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Counting the number of occupants in building areas over time—occupancy track-
ing—provides valuable information for responding to emergencies, optimizing thermal
conditions or managing personnel. This capability is distinct from tracking individual
building occupants as theymovewithin a building, has lower complexity than conventional
tracking algorithms require, and avoids privacy concerns that tracking individuals may
pose. The approach proposed here is a novel combination of data analytics applied to
measurements from a building’s structural dynamics sensors (e.g., accelerometers or
geophones). Specifically, measurements of footstep-generated structural waves provide
evidence of occupancy in a building area. These footstep vibrations can be distinguished
from other vibrations, and, once identified, the footsteps can be located. These locations,
in turn, form the starting point of estimating occupancy in an area. In order to provide a
meaningful occupancy count, however, it is first necessary to associate discrete footsteps
with individuals. The proposed framework incorporates a tractable algorithm for this
association task. The proposed algorithms operate online, updating occupancy count
over time as new footsteps are detected. Experiments with measurements from a public
building illustrate the operation of the proposed framework. This approach offers an
advantage over others based on conventional technologies by avoiding the cost of a
separate sensor system devoted to occupancy tracking.

Keywords: smart building, structural dynamics, occupancy, tracking, vibration

1. INTRODUCTION

1.1. Research Motivation
A building’s structural dynamics instrumentation holds the potential to provide a new awareness
about building occupants: occupancy tracking, counting the number of occupants in building areas
over time. Recently, several research groups reported that this kind of instrumentation, namely,
accelerometer or geophone sensors, could detect footstep-generated structural waves produced by
building occupants (Dobbler et al., 2014; Hamilton et al., 2014; Pan et al., 2017). This understanding
enabled a number of independent approaches to locating occupants by means of their footstep
vibrations [e.g., Bahroun et al. (2014), Pan et al. (2014),Mirshekari et al. (2016), Poston et al. (2017)].
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Furthermore, extracting features from the footstep measurements
and applying the features to statisticalmodels of human gait shows
promise for distinguishing among individuals by their character-
istic gait (Pan et al., 2015) or determining gender (Bales et al.,
2016).

With footstep-based localization as a starting point, this paper
proposes an algorithmic framework for occupancy tracking. This
is valuable information for several applications. Clearly, this occu-
pancy tracking would be vital to public safety agencies responding
to an emergency in the building. Also, this information enables
occupancy-based heating and cooling (Erickson et al., 2009; Goyal
et al., 2013; Zhang et al., 2013), a technology that could provide
more cost effective thermal control than existing practice. More
generally, occupancy tracking could augment current technology
for personnel management and building security.

1.2. Related Work
The survey in Teixeira et al. (2010) documents a number of sys-
tems that could count the number of occupants in an area. A great
many of these rely on wireless technologies for wide sensing cov-
erage in a building. Other technologies (e.g., floor-based pressure
switch or gage, ultrasonic, pyroelectric/infrared, etc.) typically
require greater sensor densities than wireless. In some wireless
system designs occupants need to carry a device with the requiste
technology. The references cited within Gu et al. (2009) provide
examples of this kind of system. These device-oriented systems
offer a means to locate individuals and then occupancy counting
is a byproduct, but this approach does pose a burden on the occu-
pant of carrying a specific device. Other designs (e.g,Woyach et al.
(2006), Xu et al. (2013), Zeng et al. (2016)) free the occupant from
this burden, because the system deduces occupancy by observing
how a person’s body influences radio wave propagation between
the system’s radio transmitters and receivers. In practice, this latter
method requires a meticulous survey within the building of how
an object at a given location changes radio wave propagation.
Detecting, counting, and tracking persons by computer vision
techniques is a well-established technology (Sarkar et al., 2005;
Teixeira et al., 2009; Lu et al., 2014). Given the state-of-the-art
in facial recognition, however, this camera-based technology does
pose troubling privacy concerns.

Distinct from the question of selecting the sensor modality is
the question of the estimation framework. In some prior work,
the building occupancy is treated as a Markov chain with the
states being the number of persons in each room and the tran-
sitions between states corresponding to movement between adja-
cent rooms. Representative examples of Markovian frameworks
for occupancy include Erickson and Cerpa (2010) and Liao and
Barooah (2010). As these authors acknowledge, however, formu-
lating that kind of model requires care to avoid an enormous
number of states and may need a measurement campaign in
order to obtain meaningful prior distributions for the states and
transitions. By contrast, if an estimation technique is meant for
real time, online processing of measurements then the technique’s
computational burden requires careful consideration. Moreover,
for wide applicability, it is preferable to have estimations that need
little or no prior characterization of building occupancy statistical
distributions.

1.3. Scope and Organization
The aim of this research is to introduce an algorithmic framework
for occupancy tracking derived from measurements of footstep-
generated vibrations. The paper’s contributions include:

• A framework that incorporates a computationally tractable (i.e.,
polynomial time) method for online processing of continuous
building sensor measurements.

• A framework that accommodates a variety of footstep-based
localization methods reported in the literature.

• A demonstration of the framework with actual measurements
from a public building, Goodwin Hall on the campus of Vir-
ginia Tech, originally instrumented only to study structural
dynamics.

To expand a bit on the last point, given the myriad of possi-
ble sensor configurations, occupant movement patterns, footstep
localization techniques, and statistical feature extraction, an indi-
vidual experiment or simulation result cannot encompass all cases
of these factors. What the demonstration experiments do offer is
a template quantifying the interplay of footstep localization accu-
racy and movement pattern on the overall occupancy tracking
accuracy. With this template, one can craft other experiments to
evaluate the framework’s performance in other circumstances to
assess if itmeets accuracy requirements of a particular application.
For example, in the previously mentioned occupancy-based heat-
ing and cooling application, one study concluded “Results show
that 20% occupancy estimation errors have negligible impact
(0.28%) on HVAC energy savings estimation of 14%” (Erickson
et al., 2009).

The remainder of the paper is organized as follows: Section
2.1 delineates the occupancy tracking capability from existing
tracking algorithms and explains algorithmic complexity consid-
erations. Section 2.2 describes the process of detecting footsteps
and distinguishing them from other vibration-generating events
in a building. Section 2.3 explains the algorithm for associating
detected footsteps with the proper individuals in a construct
known as a track. Section 2.4 then shows how to determine from
these tracks the occupancy over time in one or more regions of
a building. Then, in Section 3, the paper turns to a set of exper-
iments demonstrating operation of the framework with actual
measurements from a public building, Goodwin Hall on the cam-
pus of Virginia Tech. After reviewing some background for this
experimental work (Section 3.1), Section 3.2 documents the sen-
sor configuration and the means for establishing ground truth in
the experiments. Then, Section 3.3 describes the specific scenarios
for building occupant movement and choice of system parame-
ters for the demonstration experiments Section 3.4 discusses the
results. Finally, the paper closes with Section 4 commenting on
the limitations of this work and potential enhancements to the
framework to overcome some limitations.

2. METHODOLOGY

2.1. Occupancy Tracking versus Tracking
Occupants
There are important distinctions between occupancy tracking, the
focus of this paper’s proposed framework, and tracking occupants.
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If the latter capability were implemented one could, in principle,
query the estimated locations of each tracked individual and tally
at regular time intervals all persons within a region of interest
to generate occupancy reports. Tracking each occupant, however,
has the burden ofmaintaining state estimates (e.g., position, veloc-
ity) for each of them even when, for example, they stop moving to
sit at a desk. Nonetheless, it is worthwhile to review some prior
literature on this multitarget tracking problem studied for radar
and sonar systems [e.g., Bar-Shalom and Tse (1975), Reid (1979),
Fortmann et al. (1983), Bar-Shalom and Fortmann (1988), Bar-
Shalom (1990, 1992), Blackman and Popoli (1999), Bar-Shalom
and Blair (2000)] due to common aspects of the two problems. A
sequence of radar or sonar detections associated with a particu-
lar object (target) enable estimation of the object’s trajectory by
techniques such as Kalman filtering (Kalman, 1960) or particle
filtering (Gordon et al., 1993). The resulting sequence of state esti-
mates is known as a track. In order for this track to be meaningful,
the detections must have been assigned to the correct object. One
approach known as joint probabilistic data association (JPDA)
(Fortmann et al., 1983) aims to find a match by drawing from
optimization techniques developed for the assignment problem
(Kuhn, 1955) in operations research. There are two fundamental
issues with JPDA for analyzing building occupants. First, JPDA
relies on a fixed, known number of tracks. Second, it performs
the matching at one instant; thus, it can only be locally optimal
at that point in time. Another approach that does account for the
time history of detections is the multiple hypothesis test (MHT)
(Reid, 1979). At the time of each new detection MHT evaluates
a set of hypotheses over the entire set totaling NT detections to
date. The hypotheses for the new detection include: it is a false
alarm, it belongs to track #1, #2, . . . ,NT. This approach offers
optimality in a maximum likelihood sense; however, it does pose
complexity concerns. The need to consider an ever-growing set of
hypotheses over all time history produces an exponental growth
in computation.

Instead of seeking a jointly optimal solution, this paper’s aim
is to identify assignments that are at least sequentially optimal.
The step-by-step nature of a person’s walking gait lends itself to a
sequential formulation. For the problem of finding the most likely
sequence of events the algorithmic strategy known as dynamic
programming (Bellman, 1957) finds a best fit by decomposing
the global search into a series of tractable subproblems, and this
strategy can accommodate cases where the input is corrupted
by measurement error. Furthermore, this class of optimization
offers polynomial time algorithms. Many fields of study produced
dynamic programming algorithms. A few examples include genet-
ics where sequence alignment algorithms (Needleman and Wun-
sch, 1970; Smith and Waterman, 1981) match gene sequences,
speech processing where the dynamic time warping algorithm
(Velichko and Zagoruyko, 1970) assists with word recognition
and digital communications where the Viterbi algorithm (Viterbi,
1967) decodes information sent with error correcting codes. For
this paper a modified form of the Viterbi algorithm and, in
particular, its trellis data structure (Forney, 1973) provides the
framework for organizing footsteps into per person trajectories.

The overall process of converting raw measurements from a
building’s structural dynamics instrumentation into occupancy

FIGURE 1 | The overall process for converting measurements from vibration
sensors to occupancy estimates. The module names on left correspond to
the three major processing steps as explained in Sections 2.2–2.4 in greater
detail.

tracking estimates consists of three major stages. As illustrated
in Figure 1 these stages correspond to the organization of the
processing algorithms into three modules.

First, the Footstep Event Detection Module (Section
2.2) examines vibrations observed in the building structure for
evidence of a footstep, and when one is detected the module
reports the footstep’s time and location. Second, the sequence
of detected footsteps becomes input for the Footstep Track
Identification Module (Section 2.3) that finds the most
appropriate partitioning of footsteps into per person groupings.
Due to the complexity of this module, there are pseudocode
listings for each major algorithm, collected at the end of the
paper with the figures. Third, using the identified tracks as input
the Footstep Track Evaluation Module (Section 2.4)
determines entry and exit of persons from a region of interest and
thereby obtains the occupancy tracking results.

2.2. Footstep Event Detection Module
In the course of conducting the experimental work for this
research, the authors observed that a wide range of events in a
building could generate impulsive vibrations qualitatively simi-
lar to footsteps. Observed examples included items knocked off
a desk, objects dropped by a person, and, especially prevalent,
doors being closed. Although there are footstep-specific detectors
capable of distinguishing these events from footsteps, it is helpful
to have a simple, initial test to screen out events that cannot be
from footsteps so that the footstep detector is not overwhelmed
by irrelevant data. This practical issue was not fully addressed in
the cited prior work (Bahroun et al., 2014; Pan et al., 2014; Mir-
shekari et al., 2016; Poston et al., 2017) on footstep localization.
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In fact, the technique proposed in Bahroun et al. (2014) relies
exclusively on the magnitude of a sensor signal exceeding some
given threshold and, consequently, is incapable of distinguishing
footsteps from other impulsive, vibration-generating events of
similar magnitude.

An expedient, first stage screening method is to compute the
energy of the vibration signals and then to check if the duration
of an event exceeding an energy threshold, γEnergy, has a plausi-
ble time duration for a footstep. Figure 2 shows the differences
that occur in the duration of footsteps and one of the most
prevalent sources of impulsive vibrations indoors, doors being
closed. This plot comes from averaging a dozen measurements
of Goodwin Hall accelerometers (PCB Piezotronics, Inc., model
352B). Figure 2 shows the accumulation of event energy observed
by the sensors in millisecond increments. The footstep reaches
the 90% of its total energy after a duration of 28ms, whereas the
door closing event takes 370ms to reach 90%. This result is for
hard soled shoes. For soft soled shoes the result is a somewhat
longer duration (~100ms) as previously noted in Mirshekari et al.
(2016) and Poston et al. (2017) and would benefit from a separate
screening check. A well-known result is that when a signal is
modeled as a Gaussian random variable then the summation of
a total of ν power samples produces an energy estimate that is
a Chi-Square random variable, χ2

ν , with ν degrees of freedom.
The Chi-Square probability density function, fχ2

ν
(x), is defined in

terms of the Gamma function, Γ(z), as

fχ2
ν
(x) =

x
ν
2 −1e

−x
2

2
ν
2 Γ(ν

2 )
, x ≥ 0 (1)

and fχ2
ν
(x) = 0 for x< 0; the Gamma function definition is

Γ(z) =
∫ ∞
0 uz−1e−udu. The energy detector’s performance in

terms of the probability of false alarm, PFA, and probability of
detection, PD, given the sensor’s noise power, σ2

N, that can be
documented at system installantion, the incoming signal power,
σ2
S , and a designed detection threshold, γEnergy, is (Kay, 1998):

PFA = Qχ2
ν

(
γEnergy

σ2
N

)
, (2a)

PD = Qχ2
ν

(
γEnergy

σ2
S + σ2

N

)
, (2b)

and Qχ2
ν
(α) =

∫ ∞
α

fχ2
ν
(u)du. Two short examples illustrate how

these performance relations guide the design of an energy detector
screening test. The first example is from a conservative viewpoint
of managing false alarms. If, in the absence of any actual footsteps,
it is tolerable to have a false alarm on average once per 5min then,
given the case of 28-ms test periods, that means one false alarm in
1.07× 104 tests is tolerable, suggesting a false alarm specification
of PFA = 10−4. An energy detector satisfies the specification with
a threshold of γEnergy = 2.3νσ2

N from the relation in equation
(2a), ν = 28. With this design PD ≥ 0.8 for a signal to noise ratio
(SNR) of 3 dB or larger. The second example is from the viewpoint
maintaining a high probability of detection of an event that might
be a footstep. From the relation in equation (2b) with γEnergy =
1.35νσ2

N and a SNR of 3 dB or larger, the detector has PD > 0.99
under a relaxation to PFA = 10−1.

FIGURE 2 | Comparison of the cumulative distribution of energy over time for
footsteps (left, solid red curve) and doors being closed (right, solid blue curve).
The dashed vertical red line at 28ms shows where the footstep energy
reaches its 90th percentile of its total energy and the dashed vertical blue line
at 370ms shows where the door closing event energy reaches its 90th
percentile.

Of course, there are many kinds of vibration-generating events
in buildings, and energy duration alone would be insufficient
for footstep identification. When vibration signals do pass this
preliminary check then a footstep detector inspects the signals
more carefully by means of, for example, a matched filter test as
explained in Poston et al. (2017) or some other feature statistics
(e.g., Pan et al. (2014), Mirshekari et al. (2016)). This footstep
detector test has its own formulation of detection criteria and
has performance characteristics in terms of PFA and PD that are
distinct from the energy detector.

It is known (e.g., Pan et al. (2014), Poston et al. (2017)) that
the footstep detector statistics have exponentially decaying energy
as range between footstep to sensor increases linearly. Hence,
the possiblity of two or more footsteps happening simultaneously
and causing an ambiguous detection is only a relevant concern
for when they are in range of being detected by common set of
sensors. In other words, the total number of building occupants
is not the source of concern; instead, it is the number occupants
in sustained proximity to one another. The operating assumption
of this paper is that at the final output of this module each
detection corresponds to exactly one footstep. In dense, moving
crowds, however, making that assumption may be inappropri-
ate. Later, Section 4 revisits this concern and discusses possible
remedies.

Once a single footstep has been detected then it can be located
using existing methods (e.g., Poston et al. (2017)). A located
footstep also receives a grid cell annotation consistent with the
footstep’s location on the building floor plan. Figure 3 shows
how a building floor can be partitioned into a set of disjoint grid
cells G : {g1, g2, . . . , gJ} with each grid cell small enough to only
contain one person at the time of a footstep. For example, the first
footstep location, x1, (leftmost in Figure 3) goes into grid cell g2,
the next, x2 (in the upper left doorway) goes into g5 and so forth.

Frontiers in Built Environment | www.frontiersin.org November 2017 | Volume 3 | Article 654

http://www.frontiersin.org/Built_Environment
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive


Poston et al. Occupancy Tracking via Structural Dynamics Sensing

FIGURE 3 | Example portion of a building floor plan partitioned into grid cells
labeled g1, g2, . . . ,g23. The symbols x1, x2, . . . , x7 mark the reported
locations of detected footsteps.

As explained in the next section, it is useful to consider these grid
cells as states of the trellis.

To summarize, the output of this module is a sequence of
footstep event records. Each record contains the attributes of the
detection time, t, the estimated location, x̂F, and the location’s
corresponding grid cell, g. For the remainder of this paper when
it is necessary to refer to a particular attribute (e.g., time t) of a
specific record (e.g., themth detection) then the notation is f [m].t
for this value.

2.3. Footstep Track Identification Module
This module partitions footstep event records into per person
groupings known as tracks, T , each of which contains a unique
TrackID and a set of footsteps, TF, assigned to the track. Figure 4
provides an overview of this module’s processing. The computa-
tions for the partitioning rely on a data structure known as a trellis.
The trellis structure has an array with rows corresponding to each
possible grid cell and columns corresponding to distinct time
ranges. Furthermore, the trellis has branches interconnecting some
adjacent array elements. These branches correspond to probabil-
ities of transitioning from a location at a given time to another
location at a later time. Readers familiar with the workings of the
Viterbi algorithm (Viterbi, 1967) will recognize some similarities
between that algorithm and this module’s processing; however,
there are important differences, thus motivating a full description
of thismodule’s operation. In particular, here calculations advance
at an event-driven pace as footstep events are detected, not on a
uniform time step basis as is customary for the Viterbi algorithm.

Thismodule processes the incoming queue of footstep events in
a batch ofM events at a time. These are sequential eventsm,m+ 1,
m+ 2, . . . ,m+M− 1 extending in time over t∈ [tBatchBegin,
tBatchEnd] where tBatchBegin = f [m].t, tBatchEnd = f [m+M− 1].t
and the value of M is the smallest of:

(A) the number of events prior to an interevent time gap,Tgap, too
large to be explained by a slow walking cadence or a missed
footstep

FIGURE 4 | Overview of the Footstep Track Identification Module
processing. The processing stages annotated to the right with named
algorithms have detailed pseudocode listed in Algorithms 1–3.

(B) the number of events that can be accumulated while still
providing a tolerable delay in reporting occupancy result.

The set of event records under consideration in the batch
being processed is known as the active catalog, CA. Initially, the
Footstep Track Identification Module operates with the
first batch of events (i.e., starting withm= 1) from a building that
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was previously unoccupied. Thereafter, a current batch’s process-
ing needs to be linked to the results produced from processing the
previous batch. The linkage is explained at the end of this section.

The first task of thismodule is to select relevant footstep records
for generating the first track and to initialize the trellis. Setting
tbegin = f [m].t, the time of the first event, this module searches
for events within a time window, TWin, covering the range from
the fastest to slowest plausible interstep periods, resp. TStepMin
and TStepMax as established in prior human gait research (e.g.,
Grieve and Gear (1966), Murray et al. (1966), Oberg et al. (1993),
Bohannon (1997)). That is, the search is for the subset of events in
the active catalogwithf [i].t ∈ [tbegin +TStepMin, tbegin +TStepMax].
If this search returns no events then f [m] is removed from CA
and added to the singleton catalog, CS, and the search process
increments to the next event until finding a non-empty set of
events in the time window that follows. The pseudocode listing
in FindTrellisStart (Algorithm 1) implements this search
procedure for both the first track generation as well as subsequent
tracks.

When one or more footsteps within TWin have been located
then the first two trellis time stages (array columns) are initialized
as follows. The first trellis stage, k= 1, holds the first footstep
identified by FindTrellisStart in a trellis row corresponding
to the footstep’s grid cell, gi. The second trellis stage, k= 2, holds
the set of footsteps found to be withinTWin; each footstep assigned
to a trellis row corresponding to the footstep’s reported grid cell.
Figure 5 illustrates the formation of the trellis structure from grid
cells and time windows.

Between adjacent trellis stages, there are trellis branches con-
necting the populated trellis array elements. These branches
model the probability of moving from the ith trellis state (grid
cell) at time stage k to the jth state at time stage k+ 1. Stated more
explicitly, the branch models a conditional likelihood Pr (f [j].g|f
[i].g) of the observed step size given what is known about human
gait. In practice, for reasons of numerically stability, it is preferable
to work with the negative log likelihood rather than the raw
transition likelihood. This log scale quantity is known as a branch
metric or branch cost and is m̄i,j

k+1 = −log (Pr (f [ j] .g | f [i] .g)).

ALGORITHM 1 | FindTrellisStart.

1: function FINDTRELLISSTART
2: Inputs: Either {f[m], . . . , f[m+M−1]} or [CA, CS, i]
3: Constants: TStepMin, TStepMax

4: if {f[m], . . . , f[m+M−1]} given then ◃ First pass over event batch
5: CA ← {f[m], . . . , f[m+M−1]}
6: CS ← ∅
7: i← m
8: else [CA, CS, i] given ◃ All additional passes over event batch
9: i← argmin

j
{f[ j] ∈ CA}

10: end if
11: tBegin = f[i].t
12: while (i ≤ M− 1) ∧ f[i + 1].t /∈

[
tBegin + TStepMin, tBegin + TStepMax

]
do

13: Move f[i+1] from CA to CS
14: i← i+1
15: tBegin = f[i].t
16: end while
17: return: CA, CS, i
18: end function

A branch cost beyond a large threshold value, γCostMax means that
the transition is so improbable that it can be removed from further
consideration.

These branch costs are important, because finding the mini-
mum cost path through the trellis equates to finding the most
probable sequence of footstep events that will form a track. In
order to account for these costs the trellis contains several addi-
tional parameters that are computed incrementally as the trellis
progresses in time stages k= 1, 2, . . . ,K. Every trellis state, j, at a
given stage k+ 1 keeps a record of which incoming branch from
the previous stage, k, has the lowest cost; this is known as the
best branch, β

(j)
k+1. For the purpose of initializing the trellis and

advancing per stage branch calculations, unoccupied trellis states
(i.e., grid cells lacking footsteps) are treated as having infinite tran-
sition costs to other states, thereby removing them from further
consideration. As the trellis progresses from one time stage to the
next, it also records for each trellis state, i, the accumulated costs of
traversing a particular sequence of previous states and branches.
This accumulated costs when one arrives at a state is known as
the state cost, Π(i)

k . The first stage has a cost of zero for the only
occupied state and infinite cost otherwise. For stages thereafter
the state cost computation has a recursive evaluation. At stage
k+ 1 state j checks β

(j)
k+1 to find the best incoming branch and

adds that branch cost to the previously computed state cost at
the state i from which the best branch arrived. This sum is the
new Π(j)

k+1 cost subtotal. This stage-by-stage process of finding
footsteps in a viable time window, computing branch costs and

FIGURE 5 | Trellis generation from the example footstep records shown in
Figure 3. Starting from the first footstep at location x1 (in grid cell g2), the
search for stage k= 2 footsteps identifies {(x3, g7), (x4, g11), (x5, g12)} as
being within the required TWin. Each of these stage k= 2 footsteps has a
distinct transition likelihood from stage k= 1, denoted Pr (gj |g2), j= 7, 11, 12.
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updating state cost subtotals continues until no more viable trellis
transitions exist or all footstep events in the current batch have
been evaluated. This is known as the trellis forward traversal
or forward phase of trellis calculations. The pseudocode listing
in TrellisForward (Algorithm 2) implements these stagewise
trellis computations.

Once the forward phase is complete then a backward traver-
sal, known as the trellis traceback, identifies the optimal path
as the one with the lowest total cost. The pseudocode listing
in TrellisTraceback (Algorithm 3) extracts the path. The
sequence of footstep events along this path constitute a track

ALGORITHM 2 | Calculate Footstep Trellis in Forward Phase.

1: function TRELLISFORWARD

2: Inputs: CA,G, i
3: Constants: γCostMax, TStepMin, TStepMax

4: k← 1
5: Π(j)

k=1 ← 0 if j= i else∞
6: β

(−, j)
k=1 ← i if j= i else ∅

7: continue_forward← TRUE
8: while continue_forward do
9: {f[i]}k ← arg

i
{Π(i)

k <∞}

10: if {f}k =∅ then
11: K← k − 1
12: continue_forward← FALSE
13: return: β, {f}1, . . ., {f}K, Π, K
14: end if
15: tBegin ← min

t
{f [i] .t}k + TStepMin

16: tEnd ← max
t
{f[i].t}k + TStepMax

17: {f}k+1 ← f ∈ CA ∩ f[ j].t ∈
[
tBegin, tEnd

]
18: if {f}k+1 =∅ then
19: K← k
20: continue_forward← FALSE
21: return: β, Π, K
22: end if
23: for each f[ j] ∈ {f}k+1 do
24: for each f[i] ∈ {f}k do
25: m̄i,j

k+1 = −log (Pr (f[ j].g|f[i].g))
26: end for

27: i⋆ ← argmin
i

(
Π(i)

k + m̄i,j
k+1

)
28: Π( j)

k+1 ← Π(i⋆)
k + m̄i⋆,j

k+1
29: β

( j)
k+1 ← i⋆

30: end for
31: k← k+ 1
32: end while
33: end function

ALGORITHM 3 | Traceback Optimal Path In Trellis.

1: function TRELLISTRACEBACK
2: Input: β, {f}k=1, . . . , {f}k=K, Π, K

3: j⋆ ← argmin
j

(
Π(j)

k

)
4: TF ← {f [ j⋆]}k=K
5: TrackID← GenerateNewTrackID
6: for k← K − 1, K − 2, . . ., 1 do

7: j⋆ ← β
( j⋆)
k

8: TF ← ({f [ j⋆]}k∥TF)
9: end for ◃ (a∥b) means concatenate lists a, b

10: T ← (TrackID∥TF)
11: return: T
12: end function

entered into the track catalog, CT, and those footstep records then
are removed from the active catalog, CA.

At this point the Footstep Track Identification Module
resets the trellis array, resets the trellis stage counter k to 1 and
fetches the earliest available event in CA whereupon the module
repeats the previously described sequence of Algorithms 1–3 to
identify the next footstep track. After repeating this cycle until
no more events remain in CA, this module may need to complete
one more step before relinquishing the tracks in CT to the next
processingmodule, the Footstep Track Evaluation Module.

Specifically, it is necessary to check if any tracks could extend
overmultiple batches of event processing and, therefore, influence
the re-initialization of the Footstep Track Identification
Module for the next batch of events. The check consists of
identifying any Tl ∈ CT that extend to the end of the time covered
by the current batch of events. The set of such tracks is {T (e)

l }, l =
1, 2, . . . , L. The lowest cost state at the trellis end stage of each
of these tracks is T (e)

l (g⋆). In preparation for the next batch of
events, the first trellis stage k= 1 has its states, gj, j= 1, 2, . . . , J,
re-initialized with normalized cost subtotals to account for these
events as well as the first event in the next batch:

If j = T (e)
l (g⋆) Then Π(j)

k=1 = −log
(

1
L + 1

)
Else Π(j)

k=1 = ∞ (3)
With this final step completed, the Footstep Track

Evaluation Module can begin assessing what the track trajec-
tories imply for occupancy.

2.4. Footstep Track Evaluation Module
A change in occupancy state arises when a person enters or exits
a monitored region. The task of determining this state change is
akin to what is required in the location-based services technique
known as geofencing (Munson and Gupta, 2002). In this paper,
the region specification is in terms of a 2D building coordinate
system (e.g., the positive Y axis faces North, and the positive X axis
faces East). The region consists of a polygon with a finite number
of vertices, and it may be either convex or non-convex. There
are existing algorithms for determining if a queried point (e.g.,
a footstep location) is within either a simple polygon (Shimrat,
1962) or a non-simple (i.e., self-intersecting) polygon (Chinn
and Steenrod, 1966), and these became well-established first for
computer graphics (Sutherland et al., 1974) and later in techniques
for processing queries to geospatial databases (Jacox and Samet,
2007; Ilarri et al., 2010). When there is only one region of interest
then a point either wholly inside the polygon or on a boundary
line segment is treated as being in the region. On the other hand,
when floor plan is subdivided into multiple, disjoint regions to
monitor there needs to be a rule for determining which one
of a neighboring set of regions contains a point that falls on a
boundary. A common geospatial processing convention is that a
point on a South or West border of a region is treated as belonging
to the region whereas a point on a North or East border belongs
to a neighbor region. In formal terms, a query function, q( ),
inspects a single footstep’s location f [m].xF, to determine if it is
in a monitored region, R,

q (f[m].xF, R) = 1 if xF ∈ R, 0 otherwise (4)
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Evaluating a sequence of footsteps in a track, Tl, with this
function generates an output sequence of ones and zeros corre-
sponding to a person’s presence in or absence from the region
of interest at the times of the footsteps. Moreover, evaluating the
entire ensemble of tracks in the track catalog this way produces a
count of the total occupancy for the region over time.

3. EXPERIMENTS

3.1. Overview
The setting for the experimental work was Goodwin Hall on the
campus of Virginia Tech, a public building containing offices,
classrooms, and laboratories. In 2014, during the latter stages
of construction, this building had sensor mounts welded to
many steel girders for the original purpose of studying structural
dynamics of the entire building. At present, there are over 200
accelerometers active on these mounts. The sensor mount design
accomodates a triaxial (i.e., X, Y, Z) sensor configuration, if
needed. All sensors measured in this study have a uniaxial con-
figuration (Z axis facing the Earth) on steel girders that support
a concrete floor slab; the next section provides specifications for
the sensors in these experiments and their layout. Thus, these
sensors are able observe footstep-generated vibrations originating
from the above floor. The reader seeking additional information
about the implementation of the sensor system and its integration
with the building can consult (Hamilton et al., 2014; Hamilton,
2015).

Several considerations shaped the formulation of these demon-
stration experiments. One consideration is showing the influence
that location estimation error and the building occupant move-
ment patterns have on the framework’s performance. Evaluating
movement patterns with several levels of sustained proximity
among occupants illustrates the sensitivity of occupancy estima-
tion to correct footstep-to-track assignment. Another considera-
tion is accounting for non-ideal behavior of detection and localiza-
tion algorithms. The formulation to address these considerations
is a hybrid of actual measurements of movement patterns com-
bined with Monte Carlo simulation of detection and localization
impairments. The intent here is to offer a template for others
to apply to investigate specific cases of interest rather than to
attempt an experimental design that encompases all variations in
sensor configuration, occupant mobility, and algorithm perfor-
mance. Furthermore, to show scaling characteristics beyond what
the floorplan of Goodwin Hall permits for testing, an additional

experiment synthesized larger, more populated scenarios by com-
bining separate instances of test data.

Section 3.3 elaborates on the specific parameter settings and
system configurations selected to satisfy these considerations.
All experiments were conducted in accordance with approved
protocols for experiments involving human subjects (Institutional
Review Board, 2015–2017).

3.2. Sensor Configuration and Ground
Truth Determination
Figure 6 shows the test area in Goodwin Hall along with the posi-
tions of the 12 underfloor sensors. For this testing, all accelerome-
ters were PCB Piezotronics, Inc., model 352B accelerometers with
a nominal sensitivity of 1V/g and a frequency range from 2Hz
to 10 kHz (PCB Piezotronics Inc, 2002). The sensors connect to
a data acquisition system by coaxial cable installed during the
building’s construction. In these experiments, the data acquisition
system [VTI Instruments model EMX-2450 (VTI Instruments,
2014)] sampled all sensors synchronously at a rate of 32,768
samples per second with 24 bits of resolution.

In order to provide ground truth for building occupant
movement a 1-D LIDAR (Garmin model LIDAR-Lite v2, accu-
racy± 0.025m) positioned behind an individual’s starting point
measured their movement over time. Furthermore, a precision
real-time clock (Maxim Integrated DS3231, ±2 ppm) triggered
each LIDAR measurement and simultaneously sent a synchro-
nization pulse to a spare channel of the building’s instrumentation
system at a rate of 64Hz. The measurement rate of 64Hz limited
the change in range from one sample to the next to the order of the
LIDAR’s accuracy even in the case of very brisk walking. Thus, the
log of LIDARmeasurements was synchronized with the building’s
accelerometer measurements, and this enabled the linking of the
detection time of each footstep to the ground truth log of the
individual’s location.

3.3. Demonstration Scenarios and
Parameter Settings
The first three demonstration scenarios show several canonical
motion patterns of two persons in a hallway as they walk past one
another, meet and confer with one another or walk together. The
scenarios are denoted the crossing scenario, the pivot scenario and
the together scenario. Additionally, each scenario considered the
case of two persons entering and exiting the monitored region.
The choice of two persons for the first three scenarios provides a

FIGURE 6 | The test area in Goodwin hall on the campus of Virginia Tech. The pairs of dashed lines (== ) show the outlines of steel girders that have mounted
sensors active in this study, and square symbols�S1, . . . ,�S12, mark the sensor locations on the girders.
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simple enough case that the influence of their movement patterns
on the occupancy tracking framework can be readily understood.
Additional experiment scenarios account for extensions to more
populated cases as explained at the end of this section. The dimen-
sions of the monitored region, 2m× 6m, are believed to be small
enough to serve as a lower limit on useful region size (e.g., a shared
workspace) and large enough to contain multiple footsteps from
each person.

The crossing scenario shown in Figure 7 (top) has two persons
start at opposite ends of a hallway and begin walking toward one
another. Then, they enter the region of interest from opposite
sides, pass one another and continue on their respective headings
until reaching the end of the hallway. Their paths are displaced
from one another by nominally 1m in the dimension orthogonal
to the length of the hallway. The pivot scenario shown in Figure 7
(middle) begins in a similar manner as the crossing scenario but
without the 1m displacement of paths. After entering the region
they each pivot 180◦ and return to their respective origins. The
together scenario shown in Figure 7 (bottom) has two persons
begin at the same end of the hallway, displaced from one another
by nominally 1m in the dimension orthogonal to the length of
the hallway. At the same starting time and at nominally the same

speed they begin walking toward the opposite end of the hallway.
They enter the region together, continue in the same direction, exit
the region together, and maintain their heading until stopping at
the end of the hallway.

The choice of a nominal 1m separation in all these scenarios
stems from the hybrid approach of real experimental measure-
ments coupled with Monte Carlo simulation of error sources.
Observe that when the Footstep Track Identification
Module operates with footstep records both the actual spatial
separation of footsteps and the location estimation error com-
bine to produce the reported interstep distance evaluated by
the trellis branch cost calculation. By standarizing the nominal
separation of building occupants in some way the experiment’s
Monte Carlo trials can sweep one parameter related to localization
accuracy. More precisely, each experiment trial was formed as
follows. Starting with the ground truth of footstep detections and
localizations, a series of progressively greater localization errors
was created by adding to the true (X, Y) footstep coordinates a
circular Gaussian random variable having zero mean and SD, σL,
in each coordinate ranging from zero to to 1m with increments of
0.1m. For each of these localization error levels there were 1,000
trials.

FIGURE 7 | From top to bottom the diagrams show the crossing scenario, the pivot scenario and the together scenario. Each diagram has blue arrows→ for the
ground truth of movement for each step of person #1 and red arrows→ for person #2. The blue circles ◦ and red squares � show examples of the estimated
footstep locations produced by the localization algorithm in Poston et al. (2017) for person #1 and #2, respectively. The highlighted green area is the region of interest.
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Another aspect of non-ideal localization behavior is failing
to provided an estimate due to missed detections. Several fac-
tors influence the probability of detection: the attenuation of
the footstep-generated structural waves from footstep origin to
sensor, the sensitivity of the sensor model, the detector design, the
measurement noise and any other error source.

The cited related work (Bahroun et al., 2014; Mirshekari et al.,
2016; Poston et al., 2017) studied these factors. For these spe-
cific experiments there was no difficulty in locating footsteps
from the actual measurements; therefore, to account for non-
ideal behavior there was an additional emulation stage to make
localization fail stochastically. The emulation introduced a prob-
ability of a missed detection, PM, at series of increasing levels,
PM :

{
0, 10−3, 10−2, 10−1}. Each combination of scenario, local-

ization error level and trial received this set of PM treatments.
As explained in Section 2.3, the Footstep Track

Identification Module algorithms incorporate parameters
TStepMin and TStepMax to account for the range of interstep periods
in human gait. The parameter settings for these experiments
relied on the range documented in the prior research findings of
Grieve and Gear (1966), Murray et al. (1966), Oberg et al. (1993),
and Bohannon (1997). Specifically, considering a step cadence
from a leisurely 91 steps/minute to a very brisk 169 steps/minute
established the range of interstep periods, TStepMax = 659ms and
TStepMin = 355ms, respectively. The previously introduced time
gap threshold, TGap, between events for terminating a search for
tracks and starting a new search is TGap = 2TStepMax. The trellis
branch metric calculations treated the distribution of step length
as Gaussian with mean µS = 0.75m and SD σS = 0.1m. An
additional assumption of these calculations is that for whatever
footstep localization algorithm is in use, a location error bound
has been quantified, and this error bound is available as an
input parameter to the occupancy tracking algorithms. For the

purpose of selecting the threshold for the maximum admissible
trellis branch cost, γCostMax, the premise is that it should account
for both 99% of expected step lengths as well as 99% of the
location uncertanty of a pair of successive footsteps. Thus, the
computation for the maximum distance was dMax = 3σS + 6σL.

These experiments collected two performance metrics, the
footstep-to-track misassignment error rate and the occupancy
estimation root mean square error (RMSE). For the latter, there
are two ways of reporting occupancy error in order to gain insight
about the contribution of a subset of the framework versus the
entire framework. The first type of reporting is for the case of a
given, true footstep-to-track assignment. The second report is for
estimated assignments of footsteps to identified tracks. The intent
of reporting occupancy error in these two ways is to examine the
influence of localization error alone and in conjunction with track
assignment errors. Due to limitations on space for figures, the
plots related to the pivot and together scenario as well as plots
for cases of missed detections are in Supplementary Material to
this paper. After first reviewing experimental results under the
original condition, PM = 0, of no missed detections this section
then turns to examining the influence of higher PM levels.

Extending the experiments to investigate larger areas and more
populated scenario despite the physical limitations of the Good-
win Hall floor plan is possible by synthesizing a new test area
that combines independent replications of the existing hallway
configuration and instances of test data. The enlarged area comes
from n= 1, 2, . . . ,NR replications of the original hall area and
sensor network as illustrated in Figure 8. The first replication has
its coordinates translated South from the original hall coordinates
sufficiently to avoid overlap with the original. Thereafter, for
n= 2, 3, . . . ,NR, the nth replication has its coordinates translated
South from the (n− 1)th to avoid overlap. Then, each of the
NR replications receives a pair of occupants moving as in the

FIGURE 8 | Method of generating a large floor plan by replicating the original Goodwin Hall test area NR times, each replication translated South (downward on the
page) first from the original and thereafter from the prior replication to avoid overlap.
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original crossing scenario but with coordinates translated and
with an independent realization of time offset and localization
error. Additionally, the region for monitoring occupancy has its
area increased proportionally. Thus, the density of occupants per
unit area of floor plan and per unit area of the monitored region
remains the same as the first three experimental scenarios. This
experiment observed occupancy estimation error as the number
of replications covered the range n= 0, 1, . . . , 9 (i.e., the number
of occupants was 2, 4, . . . , 20).

3.4. Results
For the crossing scenario (Figures 9–11), the misassignment rate
is negligible until the localization error term σL & 0.4 m. Com-
parision of occupancy estimation error in this scenario for a given,
true track assignment (Figure 10) and for an estimated track
assignment (Figure 11) shows both grow in estimation error with

FIGURE 9 | The misassignment rate in the crossing scenario.

FIGURE 10 | The occupancy count RMSE using true footstep assignment in
the crossing scenario.

increasing σL, and the estimated track results also undergo some
enlargement of the error confidence interval (i.e., the 95% inter-
val enlarges by≈ 1.5×). Thus, for this scenario the assignment
error rate has a modest influence compared to the per footstep
localization error.

In the pivot scenario (Figures S1–S3 in Supplementary Mate-
rial), the almost perfect footstep-to-track assignment perfor-
mance in Figure S1 in Supplementary Material can be attributed
to the effectiveness of the thesholding operation applied to the
trellis branch metrics in scenarios where persons are rarely in
close proximity of one another even though their footsteps occur
over the same time interval. As explained in Section 2.3, the
thresholding via γCostMax enables the algorithm to remove early
in its processing very unlikely footstep assignments from further
consideration. Consequently, the occupancy estimation results for
the case of estimated track assignments (Figure S3 in Supplemen-
tary Material) is nearly identical to the case of having true track
assignments (Figure S2 in Supplementary Material). This is in
contrast to the previous crossing scenario that exhibited a modest
growth in occupancy error with increasing assignment error.

In the together scenario (Figures S4–S6 in Supplementary
Material) sustained proximity of individuals to one anothermeans
that every footstep is at risk of misassignment for non-negligible
localization error. Figure S4 in Supplementary Material shows
that the misassignment rate reaches 50% after the onset of non-
negligible localization error, because the algorithms are operating
in a regime where location estimates do not offer sufficient infor-
mation for distinguishing individuals, and, thus, the algorithms
have an equally probable chance ofmaking the correct assignment
or not.

When there is a nonzero probability of missed detections, PM,
even a scenario containg a single person may have a poor mis-
assignment rate but still produce accurate occupancy estimates.
The reason is that a missed detection may cause premature ter-
mination of the single person’s track and the creation of a new
track for any footsteps remaining after the time of the missed

FIGURE 11 | The occupancy count RMSE using estimated footstep
assignment in the crossing scenario.
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detection. Consequently, in the assessment of footstep-to-track
assignment errors, all assignments to the new track are, strictly
speaking, incorrect. From the standpoint of occupancy count,
however, this generally does not influence the overall outcome,
except for the gap (i.e., delayed occupancy update) caused by the
missed detection. In consideration of this factor, the remainder
of this section refrains from referencing misassignment rate plots
and instead examines occupancy RMSE.

Evaluating the scenarios at increasing levels of miss probability,
PM :

{
10−3, 10−2, 10−1}, produced insignificant error growth

compared to PM = 0 until reaching PM = 10−1. At 10−1 the results
in all scenarios diverged from meaningful occupancy estimates.

Figures S7–S9 in Supplementary Material show the overall
estimation result that relies on identified tracks. In the original
results (i.e., Figures 9–11; Figures S1–S6 in Supplementary Mate-
rial) where PM = 0 the occupancy estimates had a small accuracy
penalty when footstep-to-track assignment was estimated from
identified tracks as compared to the case of given, true footstep-
to-track assignment. By contrast, at PM = 10−1 when the true
footstep-to-track assignment is known the occupancy estimation
performance remains nearly on par with the PM = 0 case as shown
in Figures S10–S12 in Supplementary Material, respectively. This
rate of missed detections sufficiently disrupts the track formation
process to thwart accurate occupancy estimation.

The experiments formed by replicating the original hall area
and occupants by n= 0, 1, . . . , 9 times (i.e., with 2, 4, . . . , 20
occupants) produced the occupancy estimation error reported in
Figure 12. This plot shows error normalized by the number of
occupants to illustrate scaling characteristics. The consistency at
large scale comes from the trellis path calculations explained in
Section 2.3. Recall that the Footstep Track Identification
Module evaluates the suitability of a sequence of footstep records
for belonging to a track by means of the accumlated trellis state
cost, Π(k)

i . Thus, even though there are more tracks (occupants)

FIGURE 12 | Occupancy estimation RMSE per person as a function of
increasing numbers of occupants on a proportionally sized floor plan and
monitored region as explained in Section 3.3. This normalized occupancy
error is shown for several levels of localization error, σL.

to consider, it remains unlikely under constant occupancy density
per unit area that an incorrect set of footsteps will repeatedly
produce a set of best branchmetrics, β(k+1)

j , necessary to produce
the best state cost, Π(k)

i . Provided the localization error remains
modest with respect to the region size and step size the track iden-
tification and subsequent occupancy estimatation will maintain
their accuracy.

4. DISCUSSION

This paper proposed an algorithmic framework that, when cou-
pled with an accurate footstep localization technique, provides
occupancy tracking in a building; however, there are several lim-
itations to the framework as proposed. As noted in Section 2.2,
the creation of the footstep event record relies on each footstep
detection corresponding to exactly one footstep. In the case of a
dense, moving crowd, however, there is the possibility that two or
more simultaneous footsteps would be detected by the same set of
adjacent sensors. If this happens then the footstep event detection
module would need to unmix the superimposed signals to extract
each footstep event. This footstep signal unmixing is a version
of the blind source separation task often addressed in other set-
tings with an independent components analysis (ICA) technique
(Jutten and Herault, 1991; Comon, 1994; Hyvarinen and Oja,
2000). In this setting, however, the task is not trivial. The original
formulation of ICA relies on themixture being an additivemixture
of component signals. By contrast, footstep-generated structural
waves can undergo reflection or refraction at structural bound-
aries and even within a single concrete floor slab can undergo
dispersion. Thus, amore accurate formulation is treatingmultiple,
simultaneous footsteps as a convolutive mixture of component
signals. Furthermore, without prior measurement or modeling of
the building’s transfer function to footstep excitation at various
locations, the unmixing task carries the responsibilities of semi-
blind deconvolution too. For these reasons, devising a general
purpose algorithm for separating simultaneous footstep signals
appears to be a substantial undertaking and has been deferred for
future study.

These experiments indicate that track formation algorithms
rely on the probability of missing a detection being no worse than
10−1. Furthermore, in the event of missing footsteps for either
the case of a small region or the case of steps that are parallel
to a boundary but straddle it, the system may be incapable of
accurate occupancy counting. To overcome this limitation the
framework could draw from auxiliary information from other
sensor systems to corroborate the estimated number of persons
entering or exiting the building region.

In some cases a building’s sensor configuration and a selected
footstep localization method may not provide sufficient accuracy
for an intended application. In addition to obvious remedies
such as improving sensor density there may be an algorithmic
remedy requiring no additional sensor infrastructure. As noted
in the introduction, prior literature (Pan et al., 2015; Bales et al.,
2016) extracted statistical features from footstep measurements
that enable discrimination among individuals beyond the location
and time parameters considered in this paper. Additionally, if
the algorithms undertake actual tracking of occupants—not just
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occupancy tracking—the accuracy has the potential to improve,
because the algorithms incorporate all information from a set
of observed footsteps and per person state variables (e.g., veloc-
ity). Incorporating this additional information, of course, entails
greater complexity but is a promising direction for future research.

Public safety applications motivate another direction for
extending this framework. For example, it is well known that
current technology for locating cellular emergency calls made
from indoor locations is inaccurate due to the interaction of
the cellular radio waves with the building’s structure, but this
location information can be crucial in an emergency. In Abdelbar
and Buehrer (2016), the authors propose a fusion technique for
integrating the cellular caller’s information with a more accurate
location estimate provided by some building-provided indoor
localization service. In some emergencies the caller may not be
the one in need of assistance, there may be many callers or the
incident may be widespread. Accordingly, the public safety first
responders would benefit from a fusion of the occupancy tracking
information too.
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