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Earthquake exposure describes the assets that are exposed to seismic activity and

are susceptible to be damaged. In seismic risk applications, it mostly refers to the

residential and commercial building portfolios, although in general may also include

transport infrastructure and lifelines. Providing an efficient description of a complex urban

environment in terms of the structural characteristics of buildings related to their seismic

vulnerability is challenging, considering the variety of building practices, materials and

configurations. A common approach entails the use of pre-defined building typologies,

but this may introduce a bias in the resulting models. Faceted taxonomies have been

recently introduced to provide a standardized description of buildings using a rich set

of basic attributes, but cannot be used directly for risk-related applications. We argue

that a bottom-up approach to exposure modeling might prove instrumental in increasing

the quality and reliability of risk assessment, and propose hereby a novel score-based

methodology to define and assign building classes to unclassified buildings in a sound

and transparent way. The approach can be adopted for standard building classifications

as well as for original typologies that may be more efficient in capturing the specific

features of the building stock. The proposed methodology efficiently decouples the

collection of buildings observations, typical of surveying activities, from the assignment

of risk-aimed building classes, and provides a useful tool to practitioners and engineers

involved in large-scale earthquake risk assessment. The proposed methodology has

been exemplified with a building portfolio collected in France near the geothermal plant

of Soultz-sous-Fôrets, and is used to rapidly characterize the seismic exposure of a built

environment for induced seismicity applications.

Keywords: seismic risk, exposure, building stock, vulnerability, multi-hazard, taxonomy

1. INTRODUCTION

In seismic risk applications the exposure component provides information on the assets that
are exposed to seismic activity and are susceptible to be damaged (Algermissen, 1989; Coburn
et al., 1994; Pittore et al., 2017). It often mainly refers to the residential and commercial building
stock, although it may also include industrial facilities, transport infrastructure and lifelines.
Unfortunately, providing a reliable description of a complex urban environment in terms of the
structural characteristics of buildings related to their seismic vulnerability is challenging, due to the
variety of building practices, materials and configurations (Pittore et al., 2017).
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For large-scale assessments, in order to unequivocally
assigning a fragility and/or vulnerability model to individual
buildings, specific risk-oriented taxonomies are usually
employed. As an example, the global exposure model proposed
within the 2013 Global Assessment Report (GAR) employed the
PAGER-STR taxonomy (Jaiswal et al., 2010) to encode building
types (De Bono and Mora, 2014). Also the HAZUS taxonomy
(Kircher et al., 2006), originally developed to describe the
building stock in USA, has been extensively employed to model
building inventories in America (see e.g., Aguirre et al., 2018). In
Europe, the European Macroseismic Scale (Grünthal, 1998) has
been used in several countries for risk assessment purposes (see
e.g., Tyagunov et al., 2004; Lagomarsino and Giovinazzi, 2006;
Schwarz et al., 2006; Bernardini et al., 2010). The same taxonomy
has been also used outside its original scope in areas where
macroseismic data have been widely available, as for instance
in Turkey (Abrahamczyk et al., 2013) and in several Central
Asian Countries (Bindi et al., 2011; Pilz et al., 2013; Pittore and
Wieland, 2013; Pittore et al., 2014).

The application of risk-oriented taxonomies has been
exemplified in the development of exposure models based either
on the combination of authoritative data (e.g., census) and
expert judgment (Tyagunov et al., 2004), or on the collection of
data in the field (Abrahamczyk et al., 2013). In the latter case,
each inspected building is assigned one out of a pre-defined
set of building classes according to the subjective judgment
of the surveyor. This is a straightforward process, but also
implies that the labeled buildings will mostly comply with
the underlying assumptions of the classes the taxonomy labels
refer to. Furthermore, these taxonomies may have a limited
geographical scope and thus may not be easily applied to other
regions (Jaiswal et al., 2010). This induces therefore an epistemic
uncertainties into the subsequent vulnerability modeling, which
both is difficult to quantify and to communicate to end-users and
stakeholders.

More recently faceted taxonomies have been proposed (Brzev
et al., 2013), as a solution to obtain flexible descriptions of
diverse building typologies at wide geographical scales. The
GEM taxonomy for instance has been successfully applied
to describe typical building typologies in exposure models
based on authoritative data (e.g., Yepes-Estrada et al., 2017).
Although these taxonomies possess the necessary attributes to
clearly describe individual buildings’ features related to seismic
vulnerability, in large-scale applications they cannot be used in
the same way as the risk-oriented ones, thus creating a clear gap
between the data collection and the risk assessment phases. In
other words the data collected using faceted taxonomies cannot
be directly employed to generate risk-oriented exposure models.

To address this issue, we propose a novel methodology which
applies to observations collected with a faceted taxonomy and
employs an attribute-based scoring approach to define and assign
risk-oriented building typologies in a sound and transparent
way, explicitly accounting for uncertainties in the underlying
data. The approach can be adopted both for standard (or de
facto standard) building classifications as well as for customized
typologies. Following this approach the collection of buildings
observations during survey activities is clearly decoupled from

the assignment of risk-oriented building classes, thus providing a
useful tool to practitioners and engineers involved in large-scale
earthquake risk assessment.

In the first section we will briefly review the two different types
of taxonomies used in risk assessment applications. In the second
section, an exposure modeling approach based on the bottom-up
processing of survey datasets is presented, followed by a more
detailed description of the proposed score-based classification
methodology. The third section describes an exemplification of
the proposed methodology for a buildings dataset collected in
the region surrounding the town of Soultz-sous-Forêts in Alsace,
France, where a geothermal power plant is located. This region
has been selected as test site within the EC-funded research
project DESTRESS, where the possible risk arising from induced
seismicity is investigated. A conclusions and outlook sections
conclude the paper.

2. RISK-ORIENTED AND FACETED

TAXONOMIES

Most structural engineers would agree on the fact that each built
structure, intended as a compound of geometric and structural
characteristics and the resulting static and dynamic behavior, is
unique, and as such should be addressed individually. This is
certainly advisable for lifeline facilities such as hospitals, complex
high rise buildings or critical infrastructures such as industrial
buildings. However, this entails a significant effort in terms of
data collection and analysis, which makes it not feasible in
wide-scale risk-assessment applications dealing with hundreds of
thousands of buildings. In most risk analysis applications small
sets of typological classes clustering similar structural features
are used. We refer to these as risk-oriented taxonomies, since the
buildings belonging to each class are expected to exhibit similar
seismic performance, often derived from analysis of empirical
damage data.

Different types of taxonomies have been proposed in the
last decades. The 1998 European Macroseismic Scale (Grünthal,
1998) is the latest evolution of the one-century-long dynasty
of scales that was born with the Mercalli-Cancani-Sieberg scale
(Musson et al., 2010), and is aimed at describing the observable
effects of ground motion on the environment, the people
and the built environment. The EMS-98 scale acknowledges
the variability of the seismic performance in modern built
environment, and introduces 15 different classes of buildings,
predominantly accounting for wall materials but also considering
different levels of earthquake-resistant design. Each class is
associated to an expected range of physical vulnerability, defined
on a six level-scale (named from “A” to “F” with “A” being the
most vulnerable). The classes are representative of the building
stock in Europe, although the scale is widely used also in other
geographical areas,

The HAZUS taxonomy (Barthel et al., 1998; Graber et al.,
1999) has been introduced as part of an integrated and
comprehensive methodology originally proposed in USA by
the Federal Emergency Management Agency (FEMA) in order
to quantitatively estimate the impact of natural phenomenons
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such as earthquakes, floods and hurricanes (Kircher et al.,
2006). This taxonomy was built upon the building classes
proposed within the framework of rapid visual screening with
the aim of evaluating life safety performance level and immediate
occupancy. The latest version includes 36 building typologies,
mainly defined by different lateral-load-resisting systems, with
4 levels of seismic code compliance, that has been optimized
to describe the building stock in the USA. Other structural
features are individually accounted for in form of a supplemental
checking-list during the multi-tier seismic evaluation procedure
(Graber et al., 1999). For each of these representative building
typologies and some of their derivative configurations fragility
and vulnerability models have been provided (Council et al.,
1999).

The PAGER-STR taxonomy is the most comprehensive risk-
oriented classification of (mostly residential) building classes at
global scale, and has been compiled by partly joining in several
already existing taxonomies and complementing it with further
building typologies collected via specific surveys in several
countries (Jaiswal et al., 2010). The taxonomy features a total of
103 classes, differentiated based on lateral-load resisting system,
wall material, height category and seismic code compliance. The
PAGER-STR taxonomy (Jaiswal et al., 2010) has been last updated
in 2014, and covers a great number of building typologies (and,
indirectly, of building practices) and it is mostly used to represent
large-scale exposure and is not designed to be used for small-scale
and single-structure description.

2.1. Faceted Taxonomies
Risk-oriented taxonomies are usually employed to model seismic
exposure following a top-down approach, i.e., where the
composition of the building stock is estimated based on expert
judgment or inferred from aggregated data (e.g., housing census).
Although these taxonomies have been largely used in field
surveys (e.g., Graber et al., 1999), the direct assignment of
a building class from a risk-oriented taxonomy to buildings
observed during a survey has several disadvantages, including:

• the assignment is subjective, and as such may be partly biased
depending on the skills and experience of the surveyor,

• once the class is assigned, most information on structural and
non-structural features of the observed building is lost,

• the assignment of the class cannot be further modified or
reversed after the completion of the survey.

Furthermore, the assignment of a class from a risk-oriented
taxonomy often implies that the building will comply with
the assumptions defined by the class itself. This is reasonable
when the reference taxonomy has been developed with the
same geographical scope of the field survey (e.g., assigning
HAZUS classes in California, USA), but may introduce a further
uncertainty in the subsequent vulnerability estimation in other
cases (e.g., assigning PAGER classes in Italy).

In order to overcome this issue, a more flexible approach
has been proposed using so called faceted taxonomies. A faceted
taxonomy is a set of taxonomies, each describing a given
domain from a different aspect, or facet (Tzitzikas, 2009). A
faceted taxonomy has several advantages over a single hierarchy

of attributes, including conceptual clarity, compactness and
scalability. Several conceptual designs for detailed description
and classification of buildings have been proposed within the
engineering community (e.g., Rivard and Fenves, 2000), mostly
with the purpose of describing in detail single structures from
the structural and functional point of view. More recently, within
the framework of the SYNER-G project, a faceted taxonomy
has been proposed for the description of European buildings
(Pitilakis et al., 2016), based on 15 facets, or list of categories
(see Brzev et al., 2013, for a more in-depth review of existing
taxonomies).Within the Global EarthquakeModel (GEM), based
upon these past applications, a comprehensive faceted taxonomy
has been introduced to provide a standardized description
of buildings with a global scope (Brzev et al., 2013). The
taxonomy is organized as a series of expandable tables, which
contain information pertaining to various building attributes.
Each attribute describes a specific characteristic of an individual
building or a class of buildings that could potentially affect
their seismic performance. The following 12 attributes have been
included in the GEM Building Taxonomy v2.0 (hereby referred
to as GEM taxonomy):

1. direction
2. material of the lateral load-resisting system
3. height
4. date of construction or retrofit
5. occupancy
6. building position within a block
7. shape of the building plan
8. structural irregularity
9. exterior walls
10. roof
11. floor
12. foundation system

some further complemented by second- and third-level
attributes. For each attribute a value may be specified, chosen
amongst a set of predefined values. The set of values describing
the building can be arranged as a synthetic textual string.
Through this string (or, alternatively, by providing the couple
attribute-value for each defined attribute) an individual building
may be described in its main fragility and vulnerability-related
characteristics.

The GEM taxonomy is very efficient in describing a variety of
buildings, and can be used to translate the reference descriptions
associated to risk-oriented taxonomies such as PAGER-STR or
HAZUS (Brzev et al., 2013). This taxonomy can also be efficiently
used to collect observed features in the field (Bevington et al.,
2012; Wieland et al., 2015; Pittore et al., 2017). Unfortunately,
in most cases, only a fraction of the attributes collected are then
used to actually classify the buildings, using a simplified set of
categories.

3. BOTTOM-UP EXPOSURE MODELING

Faceted taxonomies are very flexible in providing customized
descriptions of buildings which are largely independent on the
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geographical region, as well as on a specific hazard. Being highly
detailed, and not directly related to building classes expectedly
homogenous in terms of vulnerability, these types of taxonomy
have not been fully exploited in risk-related applications. In
most cases, they have been used to provide a more standard,
transboundary description of dominant building types. Often
this type of taxonomy is employed in field screening activities
(e.g., Verrucci et al., 2014), but then the observed buildings are
mapped into simpler taxonomies. Although suitable mappings
can be defined in order to translate aggregated information
from, e.g., housing census, to a set of building types composing
a large-scale exposure model (e.g., Yepes-Estrada et al., 2017),
there is actually no methodology to consistently assess the
compatibility of the set of structural attributes observed for an
individual building with respect to one or more risk-oriented
class definitions. This creates thus a gap between the data
collection phase, where a large number of attributes may be
observed and recorded, and the application phase, where most
of this information is in fact discarded by using simplified
taxonomies that may not fully capture the properties of the
building stock.

We suggest therefore to aim at a bottom-up approach to
exposure modeling, able to exploit the potential of faceted
taxonomies into a transparent and sound framework. This
is implemented by encoding risk-oriented building classes in
terms of the attribute types and values most likely (or less
likely) associated to the classes themselves, and by defining a
score for each surveyed building according to its compatibility
with respect to one or more risk-oriented building classes.
This allows to efficiently decouple the data collection from
the exposure modeling, while ensuring full reproducibility of
the results and a flexible re-use of the raw, field-collected
data.

In the following we assume that for each considered building
b, a taxonomic description B(b) is available. As a reference we will
use the GEM taxonomy. The taxonomic description is composed
by a set of attribute values vi describing observed attributes ai
of the building. Most of the attribute types are categorical, and
we assume that the corresponding attribute values are finite and
mutually exclusive for each considered attribute type. In general
(and in real cases), not all features covered by the taxonomy will
be observed, and the observations may be affected by errors, so
we can expect both missing data and wrong assignments. No
imputation of the missing features will be considered at this
stage. The taxonomic description also includes non-categorical
entries, that can be either numerical (e.g., the number of stories)
or ordinal (e.g., the construction date).

4. SCORE-BASED CLASSIFICATION

The approach is based on a score and constraints system, which
allows the estimation of the level of compatibility of a generic
building b, defined by its taxonomic description B(b), with one
or more building classes defined in advance. These classes define
in turn a schema, that is a homogeneous classification with
consistent hypothesis for the expected vulnerability. For instance,

the 15 classes defined by the EMS-98 would be considered as a
single schema, as well as the 103 classes described by PAGER-STR.
A user-generated schema may be defined as well, in order to
define a set of risk-oriented building classes which refer to a
given vulnerability estimation framework and often to a specific
geographical scope. The comparison of the compatibility levels
across the schema classes would then allow the assignment
of a specific class to the building, if required, based upon
clearly defined criteria. For the sake of simplicity in the next
subsections the scoring system will be described in terms of a
basic formulation. In the subsequent section a more advanced
formulation in terms of fuzzy numbers will be provided and
exemplified.

4.1. Attribute Selection and Weighting
The definition of one or more building classes entails, as a
first step, the selection of the attributes {ai, i = 1, . . . , n} to
be considered for the class definition (and subsequent scoring)
process, and the relative weighting {wi, i = 1, . . . , n,

∑

i wi =

1} of these attributes. The considered attributes are the ones
describing the structural (and non structural) features of
the buildings most directly related to the defined classes.
For instance, most of the building classes related to seismic
vulnerability could include the type of lateral load-resisting
system and its main material, along with the type and material
of the floors. Theoretically, all available attributes may be used
to define the classes, although this would require later the
specification of a significant number of scores. The use of
weights allows to both acknowledge the role of the different
attributes in describing the vulnerability of the buildings, and
to consider the availability and the epistemic uncertainty related
to the observation of the attributes themselves (for instance if
the uncertainty in attributing the lateral load resisting system
is deemed to be high, the corresponding attribute could have a
lower weight in order to avoid biasing the estimates, although this
attribute type is relevant for estimating the seismic vulnerability).
The weighting scheme could therefore be customized for
different building classes, also considering the specific data
collection methodology employed to populate the taxonomic
descriptions. The set of attributes and weights should be the same
for all classes belonging to a given schema.

4.2. Compatibility Scores of Attribute
Values
For each of the selected attribute types ai (and for which
a weight has to be defined), a set of compatibility scores is
associated to the corresponding categorical values {vik, k =

1, . . . ,mi} the attribute can take. Therefore, for each building b,
for which a taxonomic description B(b) is given (e.g., as result
of a rapid visual screening or other inspection methodology), a
compatibility score Sc(b) with respect to a given class c can be
computed according to:

Sc(b) =
n

∑

i=1

wi

mi
∑

k=1

δik(b)s
c
ik (1)
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where

δik(b) =

{

1 if vik ∈ B(b)
0 otherwise

(2)

vik is an attribute value belonging to the taxonomic description
B(b) of the considered building, and sc

ik
is the score (measuring

the level of compatibility) of the attribute value vik with respect
to the building class c.

For example, if the class c refers to a “reinforced masonry”
building, than the following scores may be assigned to the values
related to the attribute typemat_type:

smat_type = {CU :−1,CR :−1, S :−1,M : 0,MUR :−1,MCF :

+0.3,W :−1,C99 :−1, SRC :−0.5,M99 : 0,MAT99 :

0,MR :+1,ER :−1,E99 :−1,EU :−1}

The attribute valueMR is assigned a maximum score (+1), while
the values related to concrete and earthen materials are assigned
theminimum score (−1). The value describing confinedmasonry
MCF has been assigned a mildly positive score indicating a slight
compatibility, and the values indicating either a generic masonry
M99 or the total ignorance of material type MAT99 have been
assigned a neutral score (0) since in both cases the reinforced
masonry cannot be ruled out. If, hypothetically, the attribute
value W would be observed in a screened building, it would
contribute with a−1 to the overall score with respect to the class
“reinforced masonry.”

The score Sc(b) is further subjected to a set of constraints
Zc(b), such as

Zc(b) =
∏

i

δi(b) (3)

where

δi(b) =

{

1 if Zi is satisfied
0 otherwise

(4)

If at least one constraint is not satisfied, than Zc(b) = 0, and
the overall score can be set to a default low score (e.g., −1).
Specific constraints can be defined for numerical attributes such
as the number of stories, or for non-categorical attributes (e.g.,
the construction date).

When a set of building classes has to be defined, a
corresponding set of compatibility scores must be provided for
each individual class. In order to simplify the score definition,
a default compatibility score (e.g., 0, indicating neutrality) can
be assumed a priori for all possible attribute values, and only the
attributes contributing either positively or negatively to the final
score would be explicitly defined.

5. FUZZY SCORING FORMULATION

The scoring method described above needs the specification
of a numerical compatibility score with respect to a building

class for a set of attribute values. There may be different
approaches to specify these scores following algorithmic or
heuristic strategies, but the simplest way is to have an expert
specify them manually. However, this procedure always entails
a degree of subjectivity, i.e., implies the subjective interpretation
of the notions of “compatibility,” and “belonging to a class” by
the expert. This in turn will result in an additional uncertainty
component. A way to minimize this uncertainty would be to use
of a pool of experts, whose judgmental bias can be compensated
by a suitable calibration phase (Aspinall, 2010), but still, the
manual assignment of numerical scores would be difficult to
constrain.We propose therefore to substitute the numerical score
with a semantic, more qualitative formulation, which employs
triangular fuzzy numbers to define the compatibility scores of the
specific attribute value.

A Triangular Fuzzy Number (TFN, see Kaufmann and Gupta,
1985; Zhu et al., 1999) is hereby defined as an array of three real
numbers [n1, n2, n3]; the first describes the value with the highest
membership, i.e., the mode of the distribution. The second and
third numbers represent the support of the fuzzy number, i.e.,
the interval outside which its membership is zero (n1 ∈ [n2, n3]).
The membership function will be then linearly increasing from
0 at n2 to 1 at n1, and then will linearly decrease from 1 at n1 to
0 at n3 (see also Figure 1). Seven different levels of compatibility
are introduced, listed in Table 1 along with their representation
as TFNs.

These seven compatibility levels are symmetric with respect
to the neutral compatibility (which translates into a zero score
for the analyzed attribute value). The use of triangular fuzzy
numbers describes, through a simple mathematic formulation,
the intrinsic uncertainty and subjectivity of the compatibility
assignment. The “highly compatible” level for instance is
translated into a TFN score interval with support is in the range
[0.5, 1] and monotonically increasing values. Different types of
fuzzy formulations may describe subjective evaluations with
different degree of confidence, just by reducing or enlarging the

FIGURE 1 | Triangular fuzzy numbers describing the degree of membership of

the compatibility score for each qualitative compatibility level. The three

descriptors of the distribution that can be used for defuzzifying are also shown.

Frontiers in Built Environment | www.frontiersin.org 5 October 2018 | Volume 4 | Article 41

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Pittore et al. Risk-Oriented Bottom-Up Exposure Modeling

TABLE 1 | Qualitative compatibility levels to be used to assign a fuzzy score.

Symbol Fuzzy number Semantic description Qualitative description

+++ [1, 0, 1] Highly compatible Observed in most of buildings of the class

++ [0.6,−0.3, 1] Moderately compatible Observed in many of buildings of the class

+ [0.3,−0.6, 0.9] Slightly compatible Observed in some buildings of the class

0 [0,−1, 1] Neutral Independent on the class

− [−0.3,−0.9, 0.6] Slightly incompatible Not observed in many buildings of the class

−− [−0.6,−1, 0.3] Moderately incompatible Not observed in the majority of buildings of the class

−−− [−1,−1, 0] Highly incompatible Observed in almost no buildings of the class

support and/or the shape of the corresponding fuzzy interval (see
Figure 1).

5.1. Class Definition Scheme
For a considered attribute type, the level of compatibility of each
attribute value with respect to the building class to be represented
should be specified. This would allow a very precise control of
the resulting overall compatibility, although it may result in a
significant number of compatibility assignments to be defined.
A simpler alternative is to initialize all attribute values to a
default compatibility level (e.g., neutral), and explicitly consider
only the attribute values which are contributing to the overall
compatibility score. The set of the compatibility levels for the
significant attribute values for a specific building class in a schema
is referred to as a class description.

Table 2 shows, for example, two class descriptions for the
building typologies “adobe (earth brick)” building (ADO) and
“rubble stone, field stone” (URM1), as defined by the EMS-98
macroseismic scale (Grünthal, 1998). Six structural attributes of
the GEM taxonomy have been used. We can note that for some
of the considered attributes, there is a partial overlap of the
compatibility values, as is expected considering the similarities
between these two building types. We can also note that, in
this case, for the material type (mat type) both compatible and
incompatible values have been specified, whereas for the other
attributes mostly only the compatible values have been provided.
Furthermore, the floor material (floor mat) for the ADO building
class has not been specified at all.

In order to assign an inspected building to a specific building
class, the overall compatibility score is first computed with
respect to all available buildings classes using the corresponding
class descriptions. The score is thus computed as a weighted
combination of the individual compatibility levels, as shown
in Equation (1). Since the compatibility levels are defined by
triangular fuzzy numbers, the operation is carried out according
to the simple arithmetic of fuzzy numbers following (Kaufmann
and Gupta, 1985). The result will be in turn a triangular fuzzy
number.

5.2. Non-categorical Attributes
The application of the methodology described above is
straightforward with categoric attributes, i.e., attributes whose
values are discrete and finite. In order to consider non-categorical
attributes, such as numerical values (e.g., number of stories) or
dates, two approaches may be followed:

1. a categorization of the attributes, e.g., mapping the number of
stories into a category such as “low rise” if number of stories is
less than 4,

2. the definition of a constraint, which defines a specific
condition to be satisfied (e.g., the number of stories should be
less than four). If the constraint is not satisfied, then the overall
compatibility score of the considered building can be set, e.g.,
to the minimum compatibility.

5.3. Class Assignment
Once the compatibility score with respect to all building classes
has been computed, the unmapped building should be assigned
a single building class. This may be obtained by comparing the
respective compatibility scores, and selecting the building class
that scores the highest. Since the scores are defined by fuzzy
intervals, a fuzzy comparison and ranking approach (Bortolan
and Degani, 1985) is therefore applied, after Dorohonceanu and
Marin (2002). A further threshold on the compatibility score
is also used, in order to filter out the assignments where even
the highest-ranking score would be considered unreliable. The
threshold can be applied either on the fuzzy interval or on
the related defuzzified (crisp) value. In case no building class
exceeds the threshold, the considered building can be assigned
to the special class OTH (Other) for later analysis. In case
more than one class appears to be highly compatible, a suitable
heuristic should be defined in order to assign a single class, or
alternatively all the compatible classes should be kept in order to
account for the underlying uncertainty. In real-world cases, for
instance, also considering missing or contrasting assignment of
the attribute values during the data collection, a partial overlap
among different classes should be expected (e.g., between adobe
and unreinforced masonry, as shown in Table 2). If the seismic
behavior of the considered classes is expected to be different,
the uncertainty in the class assignment would propagate into
the subsequent risk assessment. The proposed method allows
to approach this uncertainty in a sound and traceable way, but
caution should be observed in all steps to ensure full consistency
of the results.

6. APPLICATION

In order to exemplify the proposed methodology, we consider
a case where the residential building stock in France, close to
Soultz-sous-Fôrets, was surveyed using a remote rapid visual
screening (RRVS, see e.g., Wieland et al., 2015), for vulnerability
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TABLE 2 | Class descriptions for two example building typologies from EMS-98, in terms of fuzzy compatibility levels.

Building class Compatibility values

mat type mat tech mat prop llrs floor type floor mat

Adobe, (earthbrick) - ADO
EU: +++

ER: ++

MUR : ++

M99 : +

MR : −−

SRC : −−

C99 : −−

CR : −−−

ADO : +++

ETR : +++

ET99 : +++

ETC : +++

ST99 : +

MUN99 : +

ETO : +

MOM : +++

MOL : ++

MOC : +

MOCL : +

MON : -

LN : +++

LWAL : ++

FW1 : +++

FE99 : ++

FW2 : +

FW3 : +

FW4 : +

FW99 : +

Rubble stone, field stone - URM1 MUR : +++

M99 : +

MR : −

CU : −

SRC : −−

C99 : −−

SRC : −−

C99 : −−

CR : −−−

STRUB : +++

STDRE : ++

ST99 : +

MUN99 : +

MOM : +++

MOL : +

MON : +

MOC : +

MOCL : +

LN : +++

LWAL : ++

FW1 : +++

FW2 : +

FW3 : +

FW4 : +

FW99 : +

FW : +++

and risk assessment in case of induced seismicity. A web-
based platform (Haas et al., 2016) has been employed to survey
residential areas in the considered test sites. The survey have
been carried out by a structural engineer which analyzed a set
of buildings by means of omnidirectional images and web GIS
maps (Megalooikonomou et al., 2018). The buildings to inspect
have been selected, with a random spatial sampling, from the
OpenStreetMap database, which appeared to be rather complete
in the considered region. The description of the buildings is based
on the faceted taxonomy proposed by GEM (Brzev et al., 2013).
The attribute covers both structural and non-structural features,
as well as occupancy. For each attribute type, all attribute values
defined by the GEM taxonomy can be selected via dropdown
menus in the RRVS interface. A few of the attributes are non-
categorical, such as the height and the number of stories. The
surveyor has been asked to fill up only the attribute types that
were clearly observable, or could be safely estimated based on
other observable characteristics. In this case the RRVS platform
queries for each selected building the omnidirectional images
provided by the Google StreetViewTM service, but the platform
can employ also omnidirectional images captured with a mobile
mapping system, where no suitable data is already available
(Pittore and Wieland, 2013).

A total of 500 buildings have been inspected in an area of
approx 130 km2 characterized by small, mostly rural settlements
(see Figure 2). The considered area has a very low natural seismic
hazard, but in the past induced seismicity has been observed in
relation to the activities of the geothermal plant located in Soultz-
sous-Fôrets (Baria et al., 2005; Majer et al., 2007). The dataset
(Pittore et al., 2018) is available as electronic supplement to
this paper. Table 3 shows the distinct combinations of the seven

main structural attributes: material type (mat type), material
technology (mat tech), material properties (mat prop), lateral
load resisting system (llrs) and its estimated ductility (llrs duct),
floor type (floor mat) material (floor mat), with more than
5 occurrences. The surveyor inspected the buildings trying to
always fill entries based on features clearly observable from the
omnidirectional and the satellite images (provided respectively
by Google StreetViewTM and BingTM).

By analysing the distribution of collected attributes, a few
preliminary observations can be made:

• By considering only seven attributes 86 distinct combinations
of values are observed, 53 of which represent singletons, i.e.,
unique observations.

• by considering progressively less parameters, the number
of their unique combinations decreases. Still, considering
the relative homogeneity of the building stock, a significant
number of combinations can be observed (down to 10
using only the material type). Note that also attribute values
declaring the ignorance of a specific feature type have to be
considered in the description.

• around 10% of the observations (61 occurrences) refer
to buildings for which no reliable survey could be
done.

6.1. The DESTRESS Class Schema
Based on the analysis of the observed distinct combinations
a custom class scheme can be developed. An optimal risk-
oriented class scheme would map the building observations to
the smallest set of classes capturing both the distribution of
building typologies, and their expected seismic performance. In
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FIGURE 2 | Geographical distribution of the surveyed buildings. As can be noted by the observed occupancy (color-coded), most are residential structures.

TABLE 3 | Distinct combinations of observed attributes with more than 5 occurrences, in descending order.

Occurrences mat type mat tech mat prop llrs llrs duct floor type floor mat

77 MUR MUN99 MO99 LO DU99 FW1 FW

66 MUR MUN99 MO99 LO DU99 FT99 FN

65 MR RW MO99 LH DU99 FW1 FW

61 MAT99 MATT99 MO99 L99 DU99 FT99 F99

40 MUR MUN99 MO99 LO DU99 FC1 FC

32 MR RW MO99 LH DU99 FT99 FN

11 CR CIP MOC LFINF DUC FC2 FC

10 CR CIP MO99 LFINF DUC FC2 FC

8 W WLI MON LO DU99 FT99 FN

7 MUR CLBRH MOC LO DU99 FT99 FN

7 C99 CIP MON LO DUC FC1 FC

6 MUR CLBRS MOCL LO DU99 FT99 FN

the framework of the DESTRESS project the goal is a rapid
assessment of risk arising from induced seismicity. Therefore,
based on a preliminary analysis of the data (see e.g., Table 3),
a set of 8 representative typologies has been defined, as listed
in Table 4. Each representative typology is also associated to a
taxonomic representation in terms of the GEM taxonomy. The
taxonomic description is then expanded into a class definition
scheme based on the fuzzy scoring approach described in section

5.1 and preceding. The completeDESTRESS class scheme, shown
in Figure 3, is listed in Supplementary Material and provided as
electronic supplement.

6.2. EMS-98 Class Schema
In order to test the methodology proposed with an already
existing, risk-oriented building taxonomy, a fuzzy class definition
scheme has been created to describe those building typologies
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defined within the EMS-98 macroseismic scale, as listed in
Table 5, along with the corresponding taxonomic descriptions
according to the GEM taxonomy. The class definitions for
the 15 building typologies, pictured in Figure 4, are listed in
Supplementary Material and provided as electronic supplement.
As an additional note, we remark that several classes within the
EMS-98 scale are defined according to their level of Earthquake-
Resistent Design (ERD). Being such attribute not present in the
current version of the GEM taxonomy, nor being it easy to
ascertain from an external observation, a combination of lateral
load-resisting system (llrs) and its ductility (llrs duct) have been
used to encode the expected ERD level.

TABLE 4 | Building classes defining the DESTRESS scheme.

Class Description Taxonomic description

(GEM)

D_MUR1 One story unreinforced masonry MUR/FN

D_MUR2 2 stories unreinforced masonry

with rigid diaphragms

MUR/FC

D_MUR3 2 stories unreinforced masonry

with flexible diaphragms

MUR/FW

D_MR1 One story reinforced masonry MR/FN

D_MR2 2 stories reinforced masonry with

rigid diaphragms

MR/FC

D_MR3 2 stories reinforced masonry with

flexible diaphragms

MR/FW

D_RC1 Reinforced concrete RC + CIP/LFINF/FC + FC2

+ FWCP

D_W1 timber structure W/FW

6.3. Exposure Modeling
The class definition schema described in the preceding sections
can be applied to the observed building stock in order to obtain a
exposure model suitable for risk-related applications.

6.3.1. Attribute Weighting
The scoring approach is based on a class definition scheme, a
set of fuzzy compatibility levels and a weighting scheme. Since
the DESTRESS and the EMS-98 schemes are based on different
attributes, two set of weights are defined, as listed in Table 6.
We note that both weight sets sum to one, and that they are
largely similar. The proposed weights are based on the simple
consideration that material type (mat type) and technology
(mat tech) are relatively straightforward to observe and are
also relevant for seismic vulnerability assessment. The type of
lateral load-resisting system (llrs) and its ductility (llrs duct) are
important as well, but also more prone to uncertainty in the
survey process and thus more frequently missing.

6.3.2. Scoring
Given the weight defined above and the class definition schemes,
the fuzzy compatibility score can be estimated for every building
in the dataset with respect to all defined classes. In order
to exemplify the procedure we consider one of the surveyed
building (with id = 21123), depicted in Figure 5 within the
web-based RRVS platform interface. The observed features are
listed in Table 7 (only the attributes relevant for the classification
are reported. The complete set of observations is provided as
additional material to this paper).

FIGURE 3 | Graphical representation of the class definitions for the DESTRESS scheme. Along the x-axis the considered attribute values; along the y-axis the building

typologies defined within the schema. The color encodes the compatibility value, with red indicating high compatibility, blue indicating high incompatibility and gray

neutral compatibility. White indicates that no explicit compatibility value has ben assigned (it will be considered as neutral by default).
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TABLE 5 | Building classes defining the EMS-98 scheme.

Class Description Taxonomic description (GEM v2.0 tax)

ADO Adobe MUR+ADO+MOM/LN/FW+FW1+FWCN

MUR1 Rubble stone MUR+STRUB+MOM/LN/FW+FW1+FWCN

MUR2 Simple stone MUR+ST99+MOL/LN/FW+FW1+FWCN

MUR3 Massive stone MUR+ST99+MOL/LN/FW+FW1+FWCN

MUR4 Unreinforced masonry with manufactured stone units MUR+ST99+MOCL/LN/FW+FW1+FWCN

MUR5 Unreinforced masonry with RC floors MUR+MO+MOC/LN / FC

MR Reinforced or confined masonry M99/FC+FC2+FWCP

RC1 Reinforced concrete frame without earthquake-resistant design (ERD) CR+CIP/LN/FC+FC2+FWCP

RC2 Reinforced concrete frame with moderate earthquake-resistant design (ERD) CR+CIP/LFM/FC+FC2+FWCP

RC3 Reinforced concrete frame with high level of earthquake-resistant design (ERD) CR+CIP/LFINF+DUC / FC+FC2+FWCP

RC4 Reinforced concrete walls without ERD CR+CIP/LWAL+DNO/FC+FC2+FWCP

RC5 Reinforced concrete walls with moderate level of ERD CR+CIP/LWAL/FC+FC2+FWCP

RC6 Reinforced concrete walls with high level of ERD CR+CIP/LWAL+DUC/FC+FC2+FWCP

STEEL Steel structures S/FME

WOOD Timber structures W/FW

FIGURE 4 | As for Figure 3, a graphical representation of the class definitions for the EMS-98 scheme.

Although the material type clearly indicates that the building
can be broadly classified as unreinforced masonry, its taxonomic
description is not complete and does not completely match the
reference classes indicated in Tables 4, 5. The (compatibility)
scores of this building estimated with respect to the class
schemes EMS-98 and DESTRESS are shown respectively in
Figures 6, 7. The class scoring highest in the DESTRESS schema
is MUR2, due to the matching combination of material type (of
lateral load resisting system) and floor material. Considering the
EMS-98 scheme, several unreinforced masonry classes appear
compatible with the considered building, with a preference

for the MUR5 class (unreinforced masonry with RC floors),
which is reasonable considering the characteristics of the
building.

By applying the same procedure to all buildings in the dataset,
and assigning the class based on the ranking of the scores, we
obtain two different exposure models, shown in Figure 8. The
buildings whose defuzzified score (using the median) was equal
or less than zero have been assigned the OTH (Other) class.
An IPython notebook implementing the proposed methodology
is provided as electronic supplement to this paper (Pittore and
Haas, 2018) and the last updated version is available online.

Frontiers in Built Environment | www.frontiersin.org 10 October 2018 | Volume 4 | Article 41

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Pittore et al. Risk-Oriented Bottom-Up Exposure Modeling

7. DISCUSSION

We can note that the two resulting exposure models are
relatively balanced, that is they capture the variability of the
buildings features in the dataset without a perceivable bias
in the assignment. According to the EMS-98 class definition
scheme the exposure is dominated by reinforced masonry,
which is explained by the fact that in this class schema there
is only one typology of reinforced masonry, whereas in the
DESTRESS class definition scheme two unreinforced masonry
classes are defined. Furthermore, the EMS-98 class definition
scheme defines five different unreinforced masonry classes,
as compared with the three types defined by the DESTRESS
class definition scheme. The same considerations apply with

TABLE 6 | Weighting for the DESTRESS and EMS-98 building class schemes.

Attribute Weights

DESTRESS EMS-98

mat type 0.35 0.35

mat tech 0.2 0.1

mat prop 0.05 0.05

llrs 0.2 0.2

llrs duct 0.1 0.1

floor type 0.05

floor mat 0.1 0.1

floor conn 0.05

reinforced concrete. In this case we can note that, within the
EMS-98 scheme, most of the observed RC buildings with infilled
frame structure have been associated to the RC3 typology, and
the rest to the RC4 one. We also note that using the EMS-
98 class definition scheme, a total of 62 buildings have been
assigned to a OTH (Other) class. This class refer to structures
for which almost no structural feature could be reliably observed.
With the DESTRESS class definition scheme the number of
OTH classes raises to 77, in this case also including buildings
with structural features that partially conflicted with the class
definitions, thus failing to generate a positive score. This is a
consequence of the higher customization of the class scheme,
whereas the classes in the EMS-98 schema are more broadly
defined.

TABLE 7 | Observed attributes of the surveyed building with id = 21123.

Attribute type Attribute value

mat type MUR

mat tech ST99

mat prop MOC

llrs LO

llrs duct DU99

height 2

floor mat FC

floor type FT99

floor conn FWCP

FIGURE 5 | Example of a building remotely inspected using the web-based RRVS platform. The tab panel in the lower right side of the graphical interface includes the

principal attributes of the GEM taxonomy. In foreground the material tab. The attributes collected for this building are summarized in Table 7.
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8. OUTLOOK

The preliminary results indicate that using a fuzzy formulation
for the compatibility score allows for a better consideration
of the epistemic uncertainty related to the expert judgment.
Nevertheless, a more detailed analysis should be carried out
to explore the sensitivity of the model to different uncertainty
settings (e.g., by changing the support and shape of the
fuzzy intervals). Moreover, for the weighting scheme used
to integrate the different attribute types, a crisp (non-fuzzy)
approach has been employed. Since also the selection of
the weights entails a degree of subjective judgment, the use
of fuzzy formulation could be further applied. A threshold
value on the compatibility score of each building has been
introduced, as a way to filter out cases where unreliable

FIGURE 6 | Fuzzy compatibility scores of the observed building (see Table 7)

with respect to the EMS-98 scheme.

assignment may occur. Although we suggest to use a relatively
weak threshold, in order not to have critical values in the
process, this may vary according to the specific application and
should be further investigated. Nevertheless, the presence of
buildings that do not fit the provided categories (assigned to
class OTH) represents a relevant difference with other exposure
modeling approaches, and should be adequately addressed.
Further work will be carried out in the next research phase,
including the implementation of other commonly-used, risk-
oriented taxonomies (e.g., PAGER-STR, HAZUS) with the same
scoring approach, and a more comprehensive analysis of the
resulting uncertainties and their propagation into the risk
assessment stage. Furthermore, the collaborative assignment of
fuzzy scores based on expert elicitation approaches will be
explored.

FIGURE 7 | Fuzzy compatibility scores of the observed building (see Table 7)

with respect to the DESTRESS scheme.

FIGURE 8 | Resulting exposure models using respectively the DESTRESS (left) and EMS-98 (right) class definition schema.
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9. CONCLUSIONS

A novel methodology for the description and the assignment of
risk-oriented classes to individual buildings observations, based
on the concept of fuzzy compatibility score, has been presented
and exemplified. The methodology allows the computation of
the level of compatibility of a surveyed building, defined by
its (faceted) taxonomic description, with respect to a set of
pre-defined building typologies composing a class definition
scheme. These building typologies are described by specifying the
taxonomic attributes values most likely (or unlikely) associated
to each class. The use of a simple fuzzy formulation reduces the
amount of subjective judgment in the class assignment, while
ensuring a better consideration of the underlying uncertainties.
The proposed approach provides a sound framework in order
to directly assimilate field observations, recorded with a faceted
taxonomy, into a consistent exposure model. Two cases have
been explored:

1. the generation of an application-specific class definition
scheme (DESTRESS), based on an exploratory analysis of the
collected data, and

2. the use of a class definition scheme implementing a widely
used risk-oriented taxonomy (EMS-98).

The resulting class definition schemes can be described by simple
logical structures, and saved into textual, machine-friendly
formats along with the raw building observations dataset in order
to make the whole process transparent and fully reproducible.
As an example, the two schemes are provided in YAML and
JSON format as electronic supplements, along with a python code
exemplifying the whole methodology. Two different exposure
models have been computed, according to the considered
schemes, for a dataset of 500 residential buildings collected within
the framework of the European project DESTRESS. The two
models are comparable, effectively implementing a clustering of
the buildings into a similar number of classes with homogeneous
expected seismic performance.

The results are promising, suggesting that faceted taxonomies
with regional or global scope, such as the GEM taxonomy, could
be instrumental in stimulating the collection of high-quality,
building-by-building data and their transparent integration
into the current and future risk-assessment computational
frameworks. This effectively removes the burden of class-
assignment from the surveyors, turning it into an off-line process
which might be carried out collaboratively.

We advocate for employing a bottom-up approach in
developing exposure models for urban risk applications. This
entails the systematic collection of information on structural
and non-structural attributes for a set of individual building
structures using a faceted taxonomy, moving to a later processing
stage the assignment of a specific (vulnerability-related) class to
each surveyed building. This approach has several advantages:

• the individual attributes to be collected in the field are, at
a large extent, independent from a particular building class,
and in turn common to a wide range of building classes at a
regional and global scale,

• most of the individual attributes are relatively independent
from building practices and seismic codes, therefore ensuring
a long term sustainability to the taxonomy description,

• the assignment of building classes is explicitly vulnerability-
driven, and it does not interfere with the lower-level
description of the building structure. Different classes may
be assigned to the same building according to the specific
applications, thus paving the road to more efficient multi-
hazard exposure modeling approaches.

• building classes may be changed or updated in time, for
instance in response to improved fragility or vulnerability
models, without affecting the low-level attributes collected
during the surveys. Re-assignment of the building classes is a
straightforward and completely traceable post-processing step.

In conclusion the proposed methodology lays the groundwork
for a range of innovative applications, including the efficient
modeling of multi-hazard exposure and vulnerability assessment,
and the development of hybrid models where atomic instances
(i.e., building-by-building observations) fully embed into geo-
statistical models.
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