the previous population. Finally, the
convergence criterion used here is when the difference between
two consecutive tolerance values is less than a threshold value
defined by the user.

Once the required hyperparameters are defined for the ABC-
SMC, one can go forward in order to determine the GP kernel
which best follows the data.

The first example is a simulated numerical example given by
the form:

y = f(x) + ϵ = −2x + x sin(x) + ε, ε ∼ N(0, 1). (12)

The representation of this simple example based on simulated
training data with input x ranging from 0 to 10 as can be seen
in Figure 1 and it is for demonstration purposes. For this study,
the three most common kernels, the Squared-Exponential (SE)
kernel, the Rational Quadratic (RQ) kernel, and Matern (Ma) 5/2
kernel, were used to compete. It has to be clear that the ABC
does not care about the number of competing kernels neither the
number of their hyperparameters. Furthermore, there would be
no value to keep increasing the number of different kernel models
as this offers nothing in terms of the presenting work and the
application of ABC to GPs.

FIGURE 7 | Training data for example 2.
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The kernel models are defined as

M1 : kSE = σ2 exp
(
− r

2ℓ2

)
M2 : kMa = σ2

(
1 +

√
5r
ℓ

+
5r2

3ℓ2

)
exp

(
−

√
5r
ℓ

)
M3 : kRQ = σ2

(
1 +

r2

2αℓ2

)−α

where r =
∥∥x − x′∥∥. (13)

The SE kernel (as stated in the definition of GPs previously) is
the most common and default kernel for GPs or even RVMs. As
a kernel, it has some nice properties. It is universal, with trivial
integration procedure against most functions. It is clear though
that each function in its prior mode has an infinite number of
derivatives. Furthermore, and more realistically, it has only two
parameters, such as the length scale ℓ that controls the length of
the “wiggles” in the function, and as a result it cannot extrapolate
more than ℓ units away from the data, and the variance σ2 that

determines the average distance of a function away from its mean,
and usually it works just as a scale factor.

The RQ kernel can be seen as adding together SE kernels with
different length scales parameter. As a result, in this case, GP
priors of this kernel produce functions, which vary smoothly
across along different length scales. The parameter α controls
the relative weighting of large-scale or small-scale variations. It
is very evident that when α →∞, then the RQ is the same as
the SE.

The reason that the Matern kernel is presented here as well is
that allows to control the smoothness and includes a large variety
of kernels, which can be proven to be very useful for applications
because of this flexibility. For the majority of the people who
put together a GP regression or classification exercise, they use
extensively the SE or RQ kernels. Both these kernels have closed
form solutions (integration) and are a quick and easy solution that
will probably work well when one is assuming smooth functions
when interpolating.

Figure 2 shows the model posterior probabilities over the
different populations and the associated tolerance threshold

FIGURE 8 | Model posterior probabilities, example 2.
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when ABC algorithm is running. One can easily observe that
for high tolerance thresholds, there is no strong evidence that
a kernel model is more favorable, but between populations 9
and 11, the algorithm gives the trend to favor the simplest,
smoothest SE covariance. In a nutshell, the algorithm tries at
first to move toward the simplest model, which is the SE one
(something that is not so trivial in the next example). As a
result, this means that the more complex model is simply penal-
ized. At population 12, the ABC gives a higher evidence to
the SE covariance, which remains the simplest one and ends
up by finding the true model at population 17 with strong
evidence.

From population 12–17, the algorithm refines the model
parameter estimates associated to the selected kernel. Figure 3
shows the histograms of the model hyperparameters from the last
population.

Figures 4–6 show the training data and the model prediction
with the 95% confidence interval for all different kernels. One

observes a good agreement between the observed and predicted
data. In the next real application example, one is able to fol-
low a more interesting and complex behavior on how the ABC
algorithm chooses the right kernel model by favoring the simplest
model at the beginning but choosing the more complex one at the
end.

To summarize so, why it chooses SE kernel against RQ kernel
for example. First of all, one has to notice that both of them
are giving very similar results in Figures 4 and 5. However,
this is the beauty of the methodology followed via ABC-SMC;
it scales that both are similar, so there is no need to choose RQ
as it is more complicated than SE. If simplicity is good, then
keep it as there is no need to add complexity both mathemati-
cally and computationally. Another point that it is noticeable is
that in Figure 6 where Ma kernel is evaluated there are many
“wiggles” and no outliers, but with 95% confidence intervals,
one expects a percent of outliers to be present as it happens in
Figures 4 and 5.

FIGURE 9 | Histograms of the selected model parameters M1.
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5. REAL DATA APPLICATION

All three kernels described and mentioned earlier are very useful
but if and only if the data is all of the same type with simi-
lar feature space. In real applications thought if one wants to
perform regression and construct a kernel, then for all different
feature/data types, one can multiply kernels together. This is the
common standard way to combine kernels together. In simple

probabilistic language kernels, multiplication can be considered
as an “and” operation. At the same spirit, adding kernels can be
considered as an “or” operation.

So the motivation here (as one can do the exact same exercise
with different kernels as before) is that the model/data structure
one needs are not described by some known kernel (indepen-
dently of how many different kernels one uses). And for demon-
stration reasons, the next real data, toy example, is used. One

FIGURE 10 | Comparison between the log-marginal likelihood values using gradient-based optimizer and ABC-SMC.

FIGURE 11 | 95% CI obtained according to Rasmussen and Williams.
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can with different ways to construct kernel combinations with
different properties that would allow to include as much high-
level structure as possible and check at the same time which of
the “modified” models is the best.

For the purposes of this example of composite covariance
matrix, two competing models are considered

M1 : kSE + kPER × kSE + kRQ + kSE

M2 : kSE + kPER × kMa + kMa (14)

where PER is the periodic kernel, which allows one to model
functions that repeat themselves exactly. The period p determines
the distance between repetitions of the function, and the length
scale is identical to SE kernel. The PER kernel is given by

kPER = σ2exp

−
2sin2(πr)

p

ℓ2

. (15)

The data that were used here consist of CO2 concentrations
fromMauna Loa observatory, and the reader can findmore details
in Keeling et al. (1976), Thoning et al. (1989), Etheridge et al.
(1996), and Tans (2012) (see Figure 7).

Keeling and Whorf (Keeling and Whorf, 2005; Rasmussen and
Williams, 2006; Wilson and Adams, 2013) recorded monthly aver-
age atmospheric CO2 concentrations at the Mauna Loa Observa-
tory in Hawaii. The months between around 1960 and 1998 are
used for training (see Figure 7), and the remaining months until
year 2020 (including GPs extrapolation) are used for testing (see
Figure 12).

A very similar dataset was used in Keeling and Whorf (2005),
Rasmussen and Williams (2006), and Wilson and Adams (2013)

and is often utilized in GPs’ tutorials to demonstrate how GPs
are performing as flexible black box modeling tools (even during
extrapolation). This data set is great as a toy example as one can
notice a long-term rising trend including some seasonal variability
and some irregularities. The currentwork goes toward a fully auto-
mated algorithm and investigation for data pattern recognition
and robust GP modeling. In all procedures (as before), Gaussian
noise is assumed, so that marginalization (or in simple terms
integration) over the unknown functions can be performed in a
closed form.

M1 and M2 in this example are composed of 12 and 9 hyper-
parameters {θ} (as seen in Figure 9), respectively, and Figure 11
shows the prediction and the 95% according to Rasmussen, while
Figure 12 shows the prediction and the 95% confidence bounds
by propagating the uncertainty in the hyperparameters.

On running ABC, Figure 8 shows the model posterior proba-
bilities over the different populations and the associated tolerance
threshold. One can easily observe that for high tolerance thresh-
olds, there is no strong evidence that either kernel model is more
favorable. Between populations 2 and 17, the algorithm gives the
trend to favor the simplest covariance. In a nutshell, the algorithm
tries at first to converge toward the most simple model, which is
the Model Two. This means that the complex model with higher
number of parameters (ModelOne) is penalized. For instance, this
is quite obvious at population 9, where the probability associated
with Model Two is much higher than Model One. However, by
further decreasing the tolerance threshold, it seems that theModel
Two is no longer able to give goodmodel predictionwith adequate
accuracy and in turn, the algorithm moves to favor the more
complex Model One. At population 19, the algorithm gives a
higher evidence to the Model One. The algorithm ends up by
finding the best model at population 23 with strong evidence

FIGURE 12 | 95% CI obtained from propagating uncertainty in the hyperparameters.
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and eliminates Model Two, which is no longer able to explain
the data.

In the subsequent iterations, the algorithm refines the model
parameter estimates associated to the best model. Figure 9 shows
the histograms of the Model One kernel parameters. By making a
comparison between the log-marginal likelihood values obtained
with a gradient-based optimizer and ABC-SMC algorithm over
the populations, one clearly sees from Figure 10 how the ABC-
SMC algorithm converges to a better optimum. This proves the
ability of the ABC-SMC algorithm to better explore the input
space mainly when one has to deal with high-dimensional prob-
lems.

Figures 11 and 12 show the training data and the model
prediction with the 95% confidence interval for all different ker-
nels. Figure 11 is obtained according to Rasmussen and Williams
(2006), whileFigure 12 is obtained by propagating the uncertainty
on the hyperparameter estimates, and the kernel was chosen auto-
matically and not by trial and error (important difference). One
can see a good agreement between both predictions.

6. DISCUSSION AND CONCLUSION

It is evident from the last example that it was different at the
beginning to favor one kernel model against the other. This means
that both kernels could be candidates that can explain and fit
the data. As the algorithm progresses though, and the threshold
tightens, the ABC will jump to the more complex model to under-
stand the trend and the behavior of the data, by forgetting the
insufficient properties of the simplest combined kernel. It is clear
that the method presented here gives to the end user a systematic
and consistent way of choosing kernels for machine learning
applications and simultaneously estimating the parameters that
accompany them. Given these distributions of the hyperparame-
ters, one can even give confidence intervals that are estimated from
the obtained posterior distribution of kernel hyperparameters by
generating randomly a large number of samples, simulating the
kernel model responses and a pointwise confidence interval can
be obtained.

One small comment can now generate a huge discussion that
is outside the remit of this paper but can give to the reader food
for thought.Whymight someone need the uncertainty around the
hyperparameters? Are they giving anymore information forGP or
RVM for example?

The answer is yes and no. It is very evident that kernel selec-
tion (or even the mean function) controls all the generalization

properties of the algorithm, but as semi- or non-parametric tools
like GPs, the uncertainty of the hyperparameters might not add
something to the physical mechanism of this Bayesian tool. How-
ever, one can argue that they can potentially be used for the
evaluation of the training set. GPs or RVMs do not over-fit in the
sense of a classical neural network or trapped to local minima as
they are closed formed solutions by integrating out the parameters
and as a result not having an actual classic error or cost function.
But they are “optimized” by giving a specific training set and the
uncertainty arising from fitting the best kernel and the best hyper-
parameters values can be used as “metric” to evaluate if something
is wrong with the defined training set and furthermore to check
that even different kernelmodelsmight struggle to understand the
data, which means that the training set is not representative when
projected to a validation/test set. Also, if one moves to dynamic
models like NARX-GPs, the current work can find not only the
best lags number by treating them as different competing models
but also a beautiful uncertainty evaluation of choosing specific
lags to represent the dynamic regression algorithm.

To summarize, the presentedworkmoves forward to a compact,
consistent, and automatic mechanism via Bayesian formulation
of the ABC to find an optimal kernel and its hyperparameters
simultaneously. As can be seen in example one, the difference
between kernels is not significant and this is the reason that
the simplest kernel is chosen. In the authors’ opinion, this can
generate an argument like a “no free lunch theorem” as for certain
types of engineering problems (non-linear systems for example),
the computational cost of reaching a solution, averaged over all
different models in the same problem, could be simply the same
for any “optimized” solution algorithm or kernel model, leaving
one with the question is there a best model with best solution that
offers a clear “short cut”?
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