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A Meshless Solution to the Vibration
Problem of Cylindrical Shell Panels
Aristophanes J. Yiotis* and John T. Katsikadelis

School of Civil Engineering, National Technical University of Athens, Athens, Greece

The Meshless Analog Equation Method (MAEM) is a purely mesh-free method for solving

partial differential equations (PDEs). In the present study, the method is applied to the

dynamic analysis of cylindrical shell structures. Based on the principle of the analog

equation, MAEM converts the three governing partial differential equations in terms of

displacements into three uncoupled substitute equations, two of 2nd order (Poisson’s)

and one of 4th order (biharmonic), with fictitious sources. The fictitious sources are

represented by series of Radial Basis Functions (RBFs) of multiquadric (MQ) type, and

the substitute equations are integrated. The integration allows the representation of

the displacements by new RBFs, which approximate the displacements accurately and

also their derivatives involved in the governing equations. By inserting the approximate

solution in the governing differential equations and taking into account the boundary

and initial conditions and collocating at a predefined set of mesh-free nodal points, we

obtain a system of ordinary differential equations of motion. The solution of the system

gives the unknown time-dependent series coefficients and the solution to the original

problem. Several shell panels are analyzed using the method, and the numerical results

demonstrate its efficiency and accuracy.

Keywords: MAEM, Meshless Analog Equation Method, cylindrical shells, dynamic analysis, radial basis functions,

partial differential equations

INTRODUCTION

Thin shell structures have an outstanding efficiency in fully utilizing the structural material and
have been extensively used in many engineering applications including aircraft structures, pressure
vessels, and others. Static and dynamic analysis is essential for the analysis and design of shell
structures. Various numerical methods, such as the Finite Difference Method (FDM) and especially
the Finite Element Method (FEM) have been used (Lee and Han, 2001) for the dynamic analysis
of linear elastic thin shells characterized by complex geometry, loading and boundary conditions.
Both methods have been employed successfully for the solution of a variety of static and dynamic
shell problems. The Boundary Element Method (BEM) is an efficient alternative to the domain
type methods, especially for thin elastic shallow shells (Beskos, 1991), or combined with the AEM
for cylindrical shells (Yiotis and Katsikadelis, 2000).

Such methods require the generation of a mesh which can be an incredibly tedious and time-
consuming process, while their convergence rate is of 2nd order (Cheng et al., 2003). On the
other hand, Meshless Methods (MMs) present an attractive alternative to FEM or BEM, especially
for shell structures that are complex regarding both the governing equations and the geometry
representation. Comprehensive descriptions of different MMs are presented by Liu (2002); Liu and
Gu (2005) and in a review paper by Nguyen et al. (2008).
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There are several papers on dynamic analysis of shells using
MM. Homogeneous shells are studied using various versions
of MM in Liu et al. (2006), Ferreira et al. (2006b), and Dinis
et al. (2011). Functionally graded (FG) cylindrical thin shells have
also been treated by this method (Ferreira et al., 2006a; Zhao
et al., 2009; Roque et al., 2010), as well as thick cylindrical shells
(Pilafkan et al., 2013) have been analyzed by this method.

The mesh-free multiquadric radial basis functions (MQ-
RBFs) method presented in Kansa (2005) has attracted the
interest of researchers, due to its exponential convergence and
its easiness of implementation. The significant drawbacks of the
method are the ill-conditioning of the coefficient matrix and the
inability to accurately approximate the derivatives of the sought
solution which renders the method inappropriate for a strong
formulation of the problem. These drawbacks of the standard
MQ-RBFmethod, are overcome by a new RBFmethod presented
recently by Katsikadelis (2006, 2008a,b, 2009) and Yiotis and
Katsikadelis (2008, 2013, 2015a,b). Another critical issue is the
implementation of multiple boundary conditions for equations
of order higher than 2nd. In this investigation, the δ-technique
is employed (Jang et al., 1989) for the 4th order equation. The
problem of multiple boundary conditions is not present when
the shell is modeled as a 3D body (Katsikadelis and Platanidi,
2007).

In this paper, the MAEM is extended to the dynamic problem
of cylindrical shell panels as described by section MAEM
Solution. A first approach to this problem was attempted in
a previous work (Yiotis and Katsikadelis, 2015b), where some
preliminary results only for the eigenfrequency analysis were
presented. In section Problem Statement, the statement of
the problem is presented, while several example problems are
worked out in section Numerical Examples, which illustrate the
applicability of the method and demonstrate its efficiency and
section Conclusions contains certain conclusions drawn from
this investigation.

PROBLEM STATEMENT

We consider a thin cylindrical shell with parametric lines x (s =
const.) and s (x = const.) which are assumed to be lines of
curvature, as well; x is measured along the x lines of the shell and
s along the s lines, while z is measured along the normal to the
middle surface of the shell, as shown in Figure 1. R is the radius
of curvature and h is the thickness.

In this investigation we use the Flügge equations for the thin
shell theory, based on the following assumptions (Love, 1944):

1. The thickness of the shell is small compared with (i) its other
dimensions; (ii) the smallest radius of the shell curvature.

2. Strains and displacements are sufficiently small and as a result
quantities of 2nd and higher order of magnitude in the strain-
displacement relations can be neglected.

3. The normal transverse stress is relatively small, compared with
the other normal stresses, and can be neglected.

4. Lines normal to the undeformed middle surface remain
straight and normal to the deformed middle surface.

FIGURE 1 | Cylindrical shell.

The first assumption defines themeaning of “thin shells,” whereas
the second one implies that all calculations refer to the original
undeformed configuration and subsequently leads to linear
differential equations. Further, the assumption z/R << 1 is
adopted in deriving the stress resultants in integrating the stresses
through the thickness of the shell. The 4th assumption is known
as Kirchhoff’s hypothesis yielding

γxz = 0, (1a)

γsz = 0, (1b)

ez = 0, (1c)

which implies σxz = σsz = 0 (Leissa, 1973).
The equations of motion for the case of the thin cylindrical

shell can be derived using Hamilton’s principle as follows

δ

[∫ t1

t0

(5 − K)dt −
∫ t1

t0

Wncdt

]

= 0, (2)

where 5 is the total potential energy given by

5 = U0 −W1 −W2, (3)

in which U0, is the strain energy

U0 =
1

2

∫

ν

(σxex + σses + σxsγxs + σxzγxz + σszγsz)dxdsdz, (4)

andW1,W2 the works produced by the loading and the boundary
forces, i.e.,

W1 =
∫

S

(qxu+ qsν + qzw)dxds, (5)

W2 =
∫

s

(N̄xu+ N̄xsν + Q̄xw+ M̄xθx + M̄xsθs)ds

+
∫

x

(N̄sxu+ N̄sν + Q̄sw+ M̄sxθx + M̄sθs)dx, (6)
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FIGURE 2 | Boundary and domain nodal points.

In Equation (4) σx, σs are the normal stresses, σxs the tangential
shear stress, σxz , σsz the transverse (in the z direction) shear
stresses and ex, es, γxs, γxz , γsz the respective strains at an arbitrary
point of shell cross-section.

In Equation (5), qx(t), qs(t), and qz(t) are the three
components of the loading in the axial, circumferential and
normal to the middle surface directions, respectively, while
u, ν, and w represent the axial, circumferential and normal
displacements at the middle surface of the shell.

In Equation (6) the quantities N̄x, N̄xs, Q̄x, M̄x, M̄xs, and N̄sx,
N̄s, Q̄s, M̄sx, M̄s denote prescribed boundary forces along an edge
(x = const.) and an edge (s = const.) respectively; u, ν and w
represent the axial, circumferential and normal displacements at
the boundary and θx, θs are the rotations of the normal to the
middle surface about the s and x axes respectively.

Furthermore, in Equation (2) the quantity K is the kinetic
energy of the body and is given regarding the shell variables as

K = hρ

2

∫

x

∫

s

[u̇2 + ν̇2 + ẇ2 + h2

12
(θ̇2x + θ̇2s )]dxds, (7)

where ρ is the mass density of the material of the shell.
The quantity δWnc represents the work of the damping forces,

non-conservative forces, due to the virtual displacements and is
given by the relation

δWnc =
∫

x

∫

s
(ηu̇δu+ ην̇δν + ηẇδw)dxds, (8)

where η is the damping coefficient.
Neglecting the contribution from the rotatory inertia terms

ρh3θx/12 and ρh3θs/12 in Equation (7), inserting Equation (3)
and taking the variation (Katsikadelis, 2016), we obtain the
Flügge type differential equations (Flügge, 1962; Kraus, 1967), in
terms of the displacements as well as the associated boundary and
initial conditions

(a) Differential equations

u,xx +
1− ν

2
u,ss +

1+ ν

2
ν,xs +

ν

R
w,x

−h2

12

1

R

[

w,xxx −
1− ν

2
R

(w,xs

R
+ u,s

R2

)

,s

]

− ηu̇

= −1− ν2

Eh
(qx − ρhü), (9a)

ν,ss +
1− ν

2
ν,xx +

1+ ν

2
u,xs +

(w

R

)

,s +
h2

12

1

R2

[

3(1− ν)

2
ν,xx

− (3− ν)

2
Rw,xxs − R,s(w,ss +

w

R2
+ R,s

R2
ν)

]

− ην̇

= −1− ν2

Eh
(qs − ρhν̈), (9b)

∇4w+ w,ss

R2
+

( w

R2

)

,ss +
w

R4
− 1

R
u,xxx +

1− ν

2

(u,xs

R

)

,s

−3− ν

2

( ν

R

)

,xxs +
(

R,s

R2
ν

)

,ss +
R,s

R4
ν

+ 12

h2
1

R

(

ν,s +
w

R
+ νu,x

)

+ ηẇ

= −12(1− ν2)

Eh3

(

−qz + ρhẅ
)

, (9c)

where ∇4 = ∂4

∂x4
+ 2∂4

∂x2∂s2
+ ∂4

∂s4
is the biharmonic operator

E is the modulus of elasticity and ν is Poisson’s ratio.
(b) The boundary conditions (Kraus, 1967)

On a curved edge (x = 0 or x = l)

u = ū or Nx = N̄x, (10a)

ν = ν̄ or Txs = T̄xs, (10b)

w = w̄ or Vx = V̄x, (10c)

θx = θ̄x orMx = M̄x,

(

θx = −∂w

∂x

)

. (10d)

On a straight edge (s = 0 or s = a)

u = ū or Tsx = T̄sx, (10e)

ν = ν̄ or Ns = N̄s, (10f)

w = w̄ or Vs = V̄s, (10g)

θs = θ̄s orMs = M̄s,

(

θs =
ν

R
− ∂w

∂s

)

. (10h)

Besides, the following corner conditions must be satisfied
(Leissa, 1973)

w = w̄ or (Mxs −Msx)k = F̄k, k = 1, 2, 3, 4. (10i)

(c) The initial conditions

w(x, 0) = g3(x), ẇ(x, 0) = h3(x), (11a-b)

u(x, 0) = g1(x), u̇(x, 0) = h1(x), (11c-d)

ν(x, 0) = g2(x), ν̇(x, 0) = h2(x), (11e-f)
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FIGURE 3 | The circular cylindrical shell and its geometry.

where gi(x), hi(x) (i = 1, 2, 3) are specified functions and
(x) = (x, s).

The stress resultantsNx,Ns,Nxs,Nsx,Mx,Ms,Mxs,Msx,Qx,Qs

are expressed in terms of the displacements as

Nx = Eh

1− ν2

[

u,x + ν

(

ν,s +
w

R

)

− h2

12

1

R
w,xx

]

, (12a)

Ns = Eh

1− ν2

[

ν,s +
w

R
+ νu,x

+h2

12

1

R

(

w,ss +
w

R2
+ R,s

R2
ν

)]

, (12b)

Nxs = Eh

2 (1+ ν)

[

u,s + ν,x −
h2

12

1

R

(

w,xs −
1

R
ν,x

)]

, (12c)

Nsx = Eh

2 (1+ ν)

[

u,s + ν,x +
h2

12

1

R

(

w,xs +
1

R
u,s

)]

, (12d)

Mx = −D{w,xx + ν

[

w,ss −
( ν

R

)

,s

]

− 1

R
u,x}, (12e)

Ms = −D

(

w,ss +
w

R2
+ R,s

R2
ν + νw,xx

)

, (12f)

Mxs = −D (1− ν)

(

w,xs −
1

R
ν,x

)

, (12g)

Msx = −D
(1− ν)

2

(

2w,xs −
ν,x

R
+ u,s

R

)

, (12h)

Qx = −D

[

w,xxx + w,xss −
u,xx

R
+ (1− ν)

2

(u,s

R

)

,s

− 1+ ν

2R

( ν

R

)

,xs

]

, (12i)

Qs = −D

[

w,sss + w,xxs +
( w

R2

)

,s −
(1− ν)

R
ν,xx

+
(

R,s

R2
ν

)

,s

]

, (12j)

where D = E/12(1 − ν2) and, Txs Vx the effective tangential
membrane and transverse shear forces at the edges x = 0, l given
as

Txs = Nxs +
Mxs

R
= Eh

2(1+ ν)

[

u,s + ν,x +
h2

4

1

R

(ν,x

R
− w,xs

)

]

,

(13a)

Vx = Qx +
∂Mxs

∂s
= −D

[

w,xxx + (2− ν)w,xss

− u,xx

R
+ (1− ν)

2

(u,s

R

)

,s −
3− ν

2

(ν,x

R

)

,s

]

. (13b)

Similarly,Tsx andVs represent the effective tangential membrane,
and transverse shear force at the edges s = 0, a and are given as

Tsx = Nsx =
Eh

2(1+ ν)
[u,s + ν,x +

h2

12

1

R
(w,xs +

1

R
u,s)], (14a)

Vs = Qs +
∂Msx

∂x
= −D[w,sss + (2− ν)w,xxs −

3(1− ν)

2

ν,xx

R

+
(

R,sν

R2

)

,s +
( w

R2

)

,s +
(1− ν)

2

u,xs

R
].

(14b)

MAEM SOLUTION

MAEM (Katsikadelis, 2002) is used for the solution of the initial
boundary problem (9), (10), (11), as shown in the following. Let
u, ν and w be the solution to the problem. Since Equations (9) are
of the 2nd order with respect to u, ν and of the 4th order with
respect to w, the analog equations which are convenient to use
are

∇2u = b1(x, t), ∇2ν = b2(x, t), ∇4w = b3(x, t), (15a,b,c)

where bi = bi(x, t) (i = 1, 2, 3) are unknown fictitious sources
depending on time, which, however, is treated as a parameter,
i.e., Equations (15a,b,c) are quasi-static, treated as static at each
instant. The fictitious sources can be established as follows.

The fictitious sources are approximated with MQ-RBFs series.
Thus we have

∇2u ≃
K+L
∑

j=1

a
(1)
j (t)fj(r), ∇2ν ≃

K+L
∑

j=1

a
(2)
j (t)fj(r),

∇4w ≃
K+2L
∑

j=1

a
(3)
j (t)fj(r)

(16a,b,c)
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FIGURE 4 | (A) Shell collocation scheme MAEM. (B) Shell discretization FEM.

where c is the shape parameter; K, L represent the number of
collocating points inside � and on Ŵ, respectively; fj(r) =√
r2 + c2, r =

∣

∣x− xj
∣

∣ (see Figure 2), and a
(1)
j , a

(2)
j , a

(3)
j time-

dependent coefficients to be determined. Note that, while the
derivatives of the membrane displacements u, ν are collocated at
K domain and L boundary points, the derivatives of the normal
displacement w according to the δ-technique (Ferreira et al.,
2005) are collocated in K domain and 2L boundary nodal points
placed on the auxiliary boundary Ŵ̃ at a small distance δ from the
actual one.

Equations (16) can be directly integrated to yield

u ≃
K+L
∑

j=1

a
(1)
j (t)ûj, ν ≃

K+L
∑

j=1

a
(2)
j (t)ν̂j, w ≃

K+2L
∑

j=1

a
(3)
j (t)ŵj,

(17a,b,c)
where ûj(r), ν̂j(r), ŵj(r) are solutions of the equations

∇2ûj = fj(r), ∇2ν̂j = fj(r), ∇4ŵj = fj(r). (18a,b,c)

Since the functions fj(r) depend only on the radial distance r, the
solution of Equations (18) can be obtained after writing them in
polar coordinates. For the 2nd order equations, we have

∇2ûj =
1

r

d

dr

(

r
dûj

dr

)

= fj(r), (19)

which after integration gives

ûj =
1

9
fj
3 + 1

3
fjc

2 − c3

3
ln

(

c+ fj
)

+ G1 ln(r)+H1. (20)

Similarly, we have

ν̂j =
1

9
fj
3 + 1

3
fjc

2 − c3

3
ln

(

c+ fj
)

+ G2 ln(r)+H2. (21)

The regularity condition at r = 0 demands G1 = G2 =
0. The remaining constants H1, H2 together with the shape

TABLE 1 | Eigenfrequency parameters of the shell in Example 1.

Mode c �f = Rω

√

(1 − ν2)ρ/E

MAEM FEM

1 0.06 0.6944 0.6969

2 0.8677 0.8672

3 1.0469 1.0440

4 1.1111 1.1220

5 1.2044 1.2113

6 1.4421 1.4452

parameter c, if not arbitrarily specified, can be determined with
an optimization procedure, such as to ensure the regularity of
coefficients matrix (control of the condition number) and the
error minimization. It has been shown that the coefficient matrix
resulting from the new RBFs is always invertible (Sarra, 2006),
and as a result, we take in this analysis H1 = H2 = 0 for
convenience. Thus only c, the shape parameter is involved in the
error minimization procedure (Katsikadelis, 2008a).

For the 4th order equation, one can write

∇4ŵ = ∇2(∇2ŵ) = fj. (22)

Integrating Equation (22), and removing the singular terms and
the terms including the arbitrary constants (Yao et al., 2010) yield

ŵj = − 7

60
c4fj+

2

45
c2fj

3+ 1

225
fj
5+ 2c2 − 5r2

60
c3 ln(c+fj)+

1

12
r2c3.

(23)
Direct differentiation of Equations (17) obtains the derivatives of
the displacements involved in the governing equations (9a,b,c).

u,ikl ≃
K+L
∑

j=1

a
(1)
j (t)ûj,ikl, ν,ikl ≃

K+L
∑

j=1

a
(2)
j (t)ν̂j,ikl,

w,ikl ≃
K+2L
∑

j=1

a
(3)
j (t)ŵj,ikl,

(24a,b,c)
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FIGURE 5 | (A) 1st vibration mode of the shell in Example 1. (B) 2nd vibration

mode of the shell in Example 1.

where i, k, l stand for x, s.
Furthermore, the derivatives of the displacements with respect

to time can also be obtained by direct differentiation of Equations
(17). Thus we have

u̇ ≃
K+L
∑

j=1

ȧ
(1)
j (t)ûj, ν̇ ≃

K+L
∑

j=1

ȧ
(2)
j (t)ν̂j, ẇ ≃

K+2L
∑

j=1

ȧ
(3)
j (t)ŵj,

(25a,b,c)

ü ≃
K+L
∑

j=1

ä
(1)
j (t)ûj, ν̈ ≃

K+L
∑

j=1

ä
(2)
j (t)ν̂j, ẅ ≃

K+2L
∑

j=1

ä
(3)
j (t)ŵj.

(26a,b,c)
Collocating Equations (9) at the K nodal points inside �

and the four boundary conditions, Equations (10), at the L
boundary nodal points (Figure 2) using the well-known δ-
technique for multiple boundaries (Yiotis and Katsikadelis,
2015a), and inserting Equations (17) and (24) to (26) in the
resulting expressions, a system of ordinary differential equations
is obtained, namely

Mä+ Cȧ+ Ka = g, (27)

whereM, C, and K are known square matrices having dimension
3K+ 4L; g is a vector including the 3K values of the external load
g(x, t) and a is the vector of the 3K + 4L values of the unknown

time-dependent coefficients a
(1)
j (t), a

(2)
j (t), a

(3)
j (t).

Equation (27) is the semi-discretized equation of motion
of the cylindrical shell with M, C, and K representing the

TABLE 2 | Eigenfrequency parameters of the shell in Example 2.

Mode c �f = Rω

√

(1 − ν2)ρ/E

MAEM FEM

1 0.06 0.9026 0.9039

2 0.9086 0.9139

3 1.2032 1.1939

4 1.3662 1.3751

5 1.5473 1.5649

6 1.7498 1.7487

FIGURE 6 | (A) 1st vibration mode of the shell in Example 2. (B) 2nd vibration

mode of the shell in Example 2.

generalized mass, damping and stiffness matrices, respectively.
It can be solved numerically, using any time step integration
technique to establish the time-dependent unknown coefficients.
Here themethod presented in Katsikadelis (2014a,b) is employed.
The initial conditions of Equation (27) result from Equations (17)
and (25) on the basis of Equations (11) as follows:

a(1)(0) = û−1g
1
(x), ȧ−1(0) = û−1h1(x), (28a)

a(2)(0) = ν̂−1g
2
(x), ȧ(2)(0) = ν̂−1h2(x), (28b)

a(3)(0) = ŵ−1g
3
(x), ȧ(3)(0) = ŵ−1h3(x). (28c)

Once the coefficients a
(1)
j (t), a

(2)
j (t), a

(3)
j (t) have been computed,

the field functions u, ν,w, their derivatives, and the stress
resultants can be evaluated from Equations (17), (24) to (26) and
(12) to (14).
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FIGURE 7 | Shell irregular collocation scheme: MAEM.

TABLE 3 | Eigenfrequency parameters of the shell in Example 3: case (a).

Mode c �f =
2lωRsin (φ/2)

h

√

12 × (1 − ν2)ρ/E

MAEM Lim and Liew (1994)

1 0.05 99.716 99.263

2 118.227 119.00

3 150.854 151.13

4 155.536 156.35

5 171.666 172.52

6 190.027 192.43

7 200.254 201.67

8 205.107 207.80

For free vibrations it is C = g(x, t) = 0 and the equation of
motion, Equation (27), takes the form

Mä+ Ka = 0, (29)

while the essential boundary conditions, Equations (10), become
homogeneous.

By setting

a(t) = αeiωt , (30)

Equation (29) results in the eigenvalue problem

[

K− ω2M
]

α = 0, (31)

which gives the eigenfrequencies ωi and the eigenvectors

α = [α(1),α(2),α(3)]
T
, where α(1) = [α

(1)
1 ,α

(1)
2 , ...,α

(1)
K+L]

T
,

α(2) = [α
(2)
1 ,α

(2)
2 , ...,α

(2)
K+L]

T
, α(3) = [α

(3)
1 ,α

(3)
2 , ...,α

(3)
K+2L]

T
.

TABLE 4 | Eigenfrequency parameters of the shell in Example 3: case (b).

Mode c �f =
2lωRsin (φ/2)

h

√

12 × (1 − ν2)ρ/E

MAEM Lim and Liew (1994)

1 0.05 45.909 46.241

2 73.250 74.300

3 79.160 79.239

4 109.855 110.14

5 130.664 132.35

6 136.049 135.51

7 165.271 165.57

8 167.891 166.82

FIGURE 8 | (A) 1st vibration mode of the shell in Example 3-case (a). (B) 2nd

vibration mode of the shell in Example 3-case (a).

The elements of these vectors are the three sets of coefficients
corresponding to the functions u, ν, and w, respectively.
Subsequently, the mode shapes are obtained by substituting

α = [α(1),α(2),α(3)]
T
in Equations (17).

The accuracy of the approximation (9) depends heavily on c
(see Equations 20-21-23). This was also verified in the problem
at hand. Thus we come across to the problem of selecting a
“good” value for c, that is, a value of the shape parameters
that produces results of acceptable accuracy. Several methods
have been suggested (Hardy, 1971; Franke, 1982; Foley, 1994;
Rippa, 1999; Katsikadelis, 2009) for selecting a good value for
c in 2D problems. Katsikadelis (2006, 2008b) proposed the
minimization of the functional (total potential) for obtaining
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FIGURE 9 | (A) 1st vibration mode of the shell in Example 3-case (b). (B) 2nd

vibration mode of the shell in Example 3-case (b).

an optimal value for c. For the present problem, the optimal
value is obtained by the search method as the value of c
which yields the minimum value of the eigenfrequencies ωi.
It was observed that the optimum c giving the minimum 1st
eigenfrequency differs negligibly from that yielding the higher
minimum eigenfrequencies. Therefore the same optimum value
of c can be used to avoid the search method for higher
eigenfrequencies.

NUMERICAL EXAMPLES

On the basis of the above analysis, a Fortran program has been
written. The expressions of the derivatives involved in Equations
(9) to (11) and Equations (12) to (14) have been obtained using
the symbolic language MAPLE. Though the method applies to
cylindrical shell of variable radius of curvature, for reasons of
simplicity, the efficiency and accuracy of the developed method
are demonstrated by studying the forced and free vibrations
of circular cylindrical panels, (Figure 3), under different sets of
boundary conditions. The NASTRAN FEM code and a model
with 400 rectangular elements (Figure 4B) are used to compare
the results. In all examples the employed material constants are:
E = 21 × 106kN/m2, ν = 0.30. The results have been obtained
running the relevant programs on an Intel Core 1.6 GHz with
RAM 4 GB computer.

 

 

 

FIGURE 10 | Time history of the normal displacement w, bending moment

Ms, and membrane force Ns at the center of the shell in Example 4.

Example 1
We study the dimensionless eigenfrequency parameter �f =
Rω

√

(1− ν2)ρ/E of a simply supported circular cylindrical shell
panel with movable curved edges in the axial direction (Nx =
v = w = Mx = 0 along the curved edges and u = v = w =
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Ms = 0 along the straight edges). The first six eigenfrequency
parameters from MAEM are given in Table 1 and are compared
with a FEM solution. The 1st and 2nd vibration modes for the
normal displacement are shown in Figure 5, respectively. The
numerical results have been obtained with the parameters L =
80, K = 361 and δ = 1.e − 6 as shown in Figure 4A. The
optimal value copt = 0.06 corresponds to the 1st mode and
has also been used for the other five modes. This value is close
to that obtained by the formula c = 2/

√
(K + 2L) = 0.088

proposed in Ferreira et al. (2006b). The employed geometrical
data are: h = 0.10m, R = 10.00m, l = 5.00m, a = 5.00m.
The CPU time for the FEM solution was 10 s, while for the
MAEM was 85 s. Note that the employed code has not been
optimized.

Example 2
In this example the same shell as in Example 1 is analyzed under
the following boundary conditions: Nx = ν = w = θx = 0
along the curved edges and u = ν = w = θs = 0 along the
straight edges. The same collocation points as in the Example
1 have been used. The first six eigenfrequency parameters are
shown in Table 2 as compared again with those obtained from
a FEM solution. The 1st and 2nd vibration modes for the
normal displacement are shown in Figure 6 respectively. The
value copt = 0.06 was employed to obtain results for the first six
modes. The CPU time for the FEM solution was 10 s, while for
the MAEM was 88 s.

Example 3
In this example, a cylindrical shell panel with geometrical data
R = 9.896m, l = 4.949m, a = 5.00m is analyzed. Two
cases with regard to the thickness have been considered: (a)
2R sin(φ/2)/h = 100 and (b)2R sin(φ/2)/h = 20 . All edges
are clamped, i.e., u = ν = w = θx = 0 along the curved
edges and u = ν = w = θs = 0 along the straight edges.
The numerical results have been obtained with L = 80, K =
361 randomly distributed as shown in Figure 7, that is using an
irregular distribution, and δ = 1.e − 6. In both cases, the search
method resulted copt = 0.05. The first eight eigenfrequency
parameters are shown in Tables 3, 4 as compared with those
obtained from an analytical solution (Lim and Liew, 1994). The
1st and 2nd vibration modes for the normal displacement are
shown in Figure 8 for case (a) and in Figure 9 for case (b),
respectively. These figures show that that the vibration modes
are influenced by the thickness of the shell, which is verified in
(Webster, 1968; Lim and Liew, 1994).

Example 4
In this example, the forced vibrations of a simply supported
circular cylindrical shell panel (u = ν = w = Mx = 0

along the curved edges and u = ν = w = Ms = 0
along the straight edges) with zero initial conditions (u(x, 0) =
u̇(x, 0) = ν(x, 0) = ν̇(x, 0) = w(x, 0) = ẇ(x, 0) = 0)
has been studied. Its geometrical data are those of Example
1. The applied load is the normal pressure given by qz =
sin(t) kN/m2. The mass density is ρ = 2.446kNm−4sec2. The
numerical results have been obtained with L = 80, K = 361
distributed as shown in Figure 4A and δ = 1.e−6. The employed
optimal value is copt = 0.06. The time history of the normal
displacement w, the bending moment Ms and the membrane
force Ns at the center of the shell are shown in Figure 10 as
compared with those obtained by a FEM solution. The CPU
time for the FEM solution was 40 s, while for the MAEM was
325 s.

CONCLUSIONS

The Meshless Analog Equation Method, a truly meshless
method, has been applied to the dynamic analysis of thin
cylindrical shell panels in the present study. MAEM is based
on the principle of the analog equation, converting the original
equations into three substitute equations, two Poisson’s and
one biharmonic, which are solved using a meshless method.
The use of integrated MQ-RBFs to approximate the fictitious
sources allows the approximation of the sought solutions by new
RBFs, which approximate both the solution and its derivatives
accurately. This way the strong formulation of the problem
avoids the drawbacks inherent in the conventional MQ-RBFs,
while maintaining all the advantages of a truly mess-free method.
A method is presented to obtain optimum values for the shape
parameter, eliminating the uncertainty in its choice. It was
observed that the optimum value of the shape parameter for
the 1st mode differs negligibly from those of higher modes
and therefore the same value can be used to obtain the
eigenfrequencies of higher modes. The solution algorithm is
straightforward and quite reasonably easy to program. The
numerical examples presented demonstrate the efficiency and
accuracy of the proposed method and show that MAEM can
be used as an efficient solver for challenging problems in
engineering analysis.
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