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Hiroki Akehashi, Kotaro Kojima and Izuru Takewaki*

Department of Architecture and Architectural Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan

A double impulse input is used as a substitute for near-fault earthquake ground motions.
An explicit expression is derived on the maximum elastic–plastic response of a single-
degree-of-freedom damped structure with bilinear hysteresis under the “critical double
impulse input” which causes the maximum response for variable impulse interval with
the input level kept constant. Owing to the existence of only the free vibration under
the double impulse, the approach of energy balance for the kinetic energy, hysteretic
and strain energies, and damping energy plays a crucial role for deriving the explicit
expression on a complicated damped bilinear hysteretic response. It is shown that the
critical elastic–plastic deformation and the critical impulse timing, the interval of two
impulses, can be derived depending on the input level. The accuracy and reliability of the
proposed simplified but smart methodology are investigated through the comparison with
the results by the response analysis to the critical double impulse and the corresponding
one-cycle sine wave as a representative for the near-fault earthquake ground motion.

Keywords: earthquake response, critical excitation, critical response, elastic–plastic response, bilinear hysteresis,
near-fault ground motion, resonance

INTRODUCTION

Earthquake ground motions have been classified based on their characteristics (Abrahamson et al.,
1998). This stream is being accelerated asmanyuseful data from recent earthquakes are accumulated.
One is a near-fault ground motion and another one is a long-period and long-duration ground
motion mostly characterized as a far-fault motion (see Takewaki et al., 2011). It is well known that
earthquake ground motions at ground surface are influenced greatly by the surface-soil properties.
For this reason, the surface-soil types (soil and rock) are other factors for classification together with
fault mechanisms. The effects of near-fault ground motions on structural inelastic responses have
been investigated from various viewpoints (for example, Bertero et al., 1978; Hall et al., 1995; Sasani
and Bertero, 2000; Mavroeidis and Papageorgiou, 2003; Alavi and Krawinkler, 2004; Makris and
Black, 2004; Mavroeidis et al., 2004; Kalkan and Kunnath, 2006; Khaloo et al., 2015). The special
terminologies of fling step (parallel to the fault plane) and forward directivity (normal to the fault
plane) are often used recently for designating such near-fault ground motions. Many earthquake
structural engineers pay special attention to Northridge earthquake in 1994, Hyogoken-Nanbu
(Kobe) earthquake in 1995, Chi-Chi (Taiwan) earthquake in 1999, and Kumamoto earthquake in
2016.
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The main parts of fling-step and forward-directivity motions
have been characterized by using two or three half-cycle sine
waves (see Figure 1). Most engineers investigated mainly the elas-
tic response in the past works on the near-fault ground motions.
This is because there are many parameters (e.g., predominant
period, duration and amplitude of pulse, change of equivalent
natural frequency for the increased input level, and ratio of pulse
frequency to structure natural frequency) and even the numerical
parametric analysis is extremely complicated for elastic–plastic
response.

To respond to such complex issue, an innovative approach
using the double impulse as expressed inFigure 2Awas developed
by Kojima and Takewaki (2015a). The double impulse substitutes

approximately for themain part of the fling-step near-fault ground
motion as a one-cycle sine wave, and the explicit maximum elas-
tic–plastic response was obtained in a structure under the “critical
double impulse.” The concept of “critical input” is based on the
critical excitation method in which it is aimed at finding the
worst input (see Drenick, 1970; Takewaki, 2007). Because only
the free vibration emerges under such double impulse, the energy
balance approach for the kinetic energy, hysteretic and strain
energies, and damping energy leads to such explicit expression. It
was also shown that, depending on the input level of the double
impulse, the maximum inelastic deformation can occur either
after the first or second impulse. The accuracy and validity of the
proposed explicit expression were made clear by comparing such
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FIGURE 1 | Simplification of main part of actual pulse-type ground motion into one-cycle sine wave: (A) fault-normal component at Rinaldi station (Northridge
earthquake 1994), (B) NS component (almost fault-normal) at Kobe University [Hyogoken-Nanbu (Kobe) earthquake 1995] (Kojima and Takewaki, 2016).
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FIGURE 2 | Main part of near-fault ground motion, (A) fling-step input and double impulse, (B) forward-directivity input and triple impulse (Kojima and Takewaki,
2015a).
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expressions with the time-history response analysis results under
the equivalent one-cycle sine wave, a representative of the main
part of the fling-step near-fault groundmotion. The magnitude of
the double impulse was adjusted based on the criterion that the
maximum Fourier amplitude is equivalent to that of the one-cycle
sine wave. By introducing the triple impulse, the methodology for
the fling-step motion was applied successfully to a more realistic
forward-directivity motion by Kojima and Takewaki (2015b) (see
Figure 2B).

The analytical expressions of the dynamic elastic–plastic
response were obtained only for the harmonic steady-state
response and the transient response to a sinusoidal wave
(Caughey, 1960a,b, Roberts and Spanos, 1990, Liu, 2000). It
should be reminded that the forced input by the sinusoidal wave
caused a complexity in deriving simple expressions on responses.
It may be natural and interesting to recall that, if a near-fault
ground motion can be modeled into a double impulse, the maxi-
mum elastic–plastic response can be derived in terms of continu-
ation of free vibrations by taking advantage of an energy balance
approach without the direct solution of the equation of motion
(Kojima and Takewaki, 2015a).

In the historical context of earthquake-resistant design in the
last century, the resonance was a key subject in the damage analy-
sis of structures. For a specified input level, the resonant equivalent
frequency has to be analyzed generally by changing the input fre-
quency of a sine wave in a parametric manner (Caughey, 1960a,b,
Iwan, 1961, 1965a,b, Roberts and Spanos, 1990, Liu, 2000). The
double impulse enables such computation without repetition. In
the double impulse input, the resonance can be captured by taking
advantage of an energy balance law and the timing of the second
impulse can be characterized as the time with zero restoring force
after the first impulse. The peak elastic–plastic response after the
first impulse can be derived by equating the initial kinetic energy
given by the impulse to the sum of hysteretic energy, elastic strain
energy, and the damping energy in the damped system (Kojima
et al., 2017).

In this paper, the double impulse is used as a good substi-
tute for a one-cycle sine wave which expresses the main part
of the near-fault ground motion and an explicit expression is
derived on the maximum elastic–plastic response of a damped
single-degree-of-freedom (SDOF) structure with bilinear hystere-
sis under the “critical double impulse input.” A damped bilinear
hysteretic SDOF system is introduced in Section “Damped Bilin-
ear Hysteretic SDOF System.” The closed-form expressions are
derived in Section “Closed-FormExpression ofMaximumElastic-
Plastic Response under Critical Double Impulse” on the maxi-
mum elastic–plastic responses under the critical double impulse
by using the energy balance approach and the quadratic function
approximation of the damping force–deformation relation of the
dashpot (Kojima et al., 2017). The combination of damping and
bilinear hysteresis is a novel point in this paper. Depending on the
input level, three cases are defined. CASE 1 is the case where the
model remains elastic even after the second impulse and CASE
2 is the case where the model goes into the plastic range only
after the second impulse. Furthermore CASE 3 is the case where
the model goes into the plastic range even after the first impulse.
In CASE 3, there are two more cases, i.e., CASE 3-1 where the
zero-restoring-force timing after the first impulse exists in the

unloading stage and CASE 3-2 where the zero-restoring-force
timing after the first impulse exists in the reloading stage after the
unloading stage. The critical time interval is obtained in Section
“Critical Impulse Timing” by regarding the zero-restoring-force
timing as the critical timing. The accuracy of the proposed expres-
sion on the maximum response is investigated by comparing
with the results by time-history response analysis of the SDOF
damped bilinear hysteresis system under the double impulse in
Section “Accuracy Check of the Proposed Expression under the
Double Impulse through the Comparison with the Time-History
Response Analysis under the Double Impulse and the Corre-
sponding One-Cycle Sinusoidal Wave.” The accuracy of using the
double impulse is also checked in Section “Accuracy Check of
the Proposed Expression under the Double Impulse through the
Comparison with the Time-History Response Analysis under the
Double Impulse and the Corresponding One-Cycle Sinusoidal
Wave” by comparing with the response to the equivalent one-
cycle sine wave. The proof of the critical impulse timing obtained
in Section “Critical Impulse Timing” and its interpretation as
the zero-restoring-force timing are investigated in Section “Proof
of Critical Timing.” The accuracy check of the response under
the critical double impulse is conducted through the comparison
with the time-history response to the equivalent one-cycle sine
wave in Section “Accuracy Check of the Response under the
Critical Double Impulse through the Comparison with the Time-
History Response under theCorrespondingOne-Cycle Sinusoidal
Wave.” The application to actual ground motions is shown in
Section “Application of Proposed Expression on Critical Response
to Recorded Near-Fault Ground Motion.” The conclusions are
summarized in Section Conclusion.

DAMPED BILINEAR HYSTERETIC SDOF
SYSTEM

Consider a damped bilinear hysteretic SDOF system of mass m,
initial stiffness k and damping coefficient c subjected to the double
impulse üg(t) = Vδ(t) − Vδ(t − t0) of ground acceleration
as shown in Figure 3. V is the prescribed initial velocity (also
the velocity amplitude of the second impulse) and t0 is the time
interval between two impulses which is regarded as a variable in
finding the critical double impulse. The ratio of the post-yield
stiffness to the initial one is designated by α. In this paper α > 0.
The yield deformation and force are expressed by dy and fy. Let
ω1 =

√
k/m, T1 = 2π/ω1, ω′

1 =
√
1 − h2ω1, T′

1 = 2π/ω′
1,

FIGURE 3 | Damped single-degree-of-freedom model and its bilinear
hysteretic restoring-force characteristic.
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h, u, and f denote the undamped natural circular frequency, the
undamped natural period, the damped natural circular frequency,
the damped natural period, the damping ratio, the displacement
of themass relative to the ground (deformation of the system) and
the restoring force in the model, respectively. The time derivative
is designated by an over-dot. In Section “Closed-Form Expres-
sion of Maximum Elastic–Plastic Response under Critical Double
Impulse,” these parameters will be dealt with in normalized forms
to derive the essential relationship between the input parameters
and the elastic–plastic response. Let Vy(=ω1dy) denote the veloc-
ity amplitude of the double impulse which causes exactly the yield
deformation after the first impulse. This parameter is a parameter
related to the strength of the SDOF system. The parameter Vy
is a normalization parameter for the input velocity level and the
ratio V/Vy is called the input velocity level. However, numeri-
cal investigations will be made in Sections “Accuracy Check of
the Proposed Expression under the Double Impulse through the
Comparison with the Time-History Response Analysis under the
Double Impulse and the Corresponding One-Cycle Sinusoidal
Wave,” “Proof of Critical Timing,” and “Accuracy Check of the
Response under the Critical Double Impulse through the Com-
parison with the Time-History Response under the Correspond-
ing One-Cycle Sinusoidal Wave” to demonstrate an example of
actual parameters.

CLOSED-FORM EXPRESSION OF
MAXIMUM ELASTIC–PLASTIC RESPONSE
UNDER CRITICAL DOUBLE IMPULSE

In the previous related works on energy-based approach (Kojima
and Takewaki, 2015a,b,c), some explicit expressions have been
derived in the critical response of an SDOF elastic–perfectly
plastic system under the double, triple and multi impulses. An
explicit expression on the peak deformation of an SDOF bilinear
hysteretic systemunder the double impulse has also been obtained
(Kojima andTakewaki, 2016). In contrast to these previous papers,
an explicit form of the peak deformation of an SDOF damped
bilinear hysteretic system under the critical double impulse is
obtained here. The combination of damping and bilinear hystere-
sis is a novel point in this paper.

The response just after each impulse can be described by
the sudden change of velocity of the structural mass by V and
only free vibration exists after each impulse. Because the elas-
tic–plastic response of the SDOF damped bilinear hysteretic sys-
tem under the double impulse can be described by the direct
continuation of free vibrations with different initial velocities
and deformations, the maximum deformation can be derived by
a sophisticated energy approach without the direct solution of
the equation of motion. The kinetic energy introduced at each
impulse is transformed into the combination of the hysteretic
energy, the elastic strain energy and the viscously damped energy.
It should be remarked that the critical timing of the second
impulse corresponds to the zero-restoring-force timing after the
first impulse and a kinetic energy alone exists at this timing
as mechanical energies. By using this rule on energy balance,
the expression on the peak deformation can be obtained in a
simple way. In the previous work (Kojima and Takewaki, 2015a),

the explicit form of the maximum deformation and the critical
timing of the elastic–perfectly plastic SDOF system under the
critical double impulse have been obtained. In this section, the
explicit expressions of the peak response are derived by using
the energy approach and the critical timing is obtained. Since
it seems difficult to derive an exact expression on the damping
force with respect to deformation, a quadratic function approxi-
mation is introduced for the damping force–deformation relation
to evaluate the viscously damped energy (the work done by the
damping force). Using this approximation, the viscously damped
energy can be evaluated by using the damping force at the acting
point of the first or second impulse and the maximum defor-
mation (Kojima et al., 2017). In Sections “Closed-Form Expres-
sion of Maximum Elastic–Plastic Response under Critical Double
Impulse” and “Accuracy Check of the Proposed Expression under
the Double Impulse through the Comparison with the Time-
History Response Analysis under the Double Impulse and the
Corresponding One-Cycle Sinusoidal Wave,” this approximation
is used to obtain the velocity at the point of the re-yielding
initiation.

The maximum response under the critical double impulse can
be divided into three cases depending on the plastic deformation
level. Each case will be explained in the following.

CASE 1: Elastic Response Even after
Second Impulse
First, consider CASE 1 where the structure exhibits elastic
response even after the second impulse. Figure 4 shows the evalu-
ation process of the peak deformation umax1 after the first impulse
and the peak deformation umax2 after the second impulse for the
elastic case (CASE 1) (see Figure 4A for restoring force). Although
an approximate and exact solution for the elastic response of
the system with viscous damping was obtained in the previous
paper (Kojima et al., 2017), the derivation of the approximate
expression of the peak deformation is shown here for better
explanation of subsequent cases. It uses approximation in terms
of the quadratic function for the damping force–deformation
relation. The expression is a good approximation of the exact
solution.

By using the quadratic function approximation for the damp-
ing force–deformation relation, the work done by the damping

A B

FIGURE 4 | Restoring force and damping force with respect to deformation in
CASE 1 [V/Vy ≤ (V/Vy)CASE 1], (A) restoring force–deformation relation,
(B) quadratic approximation of damping force–deformation relation.
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force fD after the first impulse can be evaluated. In this pro-
cess, let us approximate the damping force–deformation rela-
tion after the first impulse by a quadratic function with vertex
(u, fD)= (−umax1, 0) and passing through the point (u, fD)=
(0, −cV), as shown in Figure 4B. The damping force fD can be
obtained as follows:

fD = −cV
√

1 + (u/umax1). (1)

The work done by the damping force on the corresponding
deformation can be obtained by integrating Eq. 1 from u= 0 to
u=− umax1,∫ −umax1

0
fDdu =

∫ −umax1

0

{
−cV

√
1 + (u/umax1)

}
du

= (2/3)cVumax1. (2)

By using Eq. 2, the energy balance law at the time of the first
impulse and the time attaining the maximum deformation leads
to

0.5mV2 = 0.5kumax1
2 + (2/3)cVumax1. (3)

From Eq. 3, umax1 can be obtained as

umax1/dy = {−(4/3)h +
√

(16/9)h2 + 1}(V/Vy), (4)

where h is the damping ratio. In a similar manner, umax2 can be
obtained. The velocity vc at the zero-restoring-force timing can be
derived by using the critical time interval tc0 = T′

1/2 (T′
1: damped

natural period) and the velocity response after the first impulse.
The critical time interval tc0 = T′

1/2 has been obtained for the
elastic damped SDOF system in the previous paper (Kojima et al.,
2017). The velocity response after the first impulse can be obtained
as follows:

u̇(t) = −Ve−hω1t
{

−
(
h/

√
1 − h2

)
sin(ω′

1t) + cos(ω′
1t)

}
,

(5)
vc can be obtained by substituting t = tc0 = T′

1/2 into Eq. 5

vc = V exp
(
−πh/

√
1 − h2

)
. (6)

The work done by the damping force on the corresponding
deformation can be derived by using the quadratic function
approximation. It may be reasonable to approximate the damp-
ing force–deformation relation after the second impulse by a
quadratic function with vertex (u, fD)= (umax2, 0) and passing
through the point (u, fD)= (0, c(vc +V)), as shown in Figure 4B.
The damping force fD can be obtained as follows:

fD = c(vc + V)
√
1 − (u/umax2). (7)

The work done by the damping force on the corresponding
deformation after the second impulse can be derived by integrat-
ing Eq. 7 from u= 0 to u= umax2,∫ umax2

0
fDdu =

∫ umax2

0

{
c(vc + V)

√
1 − (u/umax2)

}
du

= (2/3)c(vc + V)umax2. (8)

By using Eq. 8, the energy balance law at the time of the second
impulse and the time attaining the maximum deformation leads
to

0.5m(vc + V)2 = 0.5kumax2
2 + (2/3)c(vc + V)umax2. (9)

From Eqs 6 and 9, umax2 can be obtained as

umax2/dy

=
(
1 + e−πh/

√
1−h2

){
−(4/3)h +

√
(16/9)h2 + 1

}
(V/Vy).

(10)

The boundary input velocity level (V/Vy)CASE 1 between
CASE 1 and CASE 2 in the caption of Figure 4 will be derived
in the next section.

CASE 2: Plastic Deformation Only after the
Second Impulse
Second, consider CASE 2, where the system goes into the yielding
stage only after the second impulse. Figure 5 presents the evalu-
ation process of the maximum deformation umax1 after the first

A B

FIGURE 5 | Restoring force and damping force with respect to deformation in CASE 2 [(V/Vy)CASE 1 ≤V/Vy ≤ (V/Vy)CASE 2 ], (A) restoring force–deformation relation,
(B) quadratic approximation of damping force–deformation relation.
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impulse and the maximum deformation umax2 after the second
impulse in CASE 2. When the maximum deformation umax2 after
the second impulse is beyond the yield deformation dy for the
first time, the system goes into the plastic range after the second
impulse. This boundary input velocity level (V/Vy)CASE 1 between
CASE 1 and CASE 2 can be provided from Eq. 10 and umax2 = dy,

(V/Vy)CASE 1

=
(
1 + e−πh/

√
1−h2

)−1{
(4/3)h +

√
(16/9)h2 + 1

}
. (11)

Because the maximum deformation just after the first impulse
remains in the elastic range, umax1 in CASE 2 is also given by
Eq. 4. The maximum deformation umax2 in CASE 2 is derived
in this section. By using the quadratic function approximation
as shown in Figure 5B, the work done by the damping force
in CASE 2 can be evaluated. As in CASE 1, the velocity vc in
CASE 2 can be given by Eq. 6 because the response is elastic
just after the first impulse. As in CASE 1, by using the quadratic
function approximation, the work done by the damping force on
the corresponding deformation after the second impulse in CASE
2 can be expressed by Eq. 8. By using Eq. 8, the energy balance
law at the time of the second impulse and the time attaining the
maximum deformation leads to

0.5m(vc + V)2 = (area of ABCD)+ (2/3)c(vc +V)umax2. (12)

The expression of (area of ABCD) in Eq. 12 indicates the area
of the quadrilateral ABCD in Figure 5A. From Eqs 6 and 12, umax2

can be obtained as

umax2

dy
= 1 − 1

α

{
1 +

4h
3

(
1 + e−πh/

√
1−h2

) (
V
Vy

)}

+
1
α

√√√√√√√√√√

{
1 + 4h

3

(
1 + e−πh/

√
1−h2

) (
V
Vy

)}2

−α
{
1 + 8h

3

(
1 + e−πh/

√
1−h2

) (
V
Vy

)
−

(
1 + e−πh/

√
1−h2

)2( V
Vy

)2
} . (13)

The boundary input velocity level (V/Vy)CASE 2 between
CASE 2 and CASE 3 in the caption of Figure 5 will be derived
in the next section.

CASE 3-1: Plastic Deformation Even after
the First Impulse (Second Impulse in
Unloading Process)
Finally, consider CASE 3, where the system enters the yielding
stage, even after the first impulse. CASE 3 can be classified
into CASE 3-1 and CASE 3-2 depending on the input velocity
level. In this section, the closed-form solution for the maximum
deformation for CASE 3-1 is derived. In CASE 3-1, the second
impulse acts at the zero-restoring-force timing in the unloading
process. On the other hand, in CASE 3-2, the second impulse
acts at the zero-restoring-force timing in the reloading process
(second stiffness range). Figure 6 shows the evaluation process of
the maximum deformation umax1 after the first impulse and the
maximum deformation umax2 after the second impulse in CASE

A B

FIGURE 6 | Restoring force–deformation relation and approximate damping force–deformation relation. (A) CASE 3-1: (V/Vy)CASE 2 ≤V/Vy ≤ (V/Vy)CASE 3, (B) CASE
3-2: (V/Vy)CASE 3 ≤V/Vy.
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3-1 and CASE 3-2. When the maximum deformation umax1 after
the first impulse is beyond the yield deformation dy, the system
goes into the plastic range after the first impulse. This boundary
input velocity level (V/Vy)CASE 2 between CASE 2 and CASE 3-1
can be derived as follows from Eq. 4 and umax1 = dy,

(V/Vy)CASE 2 = (4/3)h +
√

(16/9)h2 + 1. (14)

The maximum deformation umax1 after the first impulse is
derived next. The work done by the damping force after the first
impulse in CASE 3-1 has been derived, as expressed by Eq. 2, by
using the quadratic function approximation. This approximation
was alsomade in CASE 1. By using Eq. 2, the energy balance law at
the time of the first impulse and the time attaining the maximum
deformation leads to

0.5mV2 = (area of ABCD) + (2/3)cVumax1. (15)

The expression of (area of ABCD) in Eq. 15 indicates the area
of the quadrilateral ABCD in Figure 6A. From Eq. 15, umax1 can
be obtained as

umax1

dy
= 1 +

1
α

[
−

{
1 +

4h
3

(
V
Vy

)}

+

√√√√{
1+ 4h

3

(
V
Vy

)}2

−α

{
1+ 8h

3

(
V
Vy

)
−

(
V
Vy

)2
}]

.

(16)

The maximum deformation umax2 after the second impulse
is derived next. up2 denotes the plastic deformation after the
second impulse and umax2 can be calculated by using the following
equation:

umax2 = −umax1 + 2dy + up2. (17)

Equation 17 can be derived from Figure 6A. The velocity
vc at the zero-restoring-force timing after the first impulse can
be derived by solving the equation of motion in the unloading
process (point C to point E in Figure 6A). The equation of motion
(free vibration) in the unloading process can be provided as
follows:

mü + cu̇ + ku + (1 − α)kup1 = 0. (18)

From Eq. 18 and the initial condition at point C, the displace-
ment and velocity responses in the unloading process can be
obtained as follows:

u(t) = −
{
(dy + αup1)/

√
1 − h2

}
e−hω1t

cos
{

ω′
1t − arctan

(
h/

√
1 − h2

)}
− (1 − α)up1, (19)

u̇(t) = −
[
{1 + α(up1/dy)}/

√
1 − h2

]
Vye−hω1tsin(ω′

1t),
(20)

where the starting time of the unloading process (point C in
Figure 6A) is taken as t= 0. From Eq. 19 and the condition
f (u)= ku+ (1–α)kup1 = 0, the time tc corresponding to the zero
restoring force can be obtained as follows:

tc =
[
0.25 +

{
arctan

(
h/

√
1 − h2

)}/
(2π)

]
T′
1, (21)

vc can be obtained by substituting Eq. 21 into Eq. 20,

vc = Vy{1 + α(up1/dy)}exp
[(

−h/
√
1 − h2

)
{
0.5π + arctan

(
h/

√
1 − h2

)}]
, (22)

where up1 = umax1 − dy is the plastic deformation after the first
impulse.

The work by the damping force on the corresponding
deformation is expressed by using the quadratic function
approximation. The relation of damping force with deformation
after the second impulse is approximated by using a quadratic
function with the vertex (u, fD)= (umax2, 0) and passing the point
(u, fD)= (−umax1 + (dy + αup1), −c(vc +V))= (−(1− α)up1,
−c(vc +V)), as shown in Figure 6A. Then, fD can be obtained as
follows:

fD = c(vc + V)
√

(umax2 − u)/{umax2 + (1 − α)up1}. (23)

The work done by the damping force on the corresponding
deformation after the second impulse can be obtained by inte-
grating Eq. 23 from u=− umax1 + (dy + αup1) =− (1− α)up1
to u= umax2,∫ umax2

−(1−α)up1

[
c(vc + V)

√
(umax2 − u)/{umax2 + (1 − α)up1}

]
du

= (2/3)c(vc + V){umax2 + (1 − α)up1}
= (2/3)c(vc + V)(up2 + dy − αup1). (24)

By using Eq. 24, the energy balance law at the time of the second
impulse and the time attaining the maximum deformation leads
to

0.5m(vc + V)2 = (area of EFGH)

+ (2/3)c(vc + V)(up2 + dy − αup1). (25)

From Eqs 22 and 25, up2 can be obtained as

up2/dy = −(1/α)[(s/dy) + (4h/3){(vc + V)/Vy}]

+ (1/α)

√√√√√√√
[(s/dy) + (4h/3){(vc + V)/Vy}]2

−α
[
(s/dy)2 − {(vc + V)/Vy}2

+(8h/3){(vc + V)/Vy}(s/dy)
] ,

(26)

where s= dy−αup1 = {1− α(up1/dy)}dy.
The boundary input velocity level (V/Vy)CASE 3 between CASE

3-1 and CASE 3-2 in the caption of Figure 6 will be derived in the
next section.

CASE 3-2: Plastic Deformation Even after
the First Impulse (Second Impulse in
Reloading Process)
Consider CASE 3-2 next, where the system enters the yielding
stage, even after the first impulse and the second impulse acts
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FIGURE 7 | Evaluation of maximum elastic–plastic deformation under critical double impulse based on energy balance and quadratic function approximation of
damping force–deformation relation for CASE 3-2 [(V/Vy)CASE 3 ≤V/Vy].

at the zero-restoring-force timing in the reloading process (sec-
ond stiffness range) as shown in Figure 6B. Figure 7 shows the
evaluation process of the maximum deformations umax1, umax2
(absolute values) after the first impulse and the second impulse,
respectively, in CASE 3-2. If the restoring force −fy − αkup1 at
themaximumdeformation umax1 attains− 2fy, the zero-restoring-
force point exists in the reloading process (second stiffness range)
for the input that is larger than this boundary. Therefore, the
boundary input velocity level (V/Vy)CASE 3 between CASE 3-1 and
CASE 3-2 can be derived as follows from Eq. 16, up1 = umax1 − dy
and −fy − αkup1 =−2fy,

(V/Vy)CASE 3 = (4h/3){1 + (1/α)}

+
√

(16h2/9){1 + (1/α)}2 + 1 + (3/α), (27)

umax1 in CASE 3-2 is also obtained as Eq. 16. umax2 in CASE 3-2
will be derived in this section.

The velocity vE at point E in Figure 7 is derived by
using the quadratic function approximation of the damping
force–deformation relation. Point E is the point of the re-yielding
initiation. The damping force–deformation relation between the

point of the maximum deformation (point C) and the point of the
re-yielding initiation (point E) can be approximated by a quadratic
function which has the vertex (u, fD)= (−umax1, 0) and passes
through the point (u, fD)= (−umax1 + 2dy, cvE). fD can then be
obtained as follows:

fD = cvE
√

(u + umax1)/(2dy). (28)

The work done by the damping force can be obtained by
integrating Eq. 28 from u=− umax1 to u=− umax1 + 2dy,∫ −umax1+2dy

−umax1

fDdu = (2/3)cvE(2dy) = (4/3)cvEdy. (29)

The energy balance law between point C and E can be expressed
as follows by using Eq. 29,

(area of CDGE) = 0.5mvE2 + (4/3)cvEdy. (30)

The expression of (area of CDGE) in Eq. 30 indicates the area of
the trapezoid CDGE in Figure 7. From Eq. 30, vE can be obtained
as

vE = Vy

[
−(8h/3) +

√
(64h2/9) + 4α(up1/dy)

]
. (31)
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The velocity vc at the zero-restoring-force timing after the first
impulse (point F) is derived by solving the equation of motion in
the reloading process. The equation of motion (free vibration) in
the reloading process can be expressed as follows:

mü + cu̇ + αku + (1 − α)kdy = 0. (32)

From Eq. 32, the deformation and velocity in the reloading
process can be derived as follows by using the initial condition at
point E where t= 0 is set at point E:

u = e−h2ω2t
√

A2 + B2 sin(ω′
2t − θ) + {1 − (1/α)}dy, (33)

u̇ = ω2e−h2ω2t
√
A2 + B2 cos

{
ω′

2t − θ + arctan
(
h2/

√
1 − h22

)}
,

(34)
where

A = (vE − h2ω2dEF)/ω′
2, (35)

B = −dEF = −[umax1 − {1 + (1/α)}dy], (36)

ω2 =
√

αω1, (37)

h2 = (1/
√

α)h, (38)

ω′
2 =

√
1 − h22ω2, (39)

dEF = umax1 − {1 + (1/α)}dy, (40)

θ = arccos
(
A/

√
A2 + B2

)
. (41)

Since vc is the velocity at the zero-restoring-force point
(point F), where u= {1− (1/α)}dy, the time interval tEF between

the point E and F can be derived as follows from Eq. 33 and the
condition u(t= tEF)= {1− (1/α)}dy:

tEF = θ/ω′
2, (42)

vc can be obtained by substituting Eq. 42 into t in Eq. 34,

vc = ω′
2e

−
(
h2/

√
1−h22

)
θ√A2 + B2. (43)

The maximum deformation umax2 is derived next. t= 0 is set
at point F and the displacement and velocity responses between
point F and H can be obtained as follows by solving the equation
of motion (Eq. 32) and substituting the initial condition at point
F (after the second impulse),

u = {(vc + V)/ω′
2}e−h2ω2tsin(ω′

2t) + {1 − (1/α)}dy, (44)

u̇ =
{
(vc + V)/

√
1 − h22

}
e−h2ω2t

cos
{

ω′
2t + arctan

(
h2/

√
1 − h2

)}
. (45)

The deformation response after the second impulse is maxi-
mized at the time at which u̇ = 0. From Eq. 45 and u̇ = 0,
the time interval tmax2 between point F and H can be obtained as
follows:

tmax2 =
{
0.5π − arctan

(
h2/

√
1 − h22

)}/
ω′

2. (46)

Therefore, umax2 can be obtained as follows by substituting Eq.
46 into t in Eq. 44,
umax2/dy = 1 − (1/α) + (1/

√
α){(vc + V)/Vy}

exp
[
−

(
h2/

√
1−h22

){
0.5π − arctan

(
h2/

√
1−h22

)}]
.

(47)

A B

C

FIGURE 8 | Normalized critical impulse timing tc0/T1 with respect to input level V/Vy for various post-yield stiffness ratios α, (A) α =0.1, (B) α = 0.3, and (C) α = 0.5.
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Critical Impulse Timing
The critical time intervals tc0 between two impulses are derived
in this section. In contrast to the previous papers dealing with
the model without viscous damping, it is difficult to derive an
analytical expression on the critical time interval between two
impulses in CASE 3-1 and CASE 3-2. For this reason, the time-
history response analysis is used under the first impulse and the
time interval is computed as the time up to the zero-restoring-
force timing. It is necessary to use different expressions in the
previous sections on themaximumdeformation depending on the
input velocity level.

Figure 8 illustrates the normalized time interval tc0 for T1 with
respect to the input velocity level of the double impulse for various
post-yield stiffness ratios α = 0.1, 0.3, 0.5 and various damping
ratios h= 0.05, 0.1, 0.2. In CASE 1 and CASE 2, the critical time
interval is obtained by tc0 = T′

1/2. Therefore, as the damping
ratio becomes larger, the critical time interval becomes longer.
In CASE 3, as the damping ratio becomes larger, the plastic
deformation up1 after the first impulse becomes smaller and the
critical time interval tc0 becomes shorter. It can be observed that,
as the post-yield stiffness ratio becomes larger, CASE 3-2 appears
in the smaller level of the input velocity of the double impulse. The

A B

C

FIGURE 9 | Comparison of maximum deformations for model of α = 0.1 among proposed method, time-history response analysis under double impulse and
time-history response analysis under corresponding one-cycle sine wave, (A) h= 0.05, (B) h=0.1, and (C) h= 0.2.
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sudden change of slope indicates the transition of CASE 2, CASE
3-1, and CASE 3-2.

ACCURACY CHECK OF THE PROPOSED
EXPRESSION UNDER THE DOUBLE
IMPULSE THROUGH THE COMPARISON
WITH THE TIME-HISTORY RESPONSE
ANALYSIS UNDER THE DOUBLE IMPULSE
AND THE CORRESPONDING ONE-CYCLE
SINUSOIDAL WAVE

To check the accuracy of the proposed expression under the
double impulse, the time-history response analyses of the SDOF

damped bilinear hysteresis system under the double impulse and
the corresponding one-cycle sinusoidal wave have been con-
ducted. In the time-history response analysis under the critical
double impulse, the second impulse acts at the timing of zero-
restoring-force. The validity of this assumption on the critical
timing of the second impulse will be investigated in Section “Proof
of Critical Timing.”

In this evaluation, it is important to adjust the input levels
between the double impulse and the corresponding one-cycle
sinusoidal wave based on the equivalence of themaximumFourier
amplitude. The adjustment procedure is explained in Appendix 1.
The one-cycle sine wave that corresponds to the critical double
impulse can be represented as follows:

üSWg (t) = 0.5ωpVpsin(ωpt) (0 ≤ t ≤ Tp = 2tc0), (48)

A B

C

FIGURE 10 | Comparison of maximum deformations for model of α = 0.3 among proposed method, time-history response analysis under double impulse and
time-history response analysis under corresponding one-cycle sine wave, (A) h= 0.05, (B) h=0.1, and (C) h= 0.2.
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A B

C

FIGURE 11 | Comparison of maximum deformations for model of α = 0.5 among proposed method, time-history response analysis under double impulse and
time-history response analysis under corresponding one-cycle sine wave, (A) h= 0.05, (B) h=0.1, and (C) h= 0.2.

where Vp/V= 1.2222 (Kojima and Takewaki, 2016, Kojima et al.,
2017). In addition, Tp = 2tc0 and ωp = 2π/Tp denote the period
and the circular frequency, respectively, of the sine wave. The crit-
ical time interval obtained in Section “Critical Impulse Timing” is
used for tc0 in Eq. 48.

Figures 9–11 present the comparison of the maximum defor-
mations of the models for α = 0.1, 0.3, 0.5 and h= 0.05, 0.1,
0.2. It can be observed from the comparison with the time-
history response analysis under the critical double impulse that
the closed-form solution of umax2 based on the quadratic function
approximation of the damping force–deformation relation of the
dashpot is accurate enough. Furthermore, from the comparison
with the time-history response analysis under the corresponding

one-cycle sine wave, the approximate closed-form solution of
umax2 is in good agreementwith the time-history response analysis
under the corresponding one-cycle sine wave and the closed-
form solution of umax1 based on the quadratic function approx-
imation of the damping force–deformation relation of the dash-
pot provides a narrow upper bound for the result by the time-
history response analysis under the corresponding one-cycle
sine wave.

PROOF OF CRITICAL TIMING

The validity of the assumption that the critical timing of the
second impulse is the zero-restoring-force timing is investigated in
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this section. Figure 12 shows the normalized maximum deforma-
tion umax2/ucmax2 with respect to the normalized timing t0/tc0 of the
second impulse under constant input velocity and the time history
of restoring force under a single impulse, i.e., the first impulse,

for two cases, CASE 3-1 (α = 0.5, h= 0.05,V/Vy = 2.0) and CASE
3-2 (α = 0.5, h= 0.05,V/Vy = 4.0). umax2 in Figure 12 denotes the
maximumdeformation after the second impulse under the double
impulse with an arbitrary time interval t0. In Figure 12, tc0 was

A B

FIGURE 12 | Maximum deformation with respect to timing of second impulse under constant input velocity and time history of restoring force under first single
impulse, (A) CASE 3-1 (α = 0.5, h= 0.05, V/Vy = 2.0) and (B) CASE 3-2 (α = 0.5, h= 0.05, V/Vy =4.0).

A B

C

FIGURE 13 | Comparison of the responses under the critical double impulse and the equivalent one-cycle sine wave for the model of α = 0.3, h= 0.1 and the input
level of V/Vy = 3.0, (A) deformation time history, (B) restoring-force time history, and (C) force–deformation relation.
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obtained following the procedure explained in Section “Critical
Impulse Timing” and ucmax2 denotes the maximum deformation
after the second impulse under the critical double impulse (the
maximum value of umax2) calculated by the time-history response
analysis. It can be seen that the zero-restoring-force timing after
the first impulse just corresponds to the critical timing providing
the maximum deformation umax2 = ucmax2.

ACCURACY CHECK OF THE RESPONSE
UNDER THE CRITICAL DOUBLE IMPULSE
THROUGH THE COMPARISON WITH THE
TIME-HISTORY RESPONSE UNDER THE
CORRESPONDING ONE-CYCLE
SINUSOIDAL WAVE

To demonstrate the validity of using the double impulse as a sub-
stitute for one-cycle sine wave which represents a main part of the
near-fault ground motion, the comparison between the responses
under the critical double impulse and the corresponding one-cycle
sine wave is conducted in this section. Figures 13A–C show the
comparison of the deformation time history, the restoring force
time history and the force–deformation relation under the critical
double impulse and the corresponding one-cycle sine wave for
the model of α = 0.3, h= 0.1 and the input level of V/Vy = 3.0.
It should be noted that the phase lag was adjusted to compare
appropriately the time-history responses under the critical double
impulse and the corresponding one-cycle sine wave. It can be
observed that the response under the critical double impulse is
a good approximation of the response under the corresponding
one-cycle sine wave. This supports the validity of the proposed
expression under the critical double impulse.

APPLICATION OF PROPOSED
EXPRESSION ON CRITICAL RESPONSE
TO RECORDED NEAR-FAULT GROUND
MOTION

To investigate the applicability of the proposed theory to actual
recorded ground motions, the comparison of the critical elas-
tic–plastic response has been conducted under a near-fault ground
motion and under the critical double impulse. The Rinaldi station
fault-normal component during the Northridge earthquake in
1994 shown in Figure 1A is used as the near-fault groundmotion.

It should be noted that the critical double impulse was deter-
mined for given structural parameters represented by Vy in
Section “Closed-Form Expression of Maximum Elastic–Plastic
Response under Critical Double Impulse.” On the contrary, in this
section, the structural parameters are chosen so as to maximize
the response for a fixed input velocity V of the real recorded
ground motion. This treatment is somewhat similar to the well-
known elastic–plastic response spectrum which was proposed in
1960s and was conducted by changing the strength parameter
of an elastic–plastic structure. The input velocity level of the
double impulse corresponding to the Rinaldi station fault-normal
component is V= 1.64m/s.

The procedure of evaluating the critical response under the
recorded ground motion is explained here. The main part of the
recorded ground motion is approximated by a one-cycle sinu-
soidal wave as shown in Figure 1A. The acceleration amplitude,
the maximum velocity and the period of the approximated one-
cycle sinusoidal wave for the Rinaldi station fault-normal com-
ponent are Ap = 7.85m/s2, Vp = 2.0m/s, Tp = 0.8 s, respectively.
From Vp = 2.0m/s and Vp/V= 1.2222, the input velocity level of
the double impulse corresponding to the Rinaldi station fault-
normal component is V= 1.64m/s. From the period Tp = 2tc0
of the one-cycle sinusoidal wave and the specified value of V/Vy,
the natural period of the SDOF system can be obtained. The
relation betweenV/Vy and tc0/T1 can be obtained by the procedure
explained in Section “Critical Impulse Timing.”Vy can be obtained
from the specified value of V/Vy and the input velocity level
V of the double impulse corresponding to the recorded ground
motion, and the yield deformation dy can be obtained fromVy and
ω1 = 2π/T1. These values of T1, ω1, and dy are the parameters of
the approximate critical SDOF system under the recorded ground
motion for the specified value ofV/Vy. The response of this critical
system (the system exhibiting the maximum response) under the
recorded ground motion is calculated by using the time-history
response analysis.

Figures 14A–D show the comparison of the amplitude of
critical elastic–plastic response under the Rinaldi station fault-
normal component by time-history response analysis with the
proposed explicit expression of the amplitude of elastic–plastic
response under the critical double impulse. The vertical axis indi-
cates the maximum amplitude of elastic–plastic deformation (the
sum of umax1 and umax2), and the horizontal axis presents the
input velocity level expressed by V/Vy. It can be observed that
the amplitude of elastic–plastic response of a damped bilinear

A B

C D

FIGURE 14 | Comparison of maximum amplitude of deformation of models
with α = 0.1, 0.3, h= 0.05, 0.1 under critical double impulse (using quadratic
function approximation) and recorded ground motion (Rinaldi Sta. FN comp.),
(A) α = 0.1, h= 0.05, (B) α =0.1, h= 0.1, (C) α = 0.3, h= 0.05, and
(D) α = 0.3, h=0.1.
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hysteretic structure under the critical double impulse coincides
fairly well with the amplitude of elastic–plastic response under the
actual recorded groundmotion in a broad range of the input level.

CONCLUSION

The double impulse has been used as a good substitute for a one-
cycle sine wave which represents a main part of the near-fault
ground motion and the explicit expression on the maximum elas-
tic–plastic response has been derived for the SDOF damped bilin-
ear hysteretic system subjected to the critical double impulse. In
the past conventional approach using the sinusoidal wave (Iwan,
1961), the equivalent frequency resonant to the elastic–plastic
system for a specified input level must be computed iteratively by
varying the input frequency parametrically. Compared with this
approach, themaximumelastic–plastic response under the critical
double impulse, which causes the maximum response for variable
time interval of impulses, can be derived explicitly without repet-
itive procedure in the proposed method. Furthermore the critical
time interval of two impulses in the double impulse (the resonant
frequency) can also be determined systematically depending on
the input level. The conclusions may be summarized as follows:

(1) The energy balance approach and the quadratic function
approximation of the damping force–deformation relation of
the dashpot enabled the explicit expressions on themaximum
elastic–plastic response under the critical double impulse. The
maximum response under the critical double impulse can be
classified into four cases depending on the input level. CASE
1 is the case where the model remains elastic even after the
second impulse and CASE 2 is the case where the model
goes into the plastic range only after the second impulse.
FurthermoreCASE 3 is the case where themodel goes into the
plastic range even after the first impulse. In CASE 3, there are
two more cases, i.e., CASE 3-1 where the zero-restoring-force
timing after the first impulse exists in the unloading stage and
CASE 3-2 where the zero-restoring-force timing after the first
impulse exists in the reloading stage after the unloading stage.

(2) The accuracy of the derived expressions has been discussed
through the comparison with the maximum response under
the critical double impulse and the equivalent one-cycle sine
wave as a good representative for the near-fault ground
motion. The time-history response analysis has been used
for reliable comparison. It has been demonstrated that the
double impulse can be a good substitute for the one-cycle sine

wave after appropriate adjustment of the maximum Fourier
amplitude and the maximum deformation under a near-fault
ground motion can be obtained by using the double impulse.

(3) The validity of the critical time interval of two impulses
derived in Section “Critical Impulse Timing” has been inves-
tigated by conducting the time-history response analysis of
the SDOFdamped bilinear hysteresis systemunder the double
impulse. The impulse timing has been varied continuously. It
was made clear that the critical timing of the second impulse
is the timing with zero restoring force after the first impulse
(unloading process or reloading process).

The proposed method can be extended to the problem of
critical excitation for a base-isolated building structure on ground
under a near-fault ground motion by reducing this system into an
SDOF system. When the base-isolation story possesses a bilinear
hysteretic restoring-force characteristic and the super-structure
and ground can be modeled using elastic elements, the total
system can be simplified into an SDOF system with a bilinear
hysteretic restoring-force characteristic. After the total response
of this SDOF system is evaluated by using the present method,
the maximum deformation of the base-isolation story and other
response can be evaluated by using the relation between the total
response and each substructure.

In addition, the proposed method can be extended to the
problem of rocking of flexible structures (Vassiliou et al., 2016).
As for the problem of rocking of rigid blocks, some important
achievements have been made (Casapulla, 2015; Nabeshima et al.,
2016; Casapulla and Maione, 2017; Taniguchi et al., 2017). The
combination of these achievements with the present formulation
may lead to the formulation for the problem of rocking of flexible
inelastic structures.
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APPENDIX 1

Double Impulse and Corresponding
One-Cycle Sine Wave with the Same
Frequency and the Same Maximum Fourier
Amplitude
The velocity amplitude V of the double impulse is related to the
maximum velocity of the corresponding one-cycle sine wave with
the same frequency (the period is twice the interval of the double
impulse) so that the maximum Fourier amplitudes of both inputs
coincide.

The double impulse is expressed by

üg(t) = Vδ(t) − Vδ(t − t0). (A1)

The Fourier transform of Eq. A1 can be obtained as

Üg(ω) = V
(
1 − e−iωt0

)
. (A2)

Let Ap, Tp, and ωp = 2π/Tp denote the acceleration amplitude,
the period and the circular frequency of the corresponding one-
cycle sine wave, respectively. The acceleration wave üSWg of the
corresponding one-cycle sine wave is expressed by

üSWg = Apsin(ωpt) (0 ≤ t ≤ Tp = 2t0). (A3)

The time interval t0 of two impulses in the double impulse
is related to the period Tp of the corresponding one-cycle sine
wave by Tp = 2t0. Although the starting points of both inputs
differ by t0/2, the starting time of one-cycle sine wave does not
affect the Fourier amplitude. For this reason, the starting time
of one-cycle sine wave will be adjusted so that the responses of
both inputs correspond well. In this appendix, the relation of the
velocity amplitude V of the double impulse with the acceleration
amplitudeAp of the corresponding one-cycle sine wave is derived.
The ratio a of Ap to V is introduced by

Ap = aV. (A4)

The Fourier transform of üSWg in Eq. A3 is computed by

ÜSW
g (ω) =

∫ 2t0

0
{Apsin(ωpt)}e−iωtdt

=
πt0Ap

π2 − (ωt0)2
(
1 − e−2t0ωi

)
. (A5)

From Eqs A2 and A5, the Fourier amplitudes of both inputs are
expressed by

∣∣Üg(ω)
∣∣ = V

√
2 − 2cos(ωt0), (A6)

∣∣∣ÜSW
g (ω)

∣∣∣ = Ap

∣∣∣∣ 2πt0
π2 − (ωt0)2

sin(ωt0)
∣∣∣∣ . (A7)

The coefficient a can be derived from Eqs A4, A6, and A7 and
the equivalence of themaximumFourier amplitude

∣∣Üg(ω)
∣∣
max =∣∣ÜSW

g (ω)
∣∣
max,

a(t0) =
Ap

V =
max

∣∣∣√2 − 2cos(ωt0)
∣∣∣

max
∣∣∣ 2πt0

π2−(ωt0)2
sin(ωt0)

∣∣∣ . (A8)

In Eq. A8,max
∣∣∣√2 − 2cos(ωt0)

∣∣∣ = 2 holds. The denominator
max

∣∣2πt0sin(ωt0)/
{

π2 − (ωt0)2
} ∣∣ in Eq. A8 will be evaluated

next.
Let us define the function f (x) given by

f(x) =
1

π2 − x2 sinx. (A9)

The maximum value fmax of f (x) and the corresponding argu-
ment x= x0 can be obtained as follows:

x0 = 2.63099585 . . . , (A10)

fmax = f(x = x0) = 0.165802809 . . . . (A11)

The values in Eqs A10 and A11 were obtained numerically.
From Eqs A8 and A11, the coefficient a is expressed as a function
of the time interval t0 of two impulses,

a(t0) = 1/(πt0 fmax). (A12)

Figure A1A shows the relation between t0 and a. Furthermore
Figure A1B presents examples of the Fourier amplitudes of both
inputs with the same maximum Fourier amplitude. Since the
Fourier amplitudes of both inputs differ greatly in larger fre-
quencies, further investigation will be necessary in dealing with
multi-degree-of-freedom models in the future.

Consider next the ratio of the maximum velocity Vp of one-
cycle sine wave to the velocity amplitude V of the double impulse.
The velocity function u̇SWg of one-cycle acceleration sine wave is
expressed by

u̇SWg =
∫ t

0
üSWg dt =

∫ t

0
Apsin(ωpt)dt =

Ap

ωp
{1 − cos(ωpt)}.

(A13)
FromEq. A13, themaximum velocityVp of one-cycle sine wave

can be expressed by
Vp = 2Ap/ωp. (A14)

Equations A12 and A14 lead to the relation between Vp and V,

Vp =
{
2/(π2fmax)

}
V. (A15)

From Eqs A11 and A15, Vp/V can be obtained as

Vp/V = 2
/(

π2fmax

)
= 1.22218898 . . . . (A16)

It can be found from Eq. A16 that, if the maximum Fourier
amplitudes of both inputs are the same, the ratio of Vp to V
becomes constant. The modulated one-cycle sine wave will be
called “the corresponding one-cycle sine wave.”

Frontiers in Built Environment | www.frontiersin.org March 2018 | Volume 4 | Article 517

http://www.frontiersin.org/Built_Environment
http://www.frontiersin.org
http://www.frontiersin.org/Built_Environment/archive


Akehashi et al. Critical Response of Hysteretic System

0

2

4

6

8

10

0 0.5 1 1.5 2

a
 [

1
/s

]

t
0
 [s]

0

1

2

3

4

5

0 5 10 15 20

Double impulse

One-cycle 
sinusoidal wave

F
o

u
ri
e

r 
a

m
p

lit
u

d
e
 o

f 

g
ro

u
n

d
 a

c
c
e

le
ra

ti
o

n
 [

m
/s

]

circular frequency [rad/s]

V=2[m/s], t
0
=1.0[s]

A B

FIGURE A1 | Relation of amplitudes between double impulse and one-cycle
sine wave, (A) coefficient a, (B) Fourier amplitude of double impulse and
one-cycle sine wave.
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