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Accurate measurement-data interpretation leads to increased understanding of structural
behavior and enhanced asset-management decision making. In this paper, four data-
interpretation methodologies, residual minimization, traditional Bayesian model updating,
modified Bayesian model updating (with an L -norm-based Gaussian likelihood func-∞

tion), and error-domain model falsification (EDMF), a method that rejects models that
have unlikely differences between predictions and measurements, are compared. In the
modified Bayesian model updating methodology, a correction is used in the likelihood
function to account for the effect of a finite number of measurements on posterior
probability–density functions. The application of these data-interpretation methodolo-
gies for condition assessment and fatigue life prediction is illustrated on a highway
steel–concrete composite bridge having four spans with a total length of 219m. A detailed
3D finite-element plate and beam model of the bridge and weigh-in-motion data are
used to obtain the time–stress response at a fatigue critical location along the bridge
span. The time–stress response, presented as a histogram, is compared to measured
strain responses either to update prior knowledge of model parameters using residual
minimization and Bayesian methodologies or to obtain candidate model instances using
the EDMF methodology. It is concluded that the EDMF and modified Bayesian model
updating methodologies provide robust prediction of fatigue life compared with residual
minimization and traditional Bayesian model updating in the presence of correlated non-
Gaussian uncertainty. EDMF has additional advantages due to ease of understanding
and applicability for practicing engineers, thus enabling incremental asset-management
decision making over long service lives. Finally, parallel implementations of EDMF using
grid sampling have lower computations times than implementations using adaptive
sampling.

Keywords: model-based data interpretation, Bayesian model updating, model falsification, fatigue life evaluation,
full-scale structures

1. INTRODUCTION

In this paper, four data-interpretation methodologies for model updating are compared to eval-
uate their applicability in predicting the remaining fatigue life of a full-scale bridge. The deficit
between demand and supply of civil infrastructure is increasing annually from an estimated US$
1 trillion in 2014 (World Economic Forum, 2014). Performance-based asset management of existing
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infrastructure for decisions such as repair and retrofit for life
extensionhelps reduce this deficit. Replacement of all aging infras-
tructure is expensive, unsustainable, and often not necessary.
Models that are used for design of civil infrastructure are jus-
tifiably conservative. Therefore, most structures possess reserve
capacity and can last well beyond their design working lives
(referred to as service lives in this paper) (Brühwiler, 2012; Smith,
2016). The challenge lies in quantifying this reserve capacity to
enable asset-management decisionmaking such as repair, retrofit,
and extension.

Asset-management decisionmakingmay be improved through
a better understanding of structural behavior. This can be
achieved through monitoring of civil infrastructure enabled by
recent advances in sensing technology (Lynch and Loh, 2006;
Taylor et al., 2016) and availability of affordable computational
tools (Frangopol and Soliman, 2016). However, analytical models
of civil infrastructure systems possess large modeling uncertainty,
including significant systematic errors and unknown correlations
between measurement locations (Jiang and Mahadevan, 2008).
These conditions have lead to recent studies of uncertainties and
development of data-interpretationmethodologies that are robust
to incomplete knowledge (Goulet and Smith, 2013). Moreover,
civil infrastructure are in service for decades and are subjected
to changing load and environmental conditions. Therefore, data-
interpretation methodologies should support engineers for iter-
ative asset-management decisions as new information becomes
available throughout infrastructure lives.

Structural identification involves interpreting measurement
data to update knowledge of parameters governing structural
response in the presence of uncertainties from numerous sources.
Methodologies for structural identification have been studied
extensively (Worden et al., 2007; Beck, 2010; Cross et al., 2013;
Moon and Catbas, 2013). However, every civil structure is
unique due to its form, function, and utility and this requires
explicit consideration of uncertainties in decision making. Most
data-interpretation methodologies assume that the uncertainty
associated with the structural system is defined by a zero-mean
independent Gaussian distribution. However, this assumption is
rarely satisfied for civil infrastructure (Pasquier et al., 2014). Lack
of knowledge of uncertainty related to aspects such as geometry
of structural elements and model bias means that most sources
can only be estimated as bounds. There are other sources of
uncertainties, such as support conditions, that are systematic in
nature and their magnitudes may change the correlation between
uncertainties at measurement locations. Misevaluation of these
uncertainties have led to incorrect updated probability distri-
butions (Goulet and Smith, 2013; Simoen et al., 2013; Pasquier
and Smith, 2015). Such inaccuracy can result in misinformed
asset-management decisions.

The success of data-interpretation methodologies is best mea-
sured on full-scale examples. Brownjohn et al. (2011) have noted
difficulties in transfer of technology from the laboratory to the
field. Laboratories, by design, are intended to reduce uncertainty
and thus they provide little similitude with structural identifi-
cation of real structures. Unfortunately, there are many studies
and theoretical proposals found in the literature (Ben-Haim and

Hemez, 2012) that have not involved testing with full-scale sys-
tems. Yan andKatafygiotis (2015) have presented a novel approach
for Bayesian model updating and highlighted the difficulties in
implementing the procedure in engineering practice. They assert
that the number of parameters to be identified and the large uncer-
tainty associated with complex systems may lead to an unidenti-
fiable system, requiring the need for model reduction techniques.
Kuok and Yuen (2016) have studied modal identification of the
Ting Kau Bridge, which is monitored with more than 230 sensors
of various types. They employ a Bayesian framework for param-
eter estimation and model class selection. Their study shows that
the identification results obtained are influenced by monitoring
conditions such as wind. Behmanesh and Moaveni (2016) have
carried out hierarchical Bayesian model updating of a footbridge
that is subjected to varying temperature conditions. They consider
the effect of parameter uncertainty, parameter variability due to
ambient or environmental conditions and modeling error uncer-
tainty for continuous monitoring. The results from their study
show the importance of including modeling errors for response
prediction. There is a continuing need to evaluate applicability
of model updating methodologies to full-scale systems under
practical conditions.

Detailed numerical models have been used to capture the phys-
ical conditions affecting the response of a full-scale system. Use
of these models in data-interpretation methodologies was recog-
nized to be computationally expensive (Chang et al., 2000). Surro-
gate models have been proposed to improve computation times.
Surrogate models that replaced finite-element models include
polynomial regression (Hemez et al., 2002), multivariate regres-
sion spines (Friedman, 1991), and Kriging estimates (Simpson
et al., 2001) as reviewed by Rutherford et al. (2006). Worden
and Cross (2018) presented the utility of using surrogate models
to predict bridge response under the influence of environmental
conditions such as temperature. Support vector machines have
been used for predicting correlation between modal frequencies
and temperature (Ni et al., 2005), fatigue truck load model (Lu
et al., 2016), and to obtain bridge scour information (Chou and
Pham, 2017). A back propagation neural network model was
used by Ni et al. (2009) to model the correlation between model
frequencies and temperature of the Ting Kau bridge. In this paper,
neural network models have been used to obtain the structural
response for both identification and prediction.

Most research so far has focused on parameter identification
primarily for the purpose of damage detection. Few researchers
have aimed to predict structural response for asset-management
decision making. Li et al. (2016) have predicted von Mises stress
in a test structure. They have employed a Bayesian framework
to arrive at a posterior distribution of model parameters, which
they then utilized to predict von Mises stress at an unmeasured
location. Their study has found that there is a large uncertainty
associated with prediction. Therefore, the forward problem of
prediction requires rigorous treatment of uncertainty associated
with the system. This research exemplifies the need for uncer-
tainty quantification utilizing engineering knowledge to enable
robust prediction of structural response for the purpose of asset-
management decision making.
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Pasquier and Smith (2015) compared a model falsification-
based methodology and Bayesian model updating under various
uncertainty conditions for prediction utilizing a simple beam.
Their results showed that the model falsification methodology
provided accurate prediction in presence of non-Gaussian sources
of uncertainty, model bias, and other sources of systematic uncer-
tainty. Based on this observation, Pasquier et al. (2014) and
Pasquier et al. (2016) utilizedmodel falsification for reserve capac-
ity estimation of a full-scale bridge. However, no research was
found that compares several data-interpretation methodologies
for reserve capacity estimation on a full-scale case study.

This paper compares four data-interpretation methodologies,
residual minimization (Alvin, 1997), traditional Bayesian model
updating (BMU) (Beck and Katafygiotis, 1998), error-domain
model falsification (EDMF) (Goulet and Smith, 2013), and a
modified formulation of BMU. These methodologies are briefly
explained in Section 2. The objective of this comparison is to
verify the applicability of these methodologies for use in prac-
tice for the purpose of reserve capacity estimation. They are
compared based on their ability to provide robust identification
and prediction for a full-scale structure in presence of systematic
uncertainty and incomplete correlation information. Also, these
methodologies have been evaluated based on their compatibility
with introduction of new information, ease of understanding for
use in practice, and computation demand. Using updated infor-
mation, the remaining fatigue life of the bridge is predicted under
two traffic loading scenarios observed using a weigh-in-motion
(WIM) station and one simulated future loading scenario.

2. BACKGROUND—METHODOLOGIES
FOR DATA-INTERPRETATION

In this section, a brief explanation of four data-interpretation
methodologies, residual minimization, traditional BMU, EDMF,
andmodified BMU is presented. Residualminimization is a deter-
ministic methodology, while EDMF and BMU are probabilistic
methodologies that can incorporate multiple sources of uncer-
tainty associated with the system. These methodologies differ
in the assumptions that are made to represent the uncertainty
associated with the system.

2.1. Residual Minimization
In residualminimization, a structuralmodel is calibrated by deter-
mining model parameter values that minimize the error between
model prediction and measurements. Sanayei et al. (2011) pre-
sented a manual model updating example where model predic-
tions are manually compared to measurements and the model
is calibrated based on engineering knowledge to minimize an
objective function. A typical objective function for residual mini-
mization is shown in equation (1):

θ̂ = argmin
θ

ny∑
i=1

(g(xi, θ) − ŷi)2. (1)

In equation (1), θ̂ is the optimummodel parameter set obtained
using measurements, (g(xi, θ) − ŷi) is the residual obtained

between the model response, g(xi, θ), and measurement, ŷi, at
measurement location i. Residual minimization does not account
for the inherent model bias in civil infrastructure due to appli-
cation of safe design models. It also does not take into account
uncertainties arising from systematic or environmental sources
and the correlation between uncertainties. The simplicity of the
methodology makes it popular for use in practice, although the
identification results obtained are not always accurate (Beven,
2000).

2.2. Traditional Bayesian Model Updating
Bayesian model updating is a popular methodology for structural
identification. In this methodology, prior knowledge of model
parameters is updated using information obtained through mon-
itoring of a structure. If g(θ) is the model of a structure with
parameters θ, then the prior probability distribution function
(PDF) of the model parameters, P(θ) is updated as shown in
equation (2),

P(θ|y) =
L(y|θ) · P(θ)

L(y) (2)

whereP(θ|y) is the posterior or updated PDFofmodel parameters,
L(y|θ) is the likelihood function, and L(y) is the normalizing
constant. The likelihood function, L(y|θ), indicates the plausibility
of observing data y for a given realization of θ.

In traditional BMU methodology (Beck and Katafygiotis,
1998), a L2-norm-based Gaussian likelihood function, as shown
in equation (3), is used to update prior information of model
parameters:

L(y|θ) = 2π−nm/2|Σ|−1/2exp

[(
−1
2
ε0 (θ) − Uc

)T

×Σ−1
(

−1
2
ε0 (θ) − Uc

)]
. (3)

In equation (3), Σ is the correlation matrix defined by the
correlation coefficients between measurement locations, ε0(θ) is
a vector of residuals between observation and model response,
and Uc is a vector containing the mean of uncertainty at each
measurement location.

In traditional BMU, the uncertainty associated with the system
is assumed to have an independent zero-mean Gaussian distri-
bution implying model bias and correlations are not considered.
A prominent approach to account for model bias is to model it
as a Gaussian process with variance σ2 (Kennedy and O’Hagan,
2001), which is assigned a non-informative prior andwhose poste-
rior distribution is identified along with other model parameters.
Brynjarsdóttir and O’Hagan (2014) used an informed prior for σ2

to include available information about the model error. Although
these approaches provided reliable estimates of model parameters
in a few cases, they failed to provide reliable solutions for extrap-
olation (prediction at an unmeasured location). In the context
of civil infrastructure, some researchers have considered model-
ing uncertainty for updating response prediction (Papadimitriou
et al., 2001), fatigue reliability assessment (Kwon et al., 2010), and
damage assessment (Simoen et al., 2015). In the above studies,
modeling uncertainty at all measurement locations is assumed to
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be the same, which is rarely the case in the presence of systematic
bias. Also, Bayesian methodology may provide accurate identifi-
cation of parameters at measured locations but the information
obtained from measurements cannot be extrapolated to predict
structural responses at other locations in the presence of system-
atic bias (Behmanesh et al., 2015; Pasquier and Smith, 2015).

2.3. Error-Domain Model Falsification
Another methodology for model updating is EDMF (Goulet and
Smith, 2013). In this methodology, information from measure-
ments is used to falsify parameter values, thereby obtaining a
candidate set from an initial set of possible parameter values. This
methodology is based on the assertion by Popper (1959) thatmod-
els cannot be validated by data; they can only be falsified. Conser-
vative and simplified models used to design civil infrastructure
possess model bias, model fidelity uncertainty, and uncertainties
from simplification of loading conditions, geometrical proper-
ties, material properties, and boundary conditions. Most of these
uncertainties can be estimated only using engineering heuristics
and cannot be described using a zero-meanGaussian distribution.
In EDMF, engineering knowledge is utilized to quantify uncer-
tainties from various sources and combined together along with
measurement uncertainty to obtain a robust falsification criterion.

Consider a structure with modeling and measurement uncer-
tainty, at a measurement location i, ϵmod,i, and ϵmeas,i, respectively.
If a structure is represented by a physics-based model, g(θ), then
the true response of the structure at a measurement location, Qi,
is given by,

Qi = gi
(
θ∗)

+ ϵmod,i (4)

where gi(θ*) is the model response at measurement location i for
the real values of the model parameters, θ* and ϵmod,i are the
modeling uncertainty at the measurement location. Similarly, if
the structure is monitored, then the true response of the structure
at a measurement location, Qi, is given by,

Qi = yi + ϵmeas,i (5)

where yi is themeasured response of the structure and ϵmeas,i is the
measurement uncertainty at the measurement location. Equating
equations (4) and (5), the following relationship between model
response and measurement can be obtained,

gi
(
θ∗)

− yi = ϵmeas,i − ϵmod,i (6)

where the residual betweenmodel response andmeasurement at a
sensor location is equal to the combined model and measurement
uncertainty. In design decision making, an important consider-
ation is to first fix a target reliability for design. Therefore, in
using EDMF for asset-management decision making, first a target
reliability of identification, ϕ∈ {0,1}, is established (Goulet and
Smith, 2013). Using the target reliability for identification, the
criteria for falsification in EDMF, thresholds Thigh,i and Tlow,i, are
computed using equation (7):

ϕ1/m =
∫ Thigh,i

Tlow,i

fUc,i (ϵc,i) dϵc,i. (7)

In equation (7), fUc,i(ϵc,i) is the combined uncertainty PDF at
measurement location i and ϕ is the target reliability of identifica-
tion. The combined uncertainty, fUc,i(ϵc,i), is calculated by com-
bining uncertainty from various sources such as geometric sim-
plifications, modeling assumptions, and sensor resolutions using
Monte Carlo sampling. If the target reliability of identification, ϕ,
is set to 0.95, then using Monte Carlo sampling, 1 million samples
from the combined uncertainty distribution are generated. From
these samples, the smallest range that contains 95th percentile of
the samples is calculated. The bounds of this range correspond to
the threshold bounds, Thigh,i and Tlow,i. In equation (7), the term
1/m is the Šidák correction (Šidák, 1967) that accounts for a finite
number of measurementsm. For example, using Šidák correction,
if the desired target reliability of identification is 0.95 using two
measurements, then the thresholds bounds are computed for
97.5th percentile (0.951/2) of the generated samples. Once, the
bounds, Thigh,i and Tlow,i, are computed, the user generates model
responses for various instances of model parameters, θ. If the
residual between model prediction and measurement does not lie
within the thresholds then themodel instance is falsified as shown
in equation (8):

Tlow,i ≤ gi (θ) − yi ≤ Thigh,i ∀i ∈ {1...nm}. (8)

Using equation (8), if the response of a model instance does
not lie within the established thresholds for any measurement
location, then that model instance is falsified (Goulet et al., 2010,
2013b; Goulet and Smith, 2013). The remaining model instances
from the initial set, whose responses for allmeasurement locations
lie within the thresholds are accepted to form the candidatemodel
set. These candidate models are then utilized to carry out model
prediction with reduced uncertainty (Pasquier and Smith, 2015).

The EDMF methodology has been developed and applied to
fourteen full-scale systems since 1998 (Smith, 2016). Recent appli-
cations include model identification (Goulet et al., 2013b), leak
detection (Goulet et al., 2013a; Moser et al., 2015), wind simula-
tion (Vernay et al., 2015), prediction (Pasquier and Smith, 2016),
fatigue life evaluation (Pasquier et al., 2014, 2016), and measure-
ment system design (Goulet and Smith, 2012a,b; Papadopoulou
et al., 2016).

2.4. Modified Bayesian Model Updating
The other methodology considered for comparison in this paper
is the modified BMU. In this methodology, prior knowledge of
model parameters is updated using measurements as shown in
equation (2). However, a box-car-shaped L∞-norm-based Gaus-
sian likelihood function is used to include information gained
through measurements. A generalized Gaussian distribution is
defined as,

f (x, k) =
κ1−1/κ

2σκΓ (1/κ)
e
κ·

[
|x−x0|

σκ

]κ

(9)

where f (x, κ) is the generalized Gaussian PDF of random vari-
able x, based on Lκ-norm with mean, x0, and SD, σκ. For κ→∞,
f (x, κ) tends to a box-car shape. Parameters, x0 and σκ, of the
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likelihood function are determined using threshold bounds from
equation (7) as shown in equations (10) and (11):

x0 =
Thigh,i − Tlow,i

2
(10)

σκ = Thigh,i − x0. (11)

The L∞-norm-based Gaussian likelihood function is approx-
imated using κ= 200. If the residuals between model response
and measurements at all locations lie within the thresholds, then
that model instance is attributed a higher likelihood of occur-
rence, while model instances that would be falsified in EDMF are
attributed a low likelihood. The application of modified BMUwas
compared with traditional BMU and EDMF, using an illustrative
example, by Pai and Smith (2017).

In this paper, these fourmethodologies are compared consider-
ing a range of uncertainty sources and computational demands of
simulating the behavior of a full-scale structure. Results obtained
from model updating are utilized for fatigue life evaluation of a
full-scale bridge under two traffic loading scenarios.

3. CASE STUDY

3.1. Structure Description
The case considered here is inspired from a steel–concrete com-
posite highway twin bridge in the town of Echandens, Switzerland,
called the Venoge bridge. The bridge has four spans of length 52,
60.4, 55, and 52m, and a total length of 219.4m. In 1995, the
bridge was extended from 2× 2 lanes to 2× 3 lanes by adding an
additional lane in each traffic direction. The bridge is part of the
European route E62 and on average, 7,008 heavy vehicles cross the
bridge weekly in one direction with an average weight of 22 tons.
According to Eurocode, the term heavy vehicles refers to vehicles
with weight greater than 10 tons (Eurocode, 1991). Most of these
heavy vehicles drive on the slow lane on the extended part of the
bridge as shown in Figure 1.

Each half of the twin bridge is composed of a concrete deck
supported over four steel girders. The extended lane and the
old bridge in one traffic direction are supported by two steel
girders each. The concrete bridge deck and steel girders under the
extended lane are modeled using SHELL182 elements in ANSYS.
The steel girders supporting the old bridge are modeled using
BEAM188 elements. The finite-element model is used for a linear
elastic analysis in which the deck is assumed to be homogeneous
and un-cracked on supports under fatigue loads. The bridge has

New bridge -extensionidgegegeNeNeNe nsnsioioioiotetete - - -exexexexgegegegeididididgebrbrbrNew w w NeNeNeNe te nnionsnsexexididbrbr  -ex ioididgegegegeNeNeNeNe ididge tetete - - -exexexexgegegegeNeNeNeNew w ioioionsnsiobrbrbrNew w w w tete nniotensnsexexbrbrididbrbrbr iobrbr ns nididge te -exge exteteexgeNe ioidid

© Sai Sai G.S G.S. Pa. Pai (Ii (IMAC-MAC-EPFLEPFL))

FIGURE 1 | Venoge bridge (Credit: IMAC, EPFL).

four spans as shown schematically in Figure 2. The bridge is
monitored using ten strain gages, installed in 1995, located at two
sections along the span as shown in the figure. These sensors
are located on the interior girder supporting the extended lane
of the bridge. Supports Sup 0, Sup 1, and Sup 2, supporting the
extended lane of the bridge are modeled using spring elements
with parametrized stiffness. Sup 3, Sup 4, and supports under the
old bridge are modeled using rigid spring elements.

Sensors, A1 to A4 and B1 to B4, are used for updating param-
eters of the model. Using this updated knowledge, the response
at sensor locations, A5 and B5, is predicted for validation of the
results obtained using the data-interpretationmethodologies. The
updated model parameters are then used to predict the remaining
fatigue life of a cover plate detail on the bridge. This cover plate
detail is located near sensors A1 and A3, shown in Figure 2. In
this study, the minimum remaining fatigue life of the bridge for
this critical detail is evaluated using in-service traffic and strain
measurement data. The number of sensors and their location on
the bridge is sub-optimal. The measurement system was installed
in 1995 for another objective than the one being studied in this
paper.

3.2. Measurement and Traffic Load Data
Figure 2 shows the position of the sensors on the inner girder
of the extended section of the bridge. Data from eight sensors,
A1 to A4 and B1 to B4, are used for updating knowledge of the
bridge behavior. The position of sensors B1 and B3 on the bridge
is shown in Figure 3. Four sensors are located close to the location
of the critical detail and four other sensors are located at the end of
the first span, 1m from the support, Sup 1. Data from these eight
sensors, recorded fromNovember 18 to 24, 2013, is used for iden-
tification of the model parameters. However, as the data available
is a time-history, it has to be processed to acquire a response that
can be utilized for data-interpretation. A comparable structural
response is the equivalent stress range. The equivalent stress range
calculated using in-service strain measurements is considered as
measured response at sensor locations, yi. The computation of
equivalent stress range is explained in Section 3.3.

The traffic load on the bridge from November 18 to 24, 2013,
in the direction Lausanne–Geneva, is obtained from a weigh-
in-motion (WIM) station located only 1 km from the bridge, at
Denges, without any exits in between. The WIM station provides
traffic load in terms of time of passage (T), vehicle speed (V),
number of axles (N), total length (TL), gross total weight (GTW),
axle weight (AW), and distance between axles (AD). Using this
traffic data, a train of axle loads is generated for the 1-week
duration from November 18 to November 24, 2013. This axle
train is used as a moving point load on the bridge to obtain the
equivalent stress range at each sensor location.

3.3. Computation of Equivalent Stress
Range and Remaining Fatigue Life
Each sensor shown inFigure 2provides a time-history of strain for
vehicles passing over the bridge. This time-history of strain is used
to compute the stress range histogram using the rainflow algo-
rithm (Matsuishi and Endo, 1968). In the stress range histogram,
stress range values below 2MPa are not considered due to their
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FIGURE 2 | Sensor locations on the Venoge bridge.

FIGURE 3 | Sensors B1 and B3 on the Venoge bridge (Credit: IMAC, EPFL).

low effect on fatigue damage of the bridge. The equivalent stress
range, ∆σe (Dowling, 1971), is computed using equation (12),

∆σe =
[∑ ni∆σm

i∑
ni

]1/m
(12)

where ni is the number of cycles that takes place at stress range
level ∆σi and m is the slope coefficient of the S–N curve. The
equivalent stress range is calculated using a single slope S–N curve,
which is a conservative assumption.

Similarly, the equivalent stress range is computed for each
model instance using the finite-element model and traffic load
on the bridge. The finite-element model is used to generate an
influence line for stress at each sensor location for a given set of
parameter values. The train of axle loads is passed over influence
line of each sensor and processed using the rainflow algorithm
to obtain stress range histograms. The equivalent stress range
is computed from these histograms using equation (12) for all
sensors. This step is repeated to obtain the equivalent stress range
at each sensor location for various model parameter values.

The updated model using traffic and strain data is used to
predict the remaining fatigue life of a cover plate detail located
close to sensors, A1 and A3, as shown in Figure 2. The remaining

fatigue life of the cover plate detail is computed using the damage
index. The damage index, Dperiod, is calculated using Miners rule
(Miner, 1945), as shown in equation (13):

Dperiod =
[∑ ni

C · ∆σ−m
i

]
(13)

where C is a constant depending on the category of the critical
detail, m is the slope coefficient, and ni is the number of cycles
that takes place at stress range level ∆σi. The cover plate welded
attachment close to sensor A1 and A3 is classified as FAT36
according to SIA263/1 (2013). Based on the detail classification,
the characteristic value for the constant C is utilized in computing
the damage index. The remaining fatigue life of the bridge, RFL, is
calculated using equation (14):

RFL =
Ryear

Dperiod
(14)

where Ryear is the fraction of traffic simulation period over a year.
Thus, if traffic is simulated over a 1-week period, then Ryear is
taken as 1/52.

3.4. Model Class and Sources of
Uncertainty
The bridge response, i.e., the equivalent stress range at the sensor
locations, is affected by several factors, which are not known
completely. In the finite-element model, unknown parameters are
quantified as random variables with a uniform distribution. Not
all parameters of the finite-element model affect the structural
response significantly. The relative importance of these parame-
ters to structural response is estimated using a sensitivity analysis.
Equivalent stress range at each sensor location is calculated for
numerous values of model parameters. The dataset containing the
model response and parameters is used to fit a linear regression
model for each sensor location. The parameters of the regression
model are indicative of the importance of the structural parame-
ters to response at each sensor location, which is used to calculate
the relative importance. A list of these parameters is shown in
Table 1 along with their relative importance to the structural
response of the bridge at various sensor locations.

The parameters that significantly affect the structural response
based on their relative importance are Ec, KdeckX. These param-
eters constitute the parameters of the model class and knowl-
edge regarding these parameters will be updated using data from
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TABLE 1 | Parametric uncertainty.

Parameter Range Relative
importance (%)

Elastic modulus of steel, 190–210 2.44
Es (GPa)
Elastic modulus of concrete, 20–40 21.07
Ec (GPa)
Connection between concrete deck and 3–7 35.68
steel girders, longitudinally, KdeckX (log N/mm)
Connection between concrete deck and 2–6 0.67
steel girders, transversally, KdeckZ (log N/mm)
Vertical stiffness of Sup 0, 3–7 10.59
Vy0 (log N/mm)
Horizontal stiffness of Sup 0, 3–7 1.38
Vx0 (log N/mm)
Rotational stiffness of Sup 0, 7–11 14.85
Rz0 (log N/mm/rad)
Vertical stiffness of Sup 1, 2–8 2.64
Vy1 (log N/mm)
Horizontal stiffness of Sup 1, 2–8 10.67
Vx1 (log N/mm)

TABLE 2 | Secondary parametric uncertainty, surrogate modeling uncertainty, and
model bias at each sensor location.

Sensor Secondary-parameter Surrogate modeling Model
uncertainty (%) uncertainty (%) bias (%)

Min Max Min Max Min Max

A1 −2.1 5.4 −1.5 8.7 −14.0 1.0
A2 −2.7 5.7 −2.3 11.5 −14.0 1.0
A3 −2.7 5.8 −1.0 11.7 −14.0 1.0
A4 −2.9 6.0 −1.8 14.9 −14.0 1.0
B1 −6.0 3.2 −2.2 7.3 −19.0 1.0
B2 −4.0 2.2 −1.1 5.1 −19.0 1.0
B3 −5.8 3.1 −1.5 6.8 −19.0 1.0
B4 −3.8 1.7 −4.3 6.5 −19.0 1.0

All distributions are uniform.

strain gages and WIM station. The parameters not considered
in the model class for the identification are called as secondary
parameters. They contribute to the secondary parameter uncer-
tainty at each sensor location, which is estimated using the finite-
element model. The secondary parameter uncertainty at each
sensor location is shown in Table 2.

Probabilistic data-interpretation methodologies, such as those
discussed in Section 2, require evaluation of a structural model
for various realizations of model parameters, which are described
as random variables. In this paper, a finite-element model of the
bridge is used as the structural model with two parameters, Ec,
KdeckX, comprising the model class to be identified. Each realiza-
tion of the model parameters is a set of values for Ec, KdeckX for
which the bridge response is evaluated. Using the finite-element
model and a realization of the model parameters, an influence
line for stress at each sensor location is obtained. This influence
line is then used to obtain the equivalent stress range at each
sensor location. The computation of influence line for all sensors
for one set of model parameters takes around 4 h and 30min,
using an Intel(R) Xeon(R) CPU E5-2670 v3 @2.30GHz processor.
The long computation does not allow for efficient sampling of

TABLE 3 | Other sources of uncertainty.

Source Distribution (%)

Influence line calculation U(−1, 1)
Truck position U(0, 1)
Measurement uncertainty N(0, 0.1)

the parameter space to obtain optimum results. Therefore, to
reduce the computation cost, surrogate models are developed to
predict the equivalent stress range at each sensor location and the
remaining fatigue life of the critical detail. The equivalent stress
range predicted using the surrogate models for various parameter
values is taken to be the model response, gi(θ), in model updating.

120 parameter values of Ec, KdeckX are generated using Latin
hypercube sampling and input into the finite-element model to
obtain the equivalent stress range at sensor locations and remain-
ing fatigue life of the critical detail. The parameter values and the
corresponding structural response obtained are used as a data set
to train the surrogate models. Here, a neural network is used to
map the function between the inputs and outputs. Neural net-
work models (Farrar andWorden, 2012) have multiple layers that
map the inputs to the outputs using linear or non-linear transfer
functions. The neural network used here is a feedforward neural
net with 4 hidden layers, trained using the Levenberg–Marquardt
algorithm (Beale et al., 2015). The neural network models were
then cross-validated with 15% of the data points, which were not
used for training the net. The cross-validation results are used
to obtain the surrogate modeling uncertainty. As the number of
data points used for cross-validation is small, the residual between
surrogate and finite-element model prediction is assumed to have
a uniform distribution. The surrogate modeling uncertainty esti-
mated for each sensor location using cross-validation is shown
in Table 2. The neural network models developed are used in
the subsequent sections for prediction of equivalent stress range
at sensor locations and remaining fatigue life of the bridge. The
model bias at each sensor location is also shown in Table 2.
The model bias, estimated using heuristics, is assumed to be
higher at sensor locations closer to the supports than for those at
mid-span.

Structural response of the bridge under in-service traffic load-
ing is also affected by additional uncertainty sources such asmodel
bias, influence line calculation, transversal position of vehicles
on the bridge, measurement uncertainty associated with strain
gages, and WIM station. Most of these uncertainty sources can-
not be computed numerically and are estimated using engineer-
ing knowledge. The uncertainty distribution assumed for these
uncertainty sources is provided in Table 3. The uncertainty from
these sources is assumed to be the same for all measurement
locations.

The uncertainty from these sources are combined together
using Monte Carlo sampling to determine the combined uncer-
tainty PDF. The falsification thresholds for EDMF and the likeli-
hood functions for traditional andmodified BMU are determined
based on the combined uncertainty PDF using equations (7),
(3), and (9), respectively. Equivalent stress ranges at measure-
ment locations obtained using strain gages and the falsification
thresholds obtained using equation (7) are shown in Table 4.
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TABLE 4 | Equivalent stress ranges at measurement locations and falsification
thresholds for EDMF.

Sensor Measurement (MPa) Thigh (MPa) Tlow (MPa)

A1 10.83 0.19 −2.84
A2 10.86 0.24 −3.14
A3 10.57 0.10 −3.00
A4 10.31 0.15 −3.34
B1 4.95 0.28 −1.36
B2 4.98 0.15 −1.15
B3 4.62 0.22 −1.27
B4 5.06 0.28 −1.10

3.5. Structural Identification
In this section, the updated distribution of model parame-
ters obtained using the data-interpretation methodologies is
presented.

For residual minimization, samples from the prior distribution
of model parameters, Ec and KdeckX are generated through Monte
Carlo sampling. For each parameter set, using the surrogate mod-
els developed, the equivalent stress range at each sensor location is
predicted and the parameter set that provides minimum value for
objective function provided in equation (1) is considered as the
optimum value.

For EDMF, an initial set of model parameters is generated as a
grid. Eachmodel instance is input into the surrogatemodels devel-
oped for equivalent stress range, explained in Section 3.4. Using
these surrogate models, the equivalent stress range at each mea-
surement location is obtained and compared with the equivalent
stress range obtained using measurement. If the residual between
model response and measurement for each location lies within
the threshold bounds, Thigh,i and Tlow,i, computed using equation
(7) then the model instance is accepted. All such accepted model
instances form the candidate model set, while the remaining
model instances are falsified.

In modified and traditional BMU, the posterior PDF is sam-
pled using Markov chain Monte Carlo (MCMC) sampling. The
difference between the two Bayesian methodologies is the like-
lihood function employed. Traditional BMU employs a zero-
mean Gaussian likelihood function, as described in equation (3),
while modified BMU utilizes a L∞-norm-based Gaussian likeli-
hood function, as described in equation (9), to update the model
parameters.

The candidate model set obtained using EDMF and sam-
ples of the joint posterior PDF of primary parameters obtained
using modified BMU and traditional BMU are shown in
Figure 4.

In Figure 4A, each candidate model instance obtained using
EDMF is assumed to have an equal probability of occurrence.
Figure 4B shows the samples of joint posterior PDF obtained
using modified BMU. The sampled region is similar to the can-
didate model set region obtained using EDMF. This is because
of the L∞-norm-based Gaussian likelihood function used in
updating the probability distribution of model parameters. The
modified likelihood function has a box-car shape that attributes
a constant probability, p, to model instances whose residual when
compared to measurements at each sensor location lies within the
threshold bounds, Thigh,i and Tlow,i computed using equation (7).

A B C

FIGURE 4 | Posterior PDF of primary model parameters as obtained using (A)
EDMF, (B) modified BMU, and (C) traditional BMU.

In EDMF, these model instances form the candidate model set.
Model instances whose residuals lie outside the threshold bounds
for any measurement location are attributed a probability close to
zero, which is analogous to falsified model instances in EDMF.
Therefore, EDMF and modified BMU provide a similar joint
posterior PDF.

Traditional BMU, which assumes a zero-mean Gaussian distri-
bution for the uncertainty associated with the system, provides
an informed posterior PDF. The maximum likelihood estimate
obtained using traditional BMU for the parametersEc andKdeckX is
30GPa and 5.5 logN/mm, respectively. Samples of the joint poste-
rior PDF obtained using traditional BMU is shown in Figure 4C.
Using residual minimization, the updated parameter values of Ec
and KdeckX obtained are, 20GPa and 4 log N/mm.

In subsequent sections, the updatedmodel parameters are used
to predict the equivalent stress range at two sensor locations
and the remaining fatigue life of the bridge at a critical detail.
The remaining fatigue life of the bridge is predicted under two
scenarios of observed traffic loading, to enable informed deci-
sion making regarding intervention for assessment, retrofit, and
replacement.

3.6. Equivalent Stress Range Prediction
In this section, the updatedmodel parameters from Section 3.5 are
used to predict the equivalent stress range at two sensor locations.
The first location is of sensor A5, which is located on the upper
flange of the bridge girder as shown in Figure 2. The second
location is of sensor B5, which is located on the upper flange of the
bridge girder as shown in Figure 2. Measurements from sensors
A5 and B5 were not used in model updating. The comparison
between equivalent stress range obtained using measurements
and predicted using the updated model parameters is shown in
Figure 5.

In Figure 5A, the equivalent stress range predicted for sen-
sor A5 is shown. The equivalent stress range obtained using
strain data from sensor A5 is 2.5MPa. The equivalent stress
range predicted using the prior distribution of model param-
eters ranges from 0.1 to 24MPa. Using updated knowledge of
bridge behavior as obtained using the three probabilistic data-
interpretation methodologies, the prediction range is reduced.
Utilizing the updated model parameters obtained using residual
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A B

FIGURE 5 | Equivalent stress range predicted using updated model parameters at (A) sensor location A5 and (B) sensor location B5.

minimization, the equivalent stress range predicted is 14.6MPa,
which is biased from the value obtained using measurements.
The 95th percentile bounds of equivalent stress range predicted
using traditional BMU are 0.1 and 10.1MPa. Modified BMU and
EDMF provide wider and similar bounds ranging from 0.2 to
22MPa. In this case, all three probabilistic methodologies provide
robust prediction of the equivalent stress range at the sensor
location as the predicted bounds include the value obtained using
measurements.

Figure 5B shows the equivalent stress predicted for sen-
sor B5. The results obtained using the four data-interpretation
methodologies again show a similar trend as observed for
sensor A5. Residual minimization provides biased prediction
of the equivalent stress range at location of sensor B5. The
three probabilistic methodologies provide reduced prediction
ranges compared with the initial model set prediction. More-
over, the prediction bounds obtained using all three probabilistic
methodologies include the equivalent stress range obtained using
measurements.

Structural identification for the purpose of damage detection
is limited to validation of structural response under uncertainty
conditions that are similar to those used for model updating. In
this scenario, all three probabilistic methodologies provide robust
identification and prediction as shown in Figure 5. In the next
section, structural response prediction under uncertainty condi-
tions that are different from that present during identification is
presented.

3.7. Remaining Fatigue Life Prediction
Most studies involving structural identification are carried out
with the objective of model updating for damage detection. The
results obtained are generally validated through prediction as
demonstrated in Section 3.6. However, in such a scenario, the
uncertainty associated with identification and prediction are sim-
ilar. Under similar uncertainty conditions all three probabilistic
data-interpretation methodologies provide robust predictions, as
shown in Figure 5. For the purpose of asset-management decision
making, the structural response to be predicted is generally not the
response used for identification.Moreover, the loading conditions
under which structural response needs to be predicted is likely to
be different from those used for identification. Under these con-
ditions, the uncertainties associated with modeling are different
during identification and prediction.

FIGURE 6 | Comparison between identification and prediction uncertainty. In
traditional BMU, the bias in uncertainty is assumed to be zero.

TABLE 5 | Sources of relative prediction uncertainty.

Source Min (%) Max (%)

Influence line calculation −1 1
Truck position 0 1
Model bias −1 14
Surrogate model uncertainty −29.5 4.5
Secondary parameter uncertainty −2.7 5.5

All uncertainty sources are assumed to have a uniform distribution.

In this section, the updated knowledge of bridge response is
used to predict the fatigue life of the cover plate detail, which
is located close to sensors A1 and A3, shown in Figure 2. The
fatigue life prediction is carried out under three loading scenarios.
In the first case, the remaining fatigue life of the detail is pre-
dicted under the loading duration utilized for identification, from
November 18 to 24, 2013 (period 1). In the second case, traffic
loading observed during another 1-week period in 2013 (period
2) is utilized for predicting the remaining fatigue life. In the third
scenario, traffic loading is simulated for a week assuming 2%
annual increase in traffic weight over the next 20 years. The rela-
tive combined uncertainty associated with identification of model
parameters and prediction of remaining fatigue life is shown in
Figure 6.

The identification uncertainty, shown in Figure 6, is obtained
through combination of uncertainty sources specified in Tables 2
and 3. The prediction uncertainty, shown in Figure 6, is obtained
through a combination of all modeling uncertainty sources spec-
ified in Table 5.
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FIGURE 7 | Remaining fatigue life predicted using updated model parameters obtained using the four data-interpretation methodologies for traffic during (A) period 1
and (B) period 2.

Model bias and surrogate modeling uncertainty are different
for identification and prediction. The two primary parameters,
Ec and KdeckX, included in the model class for identification are
important in developing the surrogate model for equivalent stress
range and remaining fatigue life. However, their relationship to
the structural responses is different as equivalent stress range and
remaining fatigue life are inversely related to each other. The
surrogate model developed using neural networks for remain-
ing fatigue life is biased. Along with the model bias, this leads
to a biased combined uncertainty PDF for prediction. This dif-
ference is taken into account by adding the prediction uncer-
tainty to the remaining fatigue life predicted using the surrogate
models.

The Venoge bridge built in 1995 was designed for a service
life of 100 years (Eurocode, 1990). As the assessment here is
based on traffic data from 2013, the remaining fatigue life of the
bridge based on design values is 82 years in 2013. The remain-
ing fatigue life of the bridge predicted using the updated model
parameters for traffic loading during period 1 and 2 are shown in
Figures 7A,B, respectively.

In Figure 7, the remaining fatigue life predicted using updated
model parameters obtained through the three probabilistic
methodologies and residual minimization is shown. These results
are compared with the remaining fatigue life obtained using strain
measurements from sensor A1. In Figures 7A,B, the remaining
fatigue life predicted under traffic loading from period 1 and
period 2, are shown, respectively. The prediction uncertainty
associated with each case is different as new surrogate models are
developed for the respective traffic load duration.

In Figure 7A, the remaining fatigue life obtained using mea-
surements fromperiod 1 is 261 years, while theminimum remain-
ing fatigue life predicted using the prior distribution of model
parameters is 92 years. The remaining fatigue life predicted using
the updated model parameters obtained using residual minimiza-
tion is 168 years, which is biased from the value obtained through
measurements by 36%.Using traditional BMU, the 95th percentile
bounds of predicted remaining fatigue life are 101 and 213 years,
which does not contain the remaining fatigue life obtained using
measurements. Bias between the MLE of the predicted distribu-
tion and the value obtained through measurements is 40%. The
bounds of predicted remaining fatigue life obtained using EDMF
and modified BMU includes the value calculated using measure-
ments. Using EDMFandmodified BMU, theminimum remaining

fatigue life predicted using updated model parameters is 127 and
126 years, respectively. Therefore, using measurement data, the
minimum remaining fatigue life prediction was improved by 54%
compared to the expected service life of 82 years in 2013.

In Figure 7B, the remaining fatigue life obtained using mea-
surements from sensor A1 for traffic loading during period
2, is 302 years. The minimum remaining fatigue life predicted
using the prior distribution of model parameters is 99 years. The
remaining fatigue life predicted using the updated model param-
eters obtained using residual minimization is 183 years, which is
biased from the value obtained through measurements by 39%.
The MLE of remaining fatigue life predicted using traditional
BMU is biased from the value obtained through measurement
by 45%. Moreover, the 95th percentile bounds on prediction
obtained using traditional BMUdo not include the value obtained
using measurements. Using EDMF and modified BMU, the min-
imum remaining fatigue life predicted using updated model
parameters is increased to 136 and 135 years, respectively. There-
fore, usingmeasurement data, theminimumremaining fatigue life
predictionwas improved by 65% compared to the expected service
life of 82 years in 2013.

Traditional BMU provides a biased mean value from the value
obtained through measurements for both scenarios. Moreover,
the 95th percentile bounds obtained in both cases does not
include the value obtained through measurement. Even resid-
ual minimization provides biased values for both scenarios con-
sidered. EDMF and modified BMU provide robust prediction
bounds under both traffic loading scenarios. They help improve
the minimum remaining fatigue life prediction by 54 and 65%
in the two scenarios considered. Also, EDMF and modified
BMU provide similar results, an observation previously made in
Figures 4 and 5.

The objective of measurement data-interpretation is to pre-
dict structural behavior for future loading scenarios to decide
on repair, replace, and retrofit actions. Due to recent trends in
transportation, it is likely that freight traffic on highways will
increase in future. Therefore, a 2% annual increase in weight
of vehicles is assumed over a 20-year period to simulate traffic
loading for a 1-week period in the year 2033. Using this traffic
loading, the remaining fatigue life of the bridge is predicted as
shown in Figure 8.

InFigure 8, theminimum remaining fatigue life of the bridge in
2033, predicted using the prior distribution of model parameters
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FIGURE 8 | Remaining fatigue life predicted using updated model parameters
obtained using the four data-interpretation methodologies for a future traffic
loading scenario.

is 38 years. The remaining fatigue life predicted using the updated
model parameters obtained using residual minimization, tradi-
tional BMU (lower 95th percentile bound), EDMF, and modified
BMU are 70, 40, 52, and 53 years, respectively. However, as noted
in Figure 7, traditional BMU and residual minimization provided
biased results from the value obtained using measurements, while
EDMF and modified BMU provided robust and accurate bounds.
Therefore, the lower bound of remaining fatigue life obtained
using EDMF and modified BMU is a robust metric for future
decision making. Using measurements, the minimum fatigue life
increased from 38 to 52 years, a 37% improvement. Moreover,
based on initial design, not accounting for increased loading, the
remaining fatigue life of the bridge in 2033 is 62 years, which
is greater than the value predicted after model updating. This
implies that the bridge if subjected to increased traffic loading will
require repair action sooner than expected during initial design,
which can be improved through data-interpretation. In the next
section, the applicability of these data-interpretation methodolo-
gies in practice along with the computation time required will be
discussed.

3.8. Applicability in Practice and
Computation Time
Application of data-interpretation in practice requires a method-
ology to satisfy four criteria. First, it should provide accurate
identification of model parameters and second, accurate pre-
diction of structural response for reserve capacity estimation.
Third, it should be able to incorporate engineering knowledge
within the framework. Fourth, the methodology should be easy
to understand and use, to enable iterative asset-management
decision making.

In Sections 3.5, 6, and 3.7, results obtained using the three
probabilistic data-interpretationmethodologies and residualmin-
imization are compared. The objective of the comparison in these
sections was to elucidate the accuracy of these methodologies to
uncertainty conditions in a real environment and the utility of
their solutions in practice.

From the perspective of incorporating engineering knowl-
edge into the data-interpretation framework, traditional BMU
utilizes a zero-mean Gaussian likelihood function for model
updating. Information about model bias is not incorporated

FIGURE 9 | Computation time for identification using four combinations of the
probabilistic data-interpretation methodologies. The hardware used for
computation is described in Section 3.4.

in traditional BMU. Moreover, traditional BMU involves the
assumption that uncertainty between measurement locations is
independent, which is not compatible within a closed system such
as civil infrastructure. Residual minimization also cannot include
non-parametrized model bias. In traditional BMU and residual
minimization, as new sources of uncertainty are identified over
the service life of a structure, they can be incorporated into the
framework explicitly only as parameters to be identified. Inverse
problems such as structural identification have an exponential “O”
complexity with respect to number of parameters to be identified.
Therefore, increase in the number of parameters to be identified
exponentially increases the computation time, which is clearly not
desirable.

EDMF and modified BMU provide accurate identification and
prediction as shown in Figures 5 and 7. Both methodologies
utilize engineering knowledge to determine the combined uncer-
tainty and model bias associated with the system. Then, this
information is translated into a falsification criteria for EDMF and
into a L∞-norm-based Gaussian likelihood function for modified
BMU.As new information regarding uncertainty sources becomes
available, it can be incorporated into the combined uncertainty,
thereby not increasing the number of parameters to be identified
unless required. This helps in limiting the problem dimension
and preventing an exponential increase in computation time.
Figure 9 shows the computation time required with increasing
number of samples for four combinations of the probabilistic
data-interpretation methodologies.

In Figure 9, comparisons of computation time are provided
when the data-interpretationmethodologies are utilized in a series
and a parallel computation framework. Section 3.4 contains a
description of the hardware used in computation. Modified and
traditional BMU utilize MCMC sampling to obtain samples of
the posterior PDF, while EDMF and residual minimization uti-
lize grid sampling to obtain the updated model parameter val-
ues. MCMC sampling is a one-step memory process requiring
that samples are generated sequentially. Therefore, MCMC sam-
pling cannot be implemented efficiently in a parallel computation
framework. In this case, utilization of multiple cores for compu-
tation does not make a significant difference. In grid sampling,
samples are generated independently of one another and thus,
calculations can be shared more efficiently within parallel config-
urations, thereby significantly reducing computation time. Other
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parallel implementations of MCMC sampling are discussed in
Section 4.

As shown in Figure 9, modified BMU takes themaximum time
to obtain the complete posterior PDF using MCMC sampling.
Due to the steep ascent of the box-car-shaped likelihood function
before reaching the high-probability plateau, many samples are
rejected. To obtain a single accepted sample, many samples are
evaluated and rejected. This increases the computation times to
obtain the joint posterior PDF. Traditional BMU, which also
utilizes MCMC sampling, takes less time than modified BMU as
the likelihood function utilized has a gradual slope, which is more
favorable for exploring the parameter space. The number of sam-
ples rejected before accepting a sample is lower, therefore the total
computation time is lower. EDMF takes higher computation time
than traditional BMU when grid sampling is utilized. However,
once the grid sampling is parallelized with sections of the grid
passed to 24 cores for computation, the time taken is reduced.
The reduction in computation time is dependent on the number of
cores available. In the comparison shown in Figure 9, the parallel
computing setup uses 24 cores thereby reducing the computation
time for grid sampling by a factor of 24, when computations are
completely independent as is the case for grid sampling. Residual
minimization, when applied using Monte Carlo sampling, has the
same computation time as EDMF using single ormultiple cores. A
drawback of grid sampling is that, as the number of model param-
eters increases, the number of parameter combinations to be
evaluated increases exponentially. Therefore, optimal model-class
selection is very important to limit computational cost without
comprising the accuracy of updated model predictions.

The fourth criterion is compatibility of the data-interpretation
methodology with knowledge and procedures of practicing engi-
neers. Methodologies should be transparent when updating
knowledge of model parameters. MCMC sampling, utilized in
traditional and modified BMU, is a black-box algorithm and
thus provides low transparency to engineers for understanding
the process involved in accepting or rejecting samples. Also, the
sampling metrics such as burn-in samples, step size, and number
of samples required to obtain a stable solution can be deter-
mined only through trial and error. Therefore, many iterations
of the sampling process are required to determine these metrics
to converge efficiently on to posterior PDFs. EDMF, typically,
utilizes grid sampling, wherein a grid of initial model instances
is generated. From this initial grid, only model instances whose
responses are comparable tomeasurements within certain bounds
of uncertainty (Thigh and Tlow) are accepted as candidate model
instances. The falsification criteria is based on a simple accept-
reject decision making. Engineers are able to better understand
EDMF, thus increasing robustness of solutions when information
changes over service lives of structures.

Currently, residual minimization is the most commonly used
methodology. However, as shown in Figures 5 and 7, it does not
always provide accurate solutions for estimating reserve capac-
ity. EDMF provides accurate identification and prediction utiliz-
ing a simple accept-reject criterion for determining the updated
model parameters and requires lower computational resources
than other probabilistic methodologies when implemented in a
parallel framework.

4. DISCUSSION

Decision making for infrastructure asset management is a com-
plex task, which can be aided through a better understanding of
structural behavior using measurements. It is important that the
data-interpretation methodology provides accurate predictions
while being easy to use and incorporating new information and
engineering knowledge over the service life of a structure. Com-
parison between four data-interpretationmethodologies using the
Venoge bridge revealed the applicability of these methodologies
for reserve capacity estimation. In addition to structural identi-
fication (inverse task), the remaining fatigue life of the Venoge
bridge (forward task) was predicted under three traffic loading
scenarios using updated model parameters. The critical detail
analyzed to determine the remaining fatigue life of the bridge is
situated in the extended part of the bridge, built in 1995. The
design remaining fatigue life of this bridge is 82 years in 2013,
which after model updating is estimated to be 126 years.

Residual minimization is a deterministic data-interpretation
methodology, which is commonly used in practice due to its
ease of understanding. Using updatedmodel parameters obtained
through residual minimization, the equivalent stress range at
sensors A5 and B5 and remaining fatigue life at a critical detail
under two traffic loading scenarios were predicted and compared
to results obtained using measurements. The prediction was not
accurate in any of the four prediction cases considered. Residual
minimization does not always provide robust identification in the
presence of unknown correlated uncertainty with model bias and
systematic uncertainty, an observation previously noted byGoulet
and Smith (2013) for a cantilever beam.

Traditional BMU is a probabilistic methodology that utilizes a
zero-mean independent Gaussian likelihood function for model
updating. Using updated model parameters obtained through
traditional BMU, accurate prediction was observed for only two
out of four cases, when compared with results obtained using
measurements. Traditional BMU may provide biased predictions
when model bias and correlation between uncertainties at mea-
surement locations is not accounted for in model updating. This
has been previously observed by Pasquier and Smith (2015) using
an idealized simple beam. This paper makes similar observations
for a full-scale bridge. Improvement in prediction accuracy may
be achieved by parametrizing model bias and correlation between
uncertainties at various measurement locations. However, identi-
fication of the additional parameters increases dimensionality of
the structural identification problem, thereby increasing compu-
tational cost and such strategies usually involve assumptions of
constant bias at all measurement locations. Also, with few sparse
measurements as in the case presented in this paper, a model
class withmany parametersmay lead to unidentifiability (Reuland
et al., 2017).

EDMF and modified BMU, which are robust to variations
in correlation assumptions, provided accurate identification and
prediction for the four prediction cases when compared with
results obtained using measurements. Moreover, results obtained
using EDMF andmodified BMU are similar, implying that EDMF
can be understood as an analogous and discrete approach to
Bayesian model updating, based on the philosophy of model
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falsification. This result was previously observed using an ide-
alized simple beam by Pai and Smith (2017). A drawback with
application of EDMF for model updating is its sensitivity to pres-
ence of outliers in measurements. Therefore, before application of
EDMF, it is important to detect outliers inmeasurement and clean
the data.

Predictions obtained using updated model parameters are sub-
ject to prediction uncertainty. This prediction uncertainty arises
due to the difference between the model used in identification
(to predict model response comparable to measurements) and the
model used for prediction. In the case studied here, as shown in
Figure 6, the identification and prediction uncertainty are differ-
ent. The prediction uncertainty, similar to identification uncer-
tainty, is computed using engineering knowledge and numerical
evaluation of the finite-element and surrogate models. A different
prediction uncertainty model, than the one used in this paper,
may be employed based on engineering knowledge. However,
as prediction results obtained using traditional BMU, modified
BMU and EDMF are subjected to the same uncertainty model,
the bias between predictions from various methods will not
change.

The posterior distribution of model parameters and predic-
tions, such as equivalent stress range and remaining fatigue life,
that are obtained through model updating have large uncertainty
ranges. The information contained in measurements has not
reduced the uncertainty associated with the model parameters
significantly. The use of in-service strain and traffic measure-
ments provides engineers with the possibility to gain information
without disrupting bridge traffic. However, such measurements
are associated with uncertainties such as traffic load position
on the bridge, axle weight of the traffic moving on the bridge.
Moreover, the strain gages are clustered at two cross-sections
of the bridge, thereby the information obtained from these sen-
sors has high redundancy. Better positioning of sensors based
on modern measurement system design strategies could help
improve the amount of information that is acquired with the
sensors. In addition, conducting load tests with knowledge of
weight and position of the trucks may help in acquiring addi-
tional information. Parameter estimation and prediction can be
further refined by improving knowledge of materials through
non-destructive testing, improved modeling of the bridge and
a more detailed fatigue evaluation with more appropriate S–N
curves.

Engineering knowledge of uncertainty sources cannot be
included in residual minimization or traditional BMU without
increasing the number of parameters to be identified, which
increases computation time exponentially. EDMF and modified
BMU account for estimation of uncertainty from many sources
using engineering knowledge by incorporating it into a combined
uncertainty PDF,which is then used to determine either the falsifi-
cation criteria or the likelihood function. EDMF has an additional
advantage as it utilizes a simple accept–reject criterion for model
updating, which is easy to understand and implement. Traditional
BMU and modified BMU, when applied using MCMC sam-
pling, cannot be implemented efficiently in a parallel computation
framework. An alternative may be transitional MCMC sampling
proposed byChing andChen (2007). Angelikopoulos et al. (2012)

TABLE 6 | Comparison of criteria for the data-interpretation methodologies that are
studied in this paper.

Criteria Res min tBMU EDMF mBMU

Prediction case 1: equivalent × X X X
stress range at Sensor A5
Prediction case 2: equivalent × X X X
stress range at Sensor B5
Prediction case 3: remaining × × X X
fatigue life for period 1
Prediction case 4: remaining × × X X
fatigue life for period 2
Incorporating engineering × × X X
knowledge
Ease of use in practice X × X ×
Ranking computation III I II IV
time (single core)
Ranking computation II III I IV
time (24 cores)

The checks indicate satisfactory performance while the crosses indicate unacceptable
performance. The roman numerals used for the last two criteria are rankings where I is the
best.

have implemented transitional MCMC sampling in a par-
allel computation framework, wherein independent Markov
Chains are generated by individual cores. Usage of transi-
tional MCMC could help in sampling a complex parameter
space when the joint posterior distribution of model parame-
ters is multimodal. However, the use of black-box search algo-
rithms decreases the understandability of the methods for use
in practice. Comparison of the methodologies is summarized in
Table 6.

As summarized inTable 6, EDMF fulfils all the criteria required
of a data-interpretation methodology for use in practice. In addi-
tion, grid sampling used in EDMF can be implemented in a
parallel computation framework thereby reducing computation
cost. EDMF and other data-interpretation methodologies were
also used to predict the remaining fatigue life of the Venoge
bridge under a future traffic loading scenario. In this scenario,
the traffic weight was assumed to increase 2% annually over the
next 20 years. Theminimum remaining fatigue life predicted after
model updating using EDMF, under increased traffic loading, was
lower than the service life. Robust prediction of remaining fatigue
life for such future scenarios enable use of data-interpretation
methodologies in scheduling inspections and deciding on asset-
management actions.

5. CONCLUSION

In this paper, four data-interpretation methodologies are applied
to evaluate the fatigue life of a highway bridge under moni-
tored traffic loading. Comparisons are made in terms of param-
eter identification and accuracy of predictions with respect
to measured structural response. Applications of the four
methodologies to the Venoge bridge lead to the following
conclusions:

• Measurements of service behavior improve the accuracy
of remaining fatigue life calculations. The minimum remain-
ing fatigue life of the Venoge bridge is improved by 54% using
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in-service measurement from eight strain gages and observed
traffic load from a WIM station.

• Residual minimization and traditional BMU may not provide
accurate predictions in the presence of systematic uncertainty
and model bias.

• Modified BMU, which employs a Bayesian framework, explic-
itly includes model bias and systematic uncertainty in uni-
form probability distributions and thus provides an accurate
prediction of the reserve capacity.

• EDMF provides accurate and similar bounds for remaining
fatigue life of the bridge when compared with modified BMU.
EDMF has additional advantages compared with Bayesian
methodologies due to ease of understanding and compatibility
with engineering practice, rejecting unrealistic bridge behavior,
while utilizing a simple grid-sampling approach.

• EDMF, when implemented with grid sampling, is an attrac-
tive methodology for efficient implementation in a parallel
computation framework.
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