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Tropical cyclones are an example of a multihazard event with impacts that can highly 
vary depending on landfall location, wind speed, storm surge, and inland flooding from 
precipitation. These storms are typically categorized by their wind speed and pressure, 
while evacuation orders are typically given based on storm surge. The general public 
relies on these single hazard assessment parameters when attempting to understand 
the risk of an oncoming event. However, after the fact, these events are ranked by 
economic damage and death toll. Therefore, it is imperative that when these events 
are communicated to the public, during the forecast period, the multiple hazards are 
incorporated in terms the public can easily associate with, such as economic damage. 
This article provides an evaluation of the potential for real-time use of artificial neural 
networks, through the utilization of an already developed Hurricane Impact Level (HIL) 
Model, to forecast a range of economic damage from tropical cyclone events, during the 
2015 and 2016 United States hurricane season. The HIL Model is built prior to the start 
of each season and simulated every 3 h, in conjunction with National Hurricane Center 
(NHC) issued advisories, for oncoming tropical cyclones forecasted to make landfall. 
Weaker and more common tropical cyclones have a less varied forecast and produce 
more accurate impact level (IL) predictions. More complicated and uncertain events, 
such as 2016 Hurricane Matthew, require the user’s discretion in communicating varying 
landfall locations for a complex track forecast to the model. As NHC forecasts change 
with respect to both track and meteorological hazards affecting land, the estimated 
IL and the HIL model confidence will also change. In other words, if a track shifts to a 
more vulnerable location, or to more locations, or the meteorological hazards increase, 
the IL will subsequently increase. All tropical cyclones from the 2015 and 2016 seasons 
demonstrate the validity of the HIL Model with a forecast confidence of at least 60% for 
up to 30 h out from an impending landfall.

Keywords: hurricane, tropical cyclone, neural network, hurricane Matthew, forecasting

inTrODUcTiOn

Infrastructure damage and corresponding casualties can result from a wide array of natural events. 
A multihazard event involves more than one natural hazard where the hazards are correlated or 
uncorrelated and simultaneous, cascading, or distributed over time. A community subjected to 
extreme hazard events must have increased awareness, preparedness, and stricter building codes. 
The multihazard events that will be focused on herein are related to tropical cyclones, which inher-
ently involve three different hazards: wind, storm surge, and inland flooding due to precipitation.
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TaBle 2 | Hurricane Impact Level ranking system (Pilkington and Mahmoud, 
2016).

impact level economic damage amount 
(based on 2012 UsD)

example event

0 <$25 million 2015 Tropical Storm Ana
1 ≥$25 million, <$100 million 2007 Hurricane Humberto
2 ≥$100 million, <$1 billion 2008 Tropical Storm Fay
3 ≥$1 billion, <$10 billion 2008 Hurricane Gustav
4 ≥$10 billion, <$50 billion 2011 Hurricane Irene
5 ≥$50 billion 2005 Hurricane Katrina

TaBle 1 | Tropical cyclone ranking system for the western hemisphere.

category sustained winds associated damage

Tropical storm 35–63 knots

saffir-simpson hurricane Wind scale
1 64–82 knots Some
2 83–95 knots Extensive
3 96–112 knots Devastating
4 113–136 knots Catastrophic
5 >136 knots Catastrophic
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The majority of current studies assess the wind hazard of 
tropical cyclones due to the main focus within building codes 
in tropical cyclone prone areas, at least in the US. The Saffir-
Simpson Scale Hurricane Wind Scale, which is commonly used  
in the US to rank hurricanes, categorizes tropical cyclones by  
wind speed and the level of corresponding damage as shown in 
Table  1 [National Oceanic and Atmospheric Administration 
(NOAA), 2013]. Winds act on a structure by creating uplift, 
mainly on the roof, due to resulting pressure distributions from 
the fluid flow patterns around a structure. Potentially, wind will 
also carry debris, which can negatively affect structures down-
wind (Yau et al., 2011).

Tropical cyclones also bring storm surge (rise in sea level) and 
heavy rains. The damage from these is mainly of focus to damage 
of interior items in buildings or residential homes (Li et al., 2012; 
Dao et al., 2013). However, infrastructure wise, flooding due to 
heavy rains and storm surge can also cause erosion, overwhelm 
underground systems, and carry large debris (Morton, 2007; 
Peters et  al., 2007; Blake et  al., 2011; Chisolm and Matthews, 
2012; Kaufman et al., 2012; Lwin et al., 2014). All these factors 
interact within the local community to create the total damage. 
However, the public relies heavily on ranking systems based only 
on wind speed, such as the Saffir-Simpson Hurricane Wind Scale, 
for information as to the potential risk and impact of an oncom-
ing event. Part of the difficulty in relaying the whole picture 
to the public is that there are many variables involved, which 
may relate to each other, not necessarily in a straightforward 
or linear manner. Ideally, the goal would be to tie all variables 
together and communicate their effect in terms the public can 
easily understand: causalities and/or cost. In line with this goal, 
a recent Hurricane Impact Level (HIL) Ranking System, shown 
in Table 2, was developed by Pilkington and Mahmoud (2016) 
to correlate total economic damage to an impact level (IL). The 
economic damage referenced in the HIL Ranking System is based 

on National Hurricane Center (NHC) reporting, which account 
for all infrastructure damage and insurance payouts for things 
such as temporary housing when a home is uninhabitable. This 
economic damage is the same value that is later used to rank hur-
ricanes by costliest disasters (after-the-fact).

To relate the multiple hazards to their effects on infrastructure 
damage and the subsequent economic cost of such an event, a 
complex nonlinear mathematical interaction model is needed. 
Artificial neural networks (ANNs) are artificial intelligence 
programs capable of learning from historical events through pat-
tern recognition, similar to how the human brain learns. These 
networks establish nonlinear connections between artificial 
neurons, or nodes, in multiple layers to capture the impact of 
the above-mentioned hazards in relation to landfall location and 
population affected. The build process of ANNs involves training, 
validation, and testing phases to establish such connections. This 
structure allows for the interaction among many variables con-
tributing to the resulting outcome from a multihazard event and 
ranking an on-coming storm by the potential impact instead of 
intensity in terms the general public can easily relate to: economic 
damage.

This article addresses whether using an ANN model developed 
by Pilkington and Mahmoud (2016), can be applied real-time as an 
accurate forecasting tool to communicate the overall impending 
impact of a land-falling hurricane within the US. The economic 
damage is surveyed and tallied after the storm passes, insurance 
claims are filed, and federal funding is distributed in response. 
However, in order to better inform the public of the impacts 
resulting from all hazards of a hurricane, a forecasting method 
of categorizing storms by impact could tie together both hazard 
and outcome. In other words, storms such as Hurricane Sandy 
that are weak intensity could be misinterpreted as low impact. 
With an ability to forecast a general impact, Hurricane Sandy 
would forecast as a dangerous (not weak) storm. By assessing the 
accuracy of this ANN model, hurricanes could be categorized and 
communicated to the public real-time by impact instead of solely 
relying on wind speed (intensity).

MeThODOlOgY

Overview of the hurricane impact Model
The HIL Model is originally developed using ANNs, trained with 
a Bayesian approach, to address the complexities the interaction 
of many parameters that drive the outcome of this type of natural 
hazard. The HIL model uses multiple neuron layers consisting 
of an input layer, hidden layer, and output layer. The input layer 
consists of 13 user-determined inputs from an oncoming hur-
ricane event, as expected at landfall (shown in Figure 1): popula-
tion affected (failing within tropical storm force wind radius for 
the expected track), maximum wind speed (mph), minimum 
pressure (mbar), maximum storm surge (feet), total precipita-
tion (inches), and four landfall locations (optional past the first 
landfall) in terms of degrees latitude and longitude. The use of 
four potential landfall locations assists in illustrating storm 
track, since storms such as 2011 Hurricane Irene technically 
landfall more than once as it travels up the East Coast. The 
hidden layer serves as additional nodal connections to transfer 
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FigUre 1 | Hurricane Impact Level (HIL) Model neural network general structure (Lat. = latitude in degrees North, and Lon. = longitude in degrees West, 
HN = hidden neuron, units are shown as those in use within the HIL Model).
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and relate the inputs to each other and the resulting output: the 
IL (Pilkington and Mahmoud, 2016). Each hurricane season, 
the model networks are built (trained, validated, and tested) 
using all land-falling historical events since 1998 (data are not 
consistent prior to this date). The first model built, as discussed 
in Pilkington and Mahmoud (2016), used one network of the 
lowest possible percent error. There may be more than one 
network with such a low error but it may not produce the same 
output results or confidence in those results. Additionally, 
overfitting is a common problem with Bayesian methods and 
neural networks. In order to correct for this, the following 
season models are built with multiple different networks. 
These networks produce individual results, which contribute 
to an average that assesses agreement amongst the multiple  
HIL model networks (or ANNs).

Real-time, the inputs are mainly found within US NHC advi-
sories and graphics [National Hurricane Center (NHC, 2015b, 
2016)]. Available shapefiles for the projected storm track and US 
Census population by county allow for real-time determination 
of the population to be affected (National Hurricane Center, 
2017; Census Bureau, U.S., 2014). The track also provides an 
approximate landfall location for model input. The NHC releases 
advisories at least every 3 h, during which meteorological param-
eters may change and the storm track may shift. In building the 
model networks these same input parameters are from historical 
Tropical Cyclone Reports (TCRs) with the accurately measured 
data upon landfall.

The current approach, used by the US NHC, is to show wind 
speed probabilities, storm surge forecast, and rainfall forecast 
all separately. The Federal Emergency Management Agency 

does have a GIS program, Hazard US, that can be used to run 
hypothetical scenarios of specified wind speed and rainfall at 
certain locations in order to predict overall loss (Schneider and 
Schauer, 2006; Vickery et  al., 2006). Recently, there has been 
success in applying machine learning and ANNs to the areas 
of medicine and finance. These applications have been found to 
better predict heart disease, read biopsy results, forecast stock-
market prices, and safe guard against potential terror threats 
through banks (Baxt, 1995; Lu Dang Khoa et al., 2006; Hutson, 
2017; Lapowsky, 2017). The challenge in using such an approach 
lies in setting up the network accurately for applicable use as well 
as realizing that the model is built with respect to the previously 
supplied data, in this case available (and consistent) historical 
tropical cyclone data.

With the inspiration from the applications in different fields, 
the HIL Model uses ANNs to predict the outcome of a tropical 
cyclone real-time based on currently available data. These real-
time input variables (shown in Figure 1) are the tropical cyclone 
parameter equivalents to reading an electrocardiogram, or biopsy, 
with family medical history as indicators of a predictable outcome. 
For this study, the changes in these variables are assessed with 
every 3-h NHC issued advisory and rerun within the HIL Model 
to evaluate the effect of these changes to the impact forecast. If no 
changes occur, the IL remains the same.

The 2015 hurricane impact Model
Each year, once the NHC produces the TCRs for the following 
season, the neural network can be rebuilt with the additional data 
and associated known target outcome [National Hurricane Center 
(NHC), 2015a]. In addition, the 2015 HIL Model now consists of 
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FigUre 2 | Storm event placement in building Hurricane Impact Level (HIL) Models (a) 2015a, (B) 2015b, (c) 2015c, and (D) 2015d (H = hurricane, TS = tropical 
storm).
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multiple networks, which run simultaneously to produce numerous  
results that are then averaged to establish the overall resulting 
IL. This approach is taken in the interest of mitigating possible 
over-fitting issues from network use, especially for outlier events. 
For more commonly occurring events, each network returns 
similar results.

The 2015 HIL Model consists of seven ANNs (designated a 
through g) that are built to result in 3% error or less. This percent 
error is based on how well the network places events during its 
training and testing phase (Pilkington and Mahmoud, 2016). 
Using Bayesian methods, this percent error could range from 0 
to 8%. Additionally, the receiver operating characteristic (ROC) 
curves are evaluated for results in the true-positive range. This 
leads to building ANNs with a false-positive rate near zero. Both 
of these build decisions are made based on there being greater 

than five ANN options fitting these parameters as a minimum 
to provide thorough results, while not too many as to decrease 
model run time. In total, 69 events are trained and tested. The 
final networks then have the lowest error neuron connection 
parameters (biases and connection weights). These results are 
shown through confusion matrices in Figure  2 for Models a 
through d and Figure 3 for Model e through g, where the net-
work produces the output IL during building, while the target IL 
is known from the historical data. Correctly placed events will 
follow the diagonal of the confusion matrix with the resulting 
overall percent error following at the bottom right corner. The 
confusion matrices best show the accuracy, and potential errors 
in these networks, by illustrating what events the ANNs struggle 
to correctly place and if these events are commonly misplaced. 
Since no networks with false-positive rates are chosen for the HIL 
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FigUre 3 | Storm event placement in building HIL Models (a) 2015e, (B) 2015f, and (c) 2015g (H = hurricane, TS = tropical storm).
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Model, the ROC curves are not shown in this article, as these 
would just show a grouping of lines in the top of the true-positive 
section but give no additional insight into the potential flaws of 
each network.

Overall each network does not misplace more than one event 
out of 69 total historical events. In summation with all the net-
works, this is equivalent to five different misplaced events out of 
483 events through all seven networks. As shown in Figures 2 
and 3, the misplaced events are 1999 Hurricane Irene, 1998 
Hurricane Mitch, 2012 Tropical Storm Debby, 2005 Hurricane 
Cindy, and 2005 Hurricane Gustav. Hurricane Irene (1999) is 
misplaced twice as an IL 2 event, when it is actually an IL 3 event. 
When the economic damage from Irene is normalized to 2012 US 
Dollars (USD), it is one of the few events that jumped ILs from 
where it would be categorized, before normalization, up one IL 
after normalization as a lower IL 3 event. Tropical Storm Debby 

is the first event, in building these models, to be misplaced two 
ILs over. Debby is an IL 2 event but is incorrectly placed at an IL 
0. While Debby’s wind speed is exceptionally low (35 knots) with 
moderate storm surge (1.37 m), its maximum precipitation is very 
high with 73  cm. This coupled with affecting 9 million people 
in the state of Florida, accounted for its higher actual IL. This 
event is correctly placed in the other six networks allowing for 
any subsequent miscue in neuron connections of network 2015f 
to be counteracted in the subsequent overall resulting IL when 
using the 2015 HIL Model during real-time analysis.

The 2016 hurricane impact Model
The 2016 HIL Model consists of nine ANNs (designated a 
through i) that are built to result in 3% error or less. There are 
more networks for this year’s model with 2.8% error than the 2015 
HIL Model networks. This is not necessarily a negative for the 
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FigUre 4 | Storm event placement in building HIL Models (a) 2016a, (B) 2016b, (c) 2016c, and (D) 2016d (H = hurricane, TS = tropical storm).
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2016 HIL Model, since this is still an acceptable error and the 
combination of these nine artificial networks is designed to catch 
overfitting, which is more common in models with 0% error. The 
results for the 2016 HIL Model are shown through confusion 
matrices in Figure  4 for Models a through e and Figure  5 for 
Models f through i, where the network produces the output IL 
during building, while the target IL is known from the historical 
data. Correctly placed items will follow the diagonal of the confu-
sion matrix with the resulting overall percent error following at 
the bottom right corner. Note that HIL Model 2016f is left out of 
these figures since it results in a zero percent error and would only 
show correct placement along the diagonal.

Overall each network does not misplace more than two 
events out of 71 total historical events. In summation with all the 
networks, this is equivalent to ten different misplaced events out 
of 639 events through all nine networks. As shown in Figures 4 

and 5, the misplaced events are 1998 Hurricane Mitch, 1998, 
2000 Hurricane Gordon, 2008 Tropical Storm Edouard, 2008 
Hurricane Dolly, 2014 Hurricane Arthur, 1998 Tropical Storm 
Frances, 2005 Hurricane Dennis, 2005 Hurricane Cindy, 2013 
Tropical Storm Andrea, and 2008 Tropical Storm Fay. Both the 
2015 and 2016, HIL Models have 1998 Hurricane Mitch and 
2005 Hurricane Cindy misplaced. These are events to continue 
to observe in future year builds for a subsequent pattern in why 
they are being misplaced. Hurricane Mitch is the first storm in 
this data set from the earliest year of available data. Hurricane 
Cindy, in 2016 HIL Model (g), very nearly tied at ILs 0 and 2, if 
the decimal places are rounded to the nearest thousandths both 
would have reported as Level 1.000 for the network confidence. 
This also occurs for 2008 Tropical Storm Fay. Only Hurricane 
Gordon misplaces twice within all 9 model builds. Additionally, 
when evaluating the real-time results of these models, some user 
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FigUre 5 | Storm event placement in building HIL Models (a) 2016e, (B) 2016g, (c) 2016h, and (D) 2016i (H = hurricane, TS = tropical storm).
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evaluation would be recommended to account for low and nearly 
matching confidences. These are cues from the model that there 
may be some variation in impact due to the storm’s multiple 
hazards or its location. For example, Hurricane Cindy’s second 
landfall is near New Orleans, but had relatively low precipitation 
(23 cm) and wind speed (65 knots), causing the model to oscillate 
between a lower and higher IL. The modeler’s discretion can also 
help catch this by exploring variations within the meteorological 
forecast. This will be discussed further in the Results section for 
2016 Hurricane Matthew.

evaluation and comparison approach
These models are used real-time during their respective sea-
sons for evaluation within this study. The TCRs are typically 
released in the following spring and provide the actual meteoro-
logical data, landfall location(s), and the damage statistics. The 

economic damage is reported in that year’s dollar amount and 
requires adjustment to 2012 US dollars in order to match the 
current ranking system. This is done using the same US Census 
construction price indices and ratio as outlined by Pilkington 
and Mahmoud (2016). For tropical cyclones with notable dam-
age (ranking higher than an IL 0), bounds are given in the 2016 
TCRs (Berg, 2017; Stewart, 2017). Both the damage estimate and 
the confidence interval are normalized to 2012 USD to create 
applicable bounds.

During the real-time model simulations, variations to the 
model usage are tracked for the purpose of comparison once the 
actual results are released. This is done to determine the source 
of potential issues within the model in forecasting the correct IL. 
The HIL Model is heavily reliant on the available forecast data and 
the closer the tropical cyclone to landfall, the more accurate the 
input data will be from meteorological forecasting.
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TaBle 4 | Input data for 2016 storm events (H. = Hurricane).

inputs Ts colin h. hermine h. Matthew

Forecast  
(actual)

Forecast  
(actual)

Forecast  
(actual)

Population 13,000,000 
(11,300,000)

25,100,000 
(12,800,000)

19,000,000 
(23,500,000)

Pressure (mbar) 1001 (1002) 982 (981) 967 (963)
Wind speed (knots) 43 (45) 69.5 (70) 65 (75)
Storm surge (m) 0.91 (1.10) 2.74 (2.28) 2.74 (2.35)
Precipitation (cm) 25.4 (44.5) 38.1 (56.8) 50.8 (48.1)
First latitude (°N) 30.0 (29.8) 30.0 (30.1) 33.0 (33.0)
First longitude (°W) 83.9 (83.6) 84.0 (84.1) 79.4 (79.5)
Second latitude (°N) 32.6 (exits land) 36.0 (exits land) 34 (exits land)
Second longitude (°W) 80.0 (exits land) 76.0 (exits land) 78 (exits land)

FigUre 6 | 2015 Hurricane Impact Level (HIL) Model forecasting results, with 
comparison to actual impact level, for (a) Tropical Storm Ana and  
(B) Tropical Storm Bill. Model confidence in forecast impact level shown in bold.

TaBle 3 | Input data for tropical storms (TS) Ana and Bill.

inputs Ts anaa Ts Billa

Forecast (actual) Forecast (actual)

Population 5,000,000 (1,300,000) 6,600,000 (6,000,000)
Pressure (mbar) 1002 (1002) 1005 (997)
Wind speed (knots) 39 (40) 52 (50)
Storm surge (m) 0.61 (0.76) 1.22 (1.07)
Precipitation (cm) 15.24 (17.50) 30.48 (35.00)
Latitude (°N) 33.8 (33.8) 28.3 (28.2)
Longitude (°W) 78.5 (78.8) 96.4 (96.7)

aTS Ana and Bill only had one landfall location.
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FOrecasTing resUlTs

The 2015 Us hurricane season
For the 2015 US hurricane season there are two land-falling events: 
Tropical Storm Ana (South Carolina) and Tropical Storm Bill 
(Texas). The 2015 HIL Model is implemented for each NHC issued 
advisory as available [National Hurricane Center (NHC), 2015b]. 
Table 3 shows data from the advisory just prior to landfall and the 
actual TCR values. For such events, the model cannot be run until 
the storm is officially past the classification of tropical depression 
and/or until the storm surge data is made publicly available, which 
is typically the last parameter provided in these advisories. Once 
able, the data from NHC advisories (issued every 3 h) are supplied 
to the HIL model for which the results are shown in Figure  6, 
in terms of the projected IL hours out from actual landfall. The 
confidence in model ILs are tied to input changes; therefore, when 
hazard changes are made in the advisories, a shift in model confi-
dences may occur (since wind speed is estimated for landfall, this 
usually requires enough of a change to jump Category ranking).

The resulting ILs, produced from this model real-time, are 
dependent on the meteorological forecasts. For weaker, and 
more common events, such as those that occurred in 2015, high 
confidence in the model IL forecasts indicates ease of prediction 
for the HIL Model. The model confidences are only shown for 
advisories where input parameters changed. For both events, the 
meteorological factors remained fairly consistent throughout the 
issued advisories. The biggest change between both is for Tropical 
Storm Bill’s population affected, which increases when four addi-
tional inland counties (near Corpus Christi and Galveston areas) 
are included. Since the landfall location does not shift too much 
and the major cities remain in the population estimation, this 
does not alter the results for Tropical Storm Bill as it neared the 
coastline and further advisories are issued. Tropical Storm Ana 
has a meteorological hazard variation where the precipitation 
increased from 7.62 to 10.16 to 15.24 cm throughout its forecast. 
Additionally, for Tropical Storm Ana, the actual population 
affected did end up varying from the forecast value. The popula-
tion affected is originally meant to be an estimated value and the 
networks are trained as such so that use during real-time forecast-
ing allows for some error within this parameter.

For both storms, the 2015 HIL Model remained precise as well 
as accurate in terms of the actual results. The TCR for Tropical 
Storm Bill does not list the final estimated economic damage as 
of yet; however, it is expected to remain below the $25 million 
threshold (Berg, 2015). There is flooding that occurred in Texas 
before Bill made landfall for which damage also occurred and 
would need to be sorted out from damage specifically resulting 
from Tropical Storm Bill.

Use during the 2016 Us hurricane season
The 2015 US hurricane season events assessed above are sub-
sequently part of the data set for the 2016 HIL Model. For the 
2016 US hurricane season there are three land-falling events to 
be analyzed real-time: Tropical Storm Colin (Florida), Hurricane 
Hermine (Florida), and Hurricane Matthew (South Carolina). 
There is one additional storm that technically had a US landfall 
while at least a tropical storm. However, Tropical Storm Julia 
became a named storm over land and only lasted for approximately 
6 h. Julia is therefore not included in this study. Table 4 shows 
the data from the NHC advisory issued just prior to landfall and 
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FigUre 7 | 2016 Hurricane Impact Level (HIL) Model forecasting results, 
with comparison to actual impact level, for Tropical Storm Colin. Model 
confidence in forecasted impact level shown in bold.

FigUre 8 | 2016 Hurricane Impact Level (HIL) Model forecasting results, with comparison to actual impact level, for Hurricane Hermine. Model confidence in 
forecast impact level shown in bold and NHC track images are from August 31, 2016 (1PM CDT and 7PM CDT, respectively).
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the actual reported values. The first storm of the season, Tropical 
Storm Colin, and its subsequent 2016 HIL Model forecast results 
are shown in Figure 7.

Tropical Storm Colin appears similar to the storms from the 
2015 season as a weaker and more common event. Colin’s winds 
varied from 35 to 52 knots throughout its forecast. The 52 knots 
is a user defined increase from current wind speed of 43 knots 
due to a forecast discussion of expected strengthening [National 
Hurricane Center (NHC), 2016]. Colin’s precipitation also varied 
from 10.7 to 15.2 cm during the forecast. Both wind speed and 
precipitation changes cause the model confidence in an IL 0 event 
to lower slightly while remaining significantly confident (>60%) 
in the HIL Model forecasts. The landfall location remained simi-
lar; however, the population varied from 11.2 to 13 million as a 

result of additional county warnings. Even with the parameters 
varying slightly with Tropical Storm Colin, the model remains at 
a forecast IL 0 event prior to landfall, which is then confirmed by 
the TCR (Pasch and Penny, 2017). Following Colin is Hurricane 
Hermine with a similar track initially but more severe meteoro-
logical hazards. The results from the 2016 HIL Model forecast are 
shown in Figure 8. Note that for Hurricane Hermine, its status 
at tropical depression is included due to the high confidence in a 
potential landfall and a corresponding estimate for storm surge 
values.

Hurricane Hermine is the first real-time forecast event for this 
model that results in a change in IL as well as an IL beyond the 
common IL 0 events. Hermine’s winds varied from 35 to 70 knots 
throughout its forecast and its forecasted precipitation oscillate 
between 13.03 and 17.37  cm. Hermine’s storm surge starts 
at a forecast of 1.52 m and increases to a maximum of 2.74 m 
[National Hurricane Center (NHC), 2016]. When the wind speed 
increases, the forecast IL confidence begins to waiver with a much 
lower confidence of 34% for an IL 0 event. The biggest change 
for Hurricane Hermine is when the forecast track shifts to cover 
more of the East Coast and more than doubles the expected 
population affected, bringing it up to an estimated 25.1 million 
people. However, the actual population affected from the best 
track is closer to 12.8 million people. Once this shift occurred, 
the model became more confident in a higher IL forecast.  
A couple of days after landfall in Florida, Hermine is forecast to 
linger off the Northeastern Seaboard extending advisories up into 
Massachusetts. While this is not shown in Figure 8, the IL held at 
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an IL 2 with the addition of the coastal counties in the population 
affected. The TCR damage estimation ranged from $318 million 
to $557 million, placing it firmly as an IL 2 event (Berg, 2017). 
Hermine is the first real test for the HIL Model, and Hurricane 
Matthew following with a much more varied and uncertain fore-
cast. Hurricane Matthew’s results are shown in Figure 9.

Hurricane Matthew is the big storm of the 2016 US hurricane 
season since it originally forecast to strike the East Coast as a 
major hurricane. The IL forecast began as soon as all data is avail-
able; however, in the initial forecasts there is no indication of the 
storm crossing over land. Due to Matthew’s forecast strength, 
for these beginning tracks, the closest point(s) to the coastline 
are used (along Florida). Since Matthew is forecast to track its 
left side along the coast, projections from The Weather Channel 
graphics are used for storm surge and wind speed due to the fact 
the maximum values occur on the right side of the storm and the 
HIL model requires forecasts for the continental US (The Weather 
Channel, 2016). The track for Matthew varied throughout the 
forecast and ended up not technically making landfall in Florida, 
but in South Carolina and then projected to strike the southern 
North Carolina coast briefly.

During real-time use, this sweep along the coastline must be 
communicated to the model in some way. The forecast IL 4 cor-
responded to a landfall in Florida at higher wind speeds ranging 
from 100 to 113 knots. However, once the meteorological forecast 
does not include a landfall in Florida, Matthew is mostly past the 
Florida coast and tracking northward. At this point the projected 
landfall would be in South Carolina. However, if only the definite 
landfall in South Carolina is used, the resulting forecast is an IL 

2 event. Matthew had weakened some and the actual wind speed 
affecting land is now between 61 and 65 knots. The storm surge 
forecast ranges from 2.74 to 3.35 m as well. If a first hypothetical 
landfall in Florida is used (with second landfall being in South 
Carolina), Matthew would forecast as an IL 4, but if the second 
landfall is in North Carolina (where it is tracking with the first 
landfall in South Carolina) the forecast would be for an IL 3. 
Throughout its forecast, Matthew essentially oscillated between 
an IL 2 and an IL 4 event, as can be seen by a low confidence 
between ILs 3 and 4 of 21 and 42%, respectively, for the addi-
tion of a Florida landfall. With the only officially defined landfall 
being on the South Carolina coast, the confidence is somewhat 
significant (> 60%) at 63%. However, due to the track nature of 
Matthew, and how long it tracked along the coast, it is determined 
best to report the IL at an IL 3. The TCR estimates the damage top 
bound to be $9.5 billion and the lower bound to be $6.4 billion in 
2012 USD (Stewart, 2017). This puts Matthew as a high IL 3 event. 
The use of a “second” hypothetical landfall in North Carolina, 
along with variances in landfalls for track purposes, allowed for 
accurate forecasting of Hurricane Matthew.

DiscUssiOn

Using ANNs to correlate the multiple hazards and how each 
interact together with the infrastructure and locational commu-
nities provides a surrogate model option for estimating damage 
and forecasting in terms of impacts from multihazard events. 
The HIL Model developed by Pilkington and Mahmoud (2016) 
can accurately forecast encroaching tropical cyclone events 
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impacting the US. The real-time use of the HIL Model requires 
meteorological forecasts, whereas the neural network is built with 
known measured parameters from the TCRs. This draws attention 
to potential concerns in using this model for real-time forecasting 
due to meteorological hazard changes and track shifts. The overall 
performance of the HIL Model for real-time use during the 2015 
and 2016 hurricane seasons demonstrates reliability in using the 
HIL model alongside NHC forecasts with additional challenges 
in track shifts highlighted by 2016 Hurricane Matthew.

Hurricane Matthew is the most significant tropical cyclone in 
this study as it illustrated the importance of user interpolation 
when relaying the forecast IL specifically in the event of a storm 
tracking just along the coastline without an explicit landfall. To 
address the challenge in communicating such a track to the HIL 
Model, multiple hypothetical landfalls should be used along its 
track. Additionally, the wind swath will still capture affected 
coastal counties. This approach becomes vital in storm events 
with forecasts that shift more. The biggest catalyst for changing 
IL is the track, as the meteorological parameters for these two 
seasons do not play as big of a role in shifting the IL up or down. 
By preliminary observations from these five storm events, when 
the hazards are altered the confidence in an IL may change, 
however when the track shifts to encompass more land area (and 
therefore population and infrastructure) the IL will increase for 
two out of the two events where this occurs (Hurricane Hermine 
and Hurricane Matthew).

In real-time use, Tropical Storms Ana, Bill, and Colin would be 
referred to as a Tropical Storm IL 0 during forecasting. Hurricane 
Hermine would forecast as a Category 1 IL 2 and Hurricane 
Matthew a Category 1 IL 3 event upon landfall. This now relates 
both the storm intensity, as commonly categorized, and the 
expected outcome, formulated from meteorological hazards and 
the locational properties for which they occur. Both Hurricane 
Hermine and Matthew are excellent examples of storms that 
made landfall at a lower category while actually having a higher 
IL. The real-time use validation of the HIL model’s ability to 
forecast, for both seasons, is indicative of an accurate and highly 
useful model in communicating impact and risk, instead of the 
public maintaining focus on the Saffir-Simpson Hurricane Wind 
Scale. For 80% of the forecast storms, the HIL Model is not only 
accurate but with significant (>60%) confidence in the forecast IL 
days out from landfall. The HIL Model confidence tends toward 
less confident values when it is oscillating between ILs (as shown 
with Hurricane Hermine and Hurricane Matthew) or is about to 
shift in IL. These results also indicate validity in the defined build 
decisions of multiple neural networks, within the HIL Model, of 

3% error or less and only selecting networks with no (or a near 
zero) false-positive rate. As more events are added to the training 
data set after each season, these decisions may be reevaluated.

Future work with the HIL Model would involve continual use 
each hurricane season, while tracking the results to potentially 
develop statistics on how the parameter changes alter the IL 
forecast. This work would require a larger sample size than the 
five storms. The ANN builds will also be continually tracked to 
develop more significant statistics on what events are being mis-
placed, consistency, and how that might be affecting the results. 
Currently the only forecasting challenges occur with Hurricane 
Matthew, and of the misplaced events in the ANNs, only 2014 
Hurricane Arthur had a similar track but is a weaker storm. 
Future considerations to monitor with continued use will be the 
accuracy of forecasting in regions with sparse historical data, such 
as the Northeast. The HIL Model assesses landfall locations as a 
relationship to the closest points within the data set; however, 
regions in the northeast have less densely packed data points with 
most storms tracking up the eastern seaboard, for which there 
are more data showing this track pattern. If the model continues 
to forecast well, hypothetical scenarios could be explored for 
the effects of hazard and locational changes. As meteorological 
forecast models continue to improve further out from landfall, so 
will the HIL Model IL forecast since these relate.
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