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Seismic base isolation systems protect thousands of structures and infrastructures all

over the world. Their effectiveness for seismic protection is widely recognized owing to

acceleration reduction with a consequent minimization of the structural damage and of

the “panic” effect for the occupants. This work deals with the development of a model for

simulating the horizontal response of rubber bearings, extending an existent procedure to

the case of variable axial loading. A consolidated procedure from literature, demonstrated

able to correctly reproduce the complex mechanical behavior of rubber bearing isolation

devices under constant axial loading, represents the starting point. Available laboratory

cycling tests at variable axial load allow to illustrate the new numerical procedure. An

optimization process, based on both automatic and user-driven procedures, is used to

identify at different loading conditions the model parameters and the functions to model

their variation. The proposed formulation overcomes the limits of the original model in

this respect. The developed new procedure is shown to be capable of simulating with

reasonable accuracy the experimentally observed cyclic behavior under coupled vertical-

horizontal loading conditions, and the consequences in terms of the device response in

the case of a seismic vertical-horizontal concurrent excitations are highlighted.

Keywords: seismic isolation, rubber, bearing, biaxial loading, numerical modeling

INTRODUCTION

Passive, anti-seismic, systems have already been used to protect more than 20,000 structures among
bridges and buildings, both of existing and of new construction, in more than 30 countries.
Among others protection systems, the seismic isolation ones are recognized as the most effective
in terms of structural integrity due to reduction of the absolute accelerations, interstory drifts,
and minimization of the “panic” effect for the occupants. Although their adoption is still limited,
with respect to the protection of strategic buildings, seismic base isolation is likely to become a
widespread solution in the design of structures and facilities that require superior performances
and need to retain functionality after an earthquake event (Basu et al., 2014).

Base isolation is usually implemented with reference to the national and international standards,
resorting to one of two broad classes of isolation devices: flat or curved surface sliders and
elastomeric isolators. The response of both these families of base isolation devices depend, for
different reasons, on the value of the axial force acting on the device. This dependence, in the
case of near field earthquakes characterized by vertical components with the same intensity of
the horizontal ones, has been recognized peculiar for base isolated structures to such an extent
that base isolation protection has proved to be rather ineffective (Bhandari et al., 2017). Therefore,
besides being of interest on its own, recognizing how coupled vertical-horizontal response affects
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the isolation performance has important practical consequences.
In this light, this work is aimed at studying and developing an
innovative model able to include such coupled response within
a consolidated analytical modeling approach for elastomeric
devices (Domaneschi et al., 2015). It is the differential hysteretic
formulation by Abe et al. (2004a,b) for laminated natural,
high damping (HDRB) and lead-core (LRB) rubber bearings
under biaxial and tri-axial loading conditions (constant axial
force and respectively single or both horizontal components
of displacement). Such formulation has been proved effective
in reproducing the experimental physical behavior of rubber
bearings including several effects (e.g., scragging and Mullins’
effects—stiffness and damping degradation) and performs
satisfactorily for complex seismic structural analyses (Perotti
et al., 2013). However, in its current formulation, it reproduce the
device response at a fixed value of the axial load only.

In the literature several other models for elastomeric devices
are available that include coupling with the axial load. Among
these, Ryan et al. (2005) proposed an innovative formulation to
the problem of the influence of the axial load variation on the
isolator horizontal stiffness and yielding strength. Their model is
a non-linear extension of a two-spring model developed from the
linear stability theory of multilayer bearings (Kelly, 1997). The
following considerations has been underlined for both HDRB
and LRB: (i) the lateral stiffness decreases with the increasing
axial load; (ii) the lateral yield strength decreases with decreasing
axial load (LRB only); (iii) the vertical stiffness decreases with
increasing lateral deformation. The proposed solutions, although
an improvement, are reported by the Authors as an incomplete
representation of the experimental response (e.g., no hardening
appears in the simulated results).

Yamamoto et al. (2009) also proposed a two-dimensional
model for the numerical simulation of seismic isolation bearings
including the influence of axial load. Such model is inspired by
the Kikuchi and Aiken (1997) formulation and consists in an
analytical approach comprising several shear and axial springs
(these last working in parallel), having properties which vary with
the vertical load. In particular, the axial effect is captured by the
material non-linearity formulation of the axial springs and by
the transversal geometric non-linearity of the shear stiffness. The
effect of the coupled loading components on the device stiffening
and buckling response is also studied, driven by axial stresses
under large deformations. A three dimensional development
of this model has been reported in Kikuchi et al. (2010).
However, no evaluation of the performance is given under three
dimensional loading paths and seismic loads. Furthermore, the
formulation that adopts several non-linear springs can become
numerically expensive in the case of structures that are base
isolated with a substantial number of isolation devices.

Similarly, in the literature there are research works focused on
the effect of the vertical and horizontal loading on the critical
buckling loading capacity of rubber bearings. Experimental
results are employed for developing numerical approaches based
on mechanical models comprising linear and rotational springs
in different directions.

Kumar et al. (2014) implemented a new mechanical
formulation in OpenSees code as a new three-dimensional

finite user element, arranging linear and rotational springs.
Numerical results compare well with the experimental data for
behavior in tension. The critical buckling load capacity at extreme
loading is correctly predicted, decreasing linearly with the lateral
displacement and the related overlap area. The model, however,
doesn’t seem to include provisions for the strain hardening
behavior highlighted in the testing of physical devices at large
shear strain values.

Han and Warn (2015) studied the unstable equilibrium of
elastomeric bearings through a mechanical model similar to
the one by Kelly (1997), consisting in series of vertical springs
and a simple bilinear constitutive relationship to represent
the rotational behavior of elastomeric bearings. The critical
behavior under simultaneous vertical compressive load and
lateral displacement is assessed with accuracy, without relying on
experimentally calibrated parameters. Since several hyperelastic
springs appear inside this model, a comment similar as for the
model of Kikuchi et al. (2010) arises.

Vemuru et al. (2003) studied the coupled horizontal–vertical
behavior of elastomeric bearings (with constant vertical load)
by analytically developing a mechanical model. They observe
that the coupled behavior of the bearings under dynamic
loading differs considerably from that observed under quasi-
static conditions.

The above-mentioned literature works propose several
numerical approaches for including the coupled axial force-shear
response of rubber bearings up to the buckling load capacity
of the device. All the reported analytical (non-differential)
models are developed with reference to experimental results and
essentially consist in a, sometimes large, series of non-linear
springs arranged with different connection schemes. Despite
the effectiveness each of them shows within the specific range
of application, the Abe et al. (2004a,b) model remains the
reference for its compactness and satisfactory representation of
the experimental response for both cyclic and seismic loading
at small and large value of relative displacement between the
device ends.

The present paper is focused on modeling the response of
rubber bearings, extending the model by Abe et al. (2004a,b)
to variable axial loading. Suitable laboratory experimental tests,
available in the literature (Yamamoto et al., 2009), represent
the target for illustrating the proposed numerical approach.
This work is limited to the bidirectional formulation (vertical-
horizontal) as the general three-dimensional formulation is out
of the scope of this study. However, consistently with the original
formulation by Abe et al. (2004a,b), from which it is inspired,
the generalization of the bidirectional model herein proposed can
be obtained by following the methodology there presented. The
next section is devoted to the presentation of the cycling loading
experimental results from the literature and the reference rubber
bearing specimen. Subsequently, the original phenomenological
model that will be extended is presented, then the identification
of the model parameters is described. Several strategies for the
parameters identification are implemented and the best set in
terms of matching with the experimental target is defined as
the “superset.” The consequences stemming from the proposed
enhancement of the bearing model and the comparison with the
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original standard model from the literature are finally presented
within a structural application relative to the seismic response of
a base isolated nuclear building.

REFERENCE SPECIMEN AND
LABORATORY TESTS

Cyclic shear tests of lead–rubber bearings were conducted by
Yamamoto et al. (2009) to identify the mechanical characteristics
of lead-rubber bearings under large deformations at different
values of constant axial load. The tests deal with a device having
24 layers of 2.0mm thick rubber, and a 250mm diameter (see
Figure 1). Thus, the rubber layer shape factor (ratio between the
steel layer area and the lateral surface of a single rubber layer)
results S1= 31.3 and the second shape factor (ratio of the device
diameter and the total thickness of the rubber layers) S2= 5.2.
The bearing embeds a 50.0mm diameter lead plug (Table 1).

The cyclic shear tests consisted in applying a sinusoidal
horizontal displacement with four cycles of loading at the
increasing shear strain amplitudes of 50, 100, 200, 300, and 400
%, while the vertical load applied to the bearing was maintained
constant. The tests were repeated at compressive stresses of σ= 0,
5, 10, 20, and 30 MPa.

At the lowest axial stresses (σ = 0, 5, and 10 MPa),
the hysteresis loops obtained from the cyclic shear tests
exhibited (shear) stiffening behavior beyond the shear strain
value of 300% and a deterioration of horizontal stiffness is
seen for higher compression stresses (σ = 20 and 30 MPa).
Furthermore, significant negative stiffness appeared at 30 MPa
axial compressive loading.

REFERENCE AND ENHANCED ISOLATOR
MODEL

The reference isolator model here adopted as a starting point
for developing a new procedure to model isolation devices that
includes the effects of the axial force is the one (Abe et al.,
2004a,b). In that model the restoring force F is obtained as the
sum of three contributions (Figure 2), superimposing a force
component coming from an elastic non-linear spring (F1), the
hysteretic force in an elastic-plastic spring (F2) and, finally, a

second elastic non-linear force for an hardening contribution
(F3). Such components are defined by the following equations.

F = F1 + F2 + F3 (1)

F1 = K1

{

β + (1− β) exp(−
Umax

α
)

}

U

+a
[

1− exp(−b |U|)
]

sgn(U) (2)
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∣
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sgn(
F2

Yt
)

}

(4)

TABLE 1 | Characteristics of the tested isolator.

Item Value

Isolator external diameter 250mm

Steel reinforcing plate diameter, d’ 250mm

Diameter lead plug 50mm

Number of elastomeric layers, n 24

Thickness of elastomeric layers, tr 2mm

First shape factor, S1 = d’/4·tr 31.3

Second shape factor, S2 = d’/n·tr 5.2

Full isolator height, Tb 170.2mm

Nominal dynamic shear modulus, G 1.44 MPa

FIGURE 2 | Schematic representation of the Abe et al. (2004a,b) model.

FIGURE 1 | The tested bearing [mm].
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In the previous equations U denotes the horizontal relative
displacement across the isolator, F the total restoring force
of the model, Fi the internal force of each spring. K1 is the
initial stiffness of the non-linear elastic spring, constants α e β

required parameters for controlling the evolution of the stiffness
degradation, a the force value of the non-linear elastic behaviors
in the small strain range and b a parameter that controls
the evolution of the non-linear elastic behaviors in the small
strain range. Yt is the yielding force and Ut the corresponding
displacement of the elastic-plastic spring: both include the
modeling of the increase of the hysteresis loops area through
the parameters Y0—the initial yielding force, UH—displacement
where the hardening starts, U0—initial yielding displacement,
US—constant that controls the degradation of the elastic stiffness
of the elastoplastic spring, p—constant that prescribes the curve
of the hardening. The behavior of the third non-linear elastic
spring delivering the forces listed in F3, called the hardening
spring, depends on the parameters K2 (constant that describes
the contribution of the hardening spring to the other springs)
and r (parameter that prescribes the curve of the hardening). This
spring, working in parallel to the others, expresses the increase
of the tangent stiffness at large deformations. More details on the

TABLE 2 | Human-driven method: identified parameters.

Axial stress

σ = 0 Mpa σ = 5 Mpa σ = 10 Mpa σ = 20 Mpa σ = 30 Mpa

PARAMETERS

K1 11 11 11 11 11

α 3 3 3 3 3

β 0.015 0.003 0.0026 0.002 0.0001

a 10 10 10 10 10

b 0.05 0.05 0.05 0.05 0.05

n 0.4 0.4 0.4 0.4 0.4

Y0 15 15 16 19 21

UH 95 100 105 120 121

P 1.85 0.9 1.4 2.3 3.6

U0 1.8 1.8 1.8 1.8 1.8

US 36 36 36 36 36

K2 0.1 0.095 0.06 0.007 −0.13

r 2 2.1 2.3 2.1 2.6

Relative error 1.68 1.57 1.4842 2.1375 2.6545

The parameter in bold are maintained constant.

model parameters and how they affect the behavior of springs (F1,
F2, F3) are reported in the original work by Abe et al. (2004a,b)
and in the work by Perotti et al. (2013).

In the Abe et al. model the vertical response of the
device is assumed as uncoupled from the horizontal response.
However, it has been demonstrated how the horizontal
response is affected by the value of the vertical force
carried by the device, arriving up to buckling phenomena
(Yamamoto et al., 2009; Han and Warn, 2015).

TABLE 3 | Pattern search method: identified parameters.

Axial stress

σ = 0 Mpa σ = 5 Mpa σ = 10 Mpa σ = 20 Mpa σ = 30 Mpa

PARAMETERS

K1 11 11 11 11 11

α 3 3 3 3 3

β 0.01 0.0021 0.00096 0.002 0.0001

a 19 19 19.5 12 4

b 0.04 0.04 0.04 0.04 0.04

n 0.3 0.3 0.3 0.3 0.3

Y0 15 16 16.5 20.5 22.45

UH 99 108 108 118 112

P 1.3 0.9 1 2.4 3.75

U0 1.8 1.8 1.8 1.8 1.8

US 100 99 70 56 26

K2 0.105 0.097 0.057 0.0014 −0.135

r 2 2.3 2.3 2.3 2.6

Relative error 1.3547 1.036 1.2 1.7546 1.8206

The parameter in bold are maintained constant.

TABLE 4 | Genetic Algorithm method: identified parameters.

Axial stress

σ = 0 Mpa σ = 5 Mpa σ = 10 Mpa σ = 20 Mpa σ = 30 Mpa

PARAMETERS

K1 11 11 11 11 11

α 3 3 3 3 3

β 0.0164 0.001 0.0058 0.0024 0.0009

a 12 11.7 12 9.66 0.5

b 0.05 0.05 0.05 0.05 0.05

n 0.4 0.4 0.28 0.16 0.378

Y0 15.5 15 16 22.77 23.68

UH 118 113 110 132 110

P 1.3 1 1.5 2.7 2.699

U0 1.8 1.8 1.8 1.8 1.8

US 400 150 100 90 28.83

K2 0.12 0.089 0.03 0.0084 −0.1765

r 2.1 2.3 2.5 1.7 1.6142

Relative error 1.1513 1.0181 1.4982 1.67 1.82

Those in bold are maintained constant.

Frontiers in Built Environment | www.frontiersin.org 4 September 2018 | Volume 4 | Article 49

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Domaneschi et al. Phenomenological Model of Rubber Bearings

For taking into account the coupled vertical and horizontal
response of the device, the original standard model has been
modified. At first, the parameters of the Abe et al. model
have been identified, for the different values of the axial force
corresponding to compressive stresses of σ = 0, 5, 10, 20, and
30 MPa respectively, on the sample isolator tested by Yamamoto
et al. (2009). The identified values have been, then, used
within an interpolation procedure in computing the numerical
response of the device under variable seismic vertical-horizontal
loading as it will be explained in the following. Therefore, the
parameters dependency on axial loading is embedded in the

model formulation such that at any step of a time history analysis
the parameters are updated. The next section is devoted to the
identification and optimization procedures for estimating the
model parameters.

IDENTIFICATION OF THE MODEL
PARAMETERS

The target of the optimization procedure is represented by the
cyclic shear tests under large deformations, and at different

FIGURE 3 | Human-driven method: cyclic shear test of the tested isolator (50, 100, 200, 300, and 400% deformations for compression stresses of 0 MPa (A), 5 MPa

(B), 10 MPa (C), 20 MPa (D), 30 MPa (E). Comparison between model (parameters in Table 2) and experimental results.

Frontiers in Built Environment | www.frontiersin.org 5 September 2018 | Volume 4 | Article 49

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Domaneschi et al. Phenomenological Model of Rubber Bearings

axial loads (0, 5, 10, 20, 30 MPa), of lead–rubber isolators as
described in the research paper by Yamamoto et al. (2009). The
optimization procedures herein employed are: (a) the human-
driven one which is based on the user critical assessment, (b)
the Pattern Search one (Dolan et al., 2018) and, (c), the Genetic
Algorithm one [tournament selection (Miller and Goldberg,
1995)]. In the first case the choice of parameters to be used
is essentially heuristic, in the last two the MATLAB code
implementation is used (MATLAB, 2013).

For each level of axial compression stress, and for each
selected optimization procedure, a different set of the parameters

has been identified coherently with the original Abe et al.
model (Abe et al., 2004a,b). When automatic optimization
procedures have been employed, namely the Pattern Search
and the Genetic algorithm, the parameters set is found by
minimizing the root mean square error (RMSE) between
the cyclic experimental and numerical response to coupled
vertical—horizontal loading. Conversely, when the Human-
driven procedure is considered, a local sensitivity analysis
and knowledge based decision allows the user to define the
parameters set. The local sensitivity analysis belongs to one-
at-a-time (OAT) techniques that analyze the effect of one

FIGURE 4 | Pattern Search method: cyclic shear test of the tested isolator (50, 100, 200, 300, and 400% deformations for compression stresses of 0 MPa (A), 5 MPa

(B), 10 MPa (C), 20MPa (D), 30MPa (E). Comparison between model (parameters in Table 3) and experimental results.
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parameter on the output at a time, keeping the other parameters
fixed. They are used in particular when there are many
parameters, to explore only a small fraction of the design
space.

It is worth underlining how not all the Abe et al. original
model parameters highlighted essential variation: the values for
a number of them can be kept fixed, depending on the selected
optimization procedure. They are reported in bold in Tables 2–4
and discussed in detail in the next sub-sections. For the automatic
optimization procedures, the following upper and lower bounds

are considered: β [0.000001,1], A [0.1,25], N [0.1,1], Y0 [1,30],
UH [10,150], p [0.1,5], US [10,200], K2 [−0.5,0.5], r [0,4].

As the identification process is completed, a super-set of
optimal parameters is finally defined as the one corresponding,
for each value of the axial stress, to the minimum of the
relative error function among the identification procedures
herein considered.

The function modeling the dependence on the compressive
axial stresses of each model parameter of the Abe et al. model, is
defined in a purely mathematical way (no attempt is herein made

FIGURE 5 | Genetic Algorithm method: cyclic shear test of the tested isolator (50, 100,200, 300, and 400% deformations for compression stresses of 0 MPa

(A), 5 MPa (B), 10 MPa (C), 20 MPa (D), 30 MPa (E). Comparison between model (parameters in Table 4) and experimental and experimental results.
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to relate it to physical aspects of the isolator response) according
to the following procedure:

a) The form of functional dependence on the value of the axial
force is assumed for each parameter of the Abe et al. model.

b) If the functional dependence form includes any coefficient,
these are identified by minimizing the Mean Squared Error
(MSE) in L2 norm:

MSE =

√

∑5

i=0
(y (σi) − parameteri))

2 (8)

TABLE 5 | Super-set of optimal parameters.

Axial stress

σ = 0 Mpa σ = 5 Mpa σ = 10 Mpa σ = 20 Mpa σ = 30 Mpa

PARAMETERS

K1 11 11 11 11 11

α 3 3 3 3 3

β 0.0164 0.001 0.00096 0.0024 0.0009

a 12 11.7 19.5 9.66 0.5

b 0.05 0.05 0.04 0.05 0.05

n 0.4 0.4 0.3 0.16 0.378

Y0 15.5 15 16.5 22.77 23.68

UH 118 113 108 132 110

p 1.3 1 1 2.7 2.699

U0 1.8 1.8 1.8 1.8 1.8

US 400 150 70 90 28.83

K2 0.12 0.089 0.057 0.0084 −0.1765

r 2.1 2.3 2.3 1.7 1.6142

Relative error 1.1513 1.0181 1.2 1.67 1.82

where σi is one of the considered values of axial stress, y(σi) is
the fitting law evaluated at axial stress σi, while parameteri is the
value of the Abe et al model parameter as identified from the test
at constant axial stress σ = σi.

The next sections are devoted to the description of the
optimization procedures, to the presentation of the results, to a
discussion of the identification procedures and to the definition
of an optimal “superset” with the corresponding fitting laws.

Human-Driven Identification
Table 2 summarizes all the identified parameters (in bold are
highlighted the ones that yielded a fixed value). Last row
reports the Relative Error as the ratio between the L2 norm
of the differences between the model reaction forces and the
experimental ones, and the maximum reaction force in the
experimental cycles. It is defined as:

Relative Error =

√

∑n
i=0 (Fmodel (ui,ϑ) − F(ui))

2

Fmax
(9)

Where n is the number of the experimental and the model force
values, ϑ is the model parameters vector. Figure 3 depicts the
comparison between the experimental responses of the lead-
rubber bearing in Yamamoto et al. (2009) and the numerical
output from the Abe et al. model. Parameters inTable 2 have been
used.

Device #1 time histories of the axial force and relative
displacement are depicted in Figures 8, 9. The simulation of the
device response for the combined displacement-axial force time
histories is depicted in Figure 10. About Device #2, the time
histories for axial force and relative displacement are depicted in
Figures 11, 12, while the simulation of the device response for
the combined loading condition is depicted in Figure 13.

Focusing on Table 2, several parameters increase or decrease
their value when the axial compression stresses increases. It is

FIGURE 6 | Fitting laws for model parameters in the Superset (A–I).
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FIGURE 7 | Plan view of the isolation system of the nuclear building in Perotti et al. (2013). Position of the devices where the time histories are collected.

FIGURE 8 | Time history of the axial force (in terms of stress) of device #1, used for computing the device response to variable axial force depicted in Figure 10.

FIGURE 9 | Time history of the relative displacement of device #1, used for computing the device response to variable axial force depicted in Figure 10.
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FIGURE 10 | Lead–rubber bearing shear force–displacement hysteresis loops for device #1 with: (A) varying vertical load, (B) 6.3 MPa constant vertical stress (half of

the maximum value), (C) 8.4 MPa constant vertical stress (mean value), (D) 12.6 MPa constant vertical stress (maximum value).

FIGURE 11 | Time history of the axial force (in terms of stress) of device #2, used for computing the device response to variable axial force depicted in Figure 13.
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FIGURE 12 | Time history of the relative displacement of device #2, used for computing the device response to variable axial force depicted in Figure 13.

FIGURE 13 | Lead–rubber bearing shear force–displacement hysteresis loops for device #2 with: (A) varying vertical load, (B) 9.5 MPa constant vertical stress (half of

the maximum value), (C) 8 MPa constant vertical stress (mean value), (D) 19 MPa constant vertical stress (maximum value).
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however interesting to note as the parameters related to the non-
linear elastic behavior for deformations in the range [0, 50%]
remain constant, owing to the reasonably constant response in
the same range of the devices at all the compression stress values.
On the contrary, for the early yielding force and the ratio between
the initial and the completely degraded non-linear elastic stiffness
variations are expected, as Table 2 confirms. Focusing on the
parameters of the F2 component, the yielding displacement U0

can be considered essentially constant while the corresponding
force Y0 slightly increases with σ. Owing to the fact that the
transition from the non-linear elastic branch to the plastic one is
essentially constant at the increasing of compression stresses, the
parameter n does not show variations. The stiffness degradation
parameterUs, related to the elastic-plastic spring, is also assumed
essentially constant by observing how the unloading branches are
reasonably parallel.

On the contrary, the parameter β that expresses the ratio
between the completely degraded stiffness and K1 (this one
essentially constant) decreases with the compression stresses
consistently with the experienced horizontal stiffness reduction
in the rubber bearings at the increase of the axial compression.
Consistently to this aspect, also the early hardening displacement
UH increases, while the hardening stiffness K2 decreases. The
amplification of the hysteretic cycles at increased compression
stresses is related to the variation of the hardening shape related
parameters (p and r).

Pattern Search Automatic Identification
Procedure
The Pattern Search optimization method numerically identifies
the minimum value of a function without explicitly knowing
its derivatives. This method is generally useful for non-
differentiable functions, or when evaluation of the exact
derivative is computationally expensive (see also MATLAB,
2013). This is the case of the Abe et al. formulation, in
particular for the F2 component for which the gradient is
not easily defined. At each optimization step the Pattern
Search method designs a mesh of possible alternative points
associated to specific searching directions. If the objective
function (deviation between experimental and model reaction
forces, corresponding to the prescribed displacement history)
is reduced at a certain point of the mesh, with respect to the
previous evaluations, that point becomes the new current one
for the next optimization step. The procedure is completed as
the mesh dimension becomes lower than a certain very small
limit, as fixed by the user (relative error = 0.001%) (MATLAB,
2013).

The Human-driven procedure allowed through a sensitivity
analysis to identify a subset of parameters, which can be assumed
as constant. The same have been considered as constant also in
the Pattern Search automatic procedure, apart for Us and a. The
first can improve the match of the unloading branches between
experimental and numerical cycles, the second at the end of the
non-linear-elastic phase. Table 3 summarizes the parameters of
the Abe et al. model found with the Pattern Search method (in
bold are highlighted the ones for which a fixed value is assumed)

while Figure 4 depicts the comparison between the experimental
responses of the lead-rubber bearing with the numerical output.

Genetic Algorithm Automatic Identification
Procedure
Among the optimization procedures which do not require
evaluation of the optimizing function’s gradient, the Genetic
Algorithms one play a significant role owing to its effectiveness in
complex problem. Indeed, the procedures are extensively applied
to industrial problems. Within the Genetic Algorithm Toolbox
in MATLAB (2013) the Selection Tournament procedure, in
particular, has been adopted (Miller and Goldberg, 1995).
This procedure allows to select the optimal set in several
rounds of a virtual tournament, where the “winners,” called
the mating pool, create the population of the next generation
of individuals. These last are then involved in a new selection
process, up to when the optimal solution is reached. To
overcome possible local minima, new extents of the domain
are then explored through assuming that a fixed fraction of
the population is subject to a random genetic mutation of its
properties (fraction = 0.9). The default options of the genetic
algorithm function in MATLAB (2013) have been used for the
adopted population, the crossover function and the mutation
operator.

The set of the Abe et al. model parameters coming from
the Genetic Algorithm procedure is reported in Table 4 (in
bold the parameters identifies as having fixed value). As in
the previous procedure a subset of parameters are maintained
constant. Furthermore, trying to improve the match between
experimental and numerical cycles at the transition between the
non-linear-elastic and plastic branches, parameter n has been also
included within the ones to be optimized. A comparison between
the experimental and numerical responses of the lead-rubber
bearing is shown in Figure 5.

Comments on the Adopted Automatic
Optimization Procedures
The Pattern Search algorithm has the benefit of requiring few
optimization steps and consequently shows a faster convergence.
However, it is more affected by local minima (false optimal
solutions could be reached) and a starting point close to the
optimal one is needed. For overcoming this aspect, the results of
the human-driven procedure can help in selecting the starting
point for the automatic optimization with the Pattern Search
algorithm. The Genetic Algorithm method on the contrary is
slower in the convergence and local minima can be overcome
by exploring new extents of the domain through the genetic
mutation property.

The results, as depicted by Figures 4, 5, show a satisfactory
match between the numerical and experimental cycles, in
particular at the lowest compression stresses (0, 5, 10 MPa).
Quantitative comparison is needed for determining the optima
super-set as discussed in the following.

Super-Set of Optimal Parameters
Table 5 summarizes the super-set of model parameters. This set is
formed by selecting, for each value of the axial force among all the
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minimization procedure adopted, the parameters that minimize
the error in L2 norm of the difference between the model reaction
force and the experimental one (see Equation 9). The parameters
of the superset come from the Genetic Algorithm procedure,
apart for the case of 10MPa compression stress. For this case they
originate from the Pattern Search procedure.

Figure 6 depicts the fitting laws for each parameter. Parameter
β (Figure 6A) shows a variable decreasing function at increasing
compression stresses. Y0 increases linearly (Figure 6B) at the
increase of the compression stresses both for compensating
the shear stiffness reduction and for attaining the same plastic
strains experienced at lower axial stresses. UH shows a linear
variation (Figure 6C) not far from being constant. The p variable
shows an almost linear tendency (Figure 6D): it increases as
the hysteresis cycles increase at higher compressive forces.
Focusing now on the hardening stiffness K2 it shows a parabolic
decrease (Figure 6E), consistently with the experienced stiffness
degradation due to increasing compression on the device.
Amplification of hysteretic cycles at increased compression
stresses is related to increment of the hardening shape related
parameter r at higher compressive stresses (Figure 6F). The
reduction of the Us parameter at higher axial compression
forces on the device is necessary for matching the unloading
branches of the elastic-plastic component (Figure 6G). The
parabolic variation of a and n parameters in Figures 6H,I

allows a satisfactory transition between non-linear-elastic and
elastic-plastic phases, with a reasonable reproduction of the
experimental results.

APPLICATION

In order to highlight the extent of how the horizontal response
of elastomeric devices is affected by a multi-component loading,
responses with and without variable axial forces are compared in
this section. The time-histories of the loading components come
from the response of two isolation devices located at different
positions in the numerical model of a base isolated nuclear power
plant (NPP—Figure 7). This was presented in Perotti et al. (2013)
and studied in MATLAB (2013) and Domaneschi et al. (2012).

Since the dimensions of the NPP isolation device (outside
diameterD= 1,000mm, diameter of the steel shims d= 960mm,
10 layers of elastomeric material each 10mm in thickness) are
different from those of the device used in the Abe et al. model
identification procedure (section Identification of the Model
Parameters), the time histories of the loading components are
scaled. Therefore, in order to impose the same value of axial
stress and the same value of shear distortion in the rubber layers
of both devices, the axial force of the NPP device is scaled
by the ratio of the areas of the isolators, while the horizontal
displacements by the ratio of the total height of the rubber layers
of the devices. The variable axial load must be transformed into
axial stress since all the fitting laws of the model parameters of
Abe et al. are expressed in terms of axial stress values calculated
in MPa.

In computing the device response through the Abe et al.
model both constant and variable axial loading conditions

for the device have been implemented. In the first option
of constant axial loading conditions, the following values
are considered: the maximum compression, the half of the
maximum compression and the mean compression (static
loading conditions). Following the second option, the model
formulation includes the parameters dependency on axial loading
in such that at any step of a time history analysis the parameters
are updated.

Both Figures 10, 13 show how, as the axial force increases,
the area of the hysteretic cycles increases as well. It means
that the axial force variation can modify the device response
and, therefore, the design isolation period and maximum lateral
displacement of the isolated structure.

It can be also noted how the actual response of the
device (Figures 10A, 13A) is better approximated by
using the parameters derived for the maximum value of
the axial force (Figures 10D, 13D), rather the lower ones
(Figures 10B,C,13B,C).

Tables 6 reports the result in terms of dissipated energy over
the whole loading history. No definite trend emerges, and the set
of parameters coming from the lowest axial load values provide
results as good (or as bad) as the other sets at the expense,
however, of not reproducing correctly the lateral stiffness of the
device for the highest hysteresis cycles.

CONCLUSION

A model for simulating rubber bearings force-displacement
characteristics accounting the coupled effect of variable axial
loading on the horizontal response is proposed in this work.
The proposed model builds upon a consolidated approach from
literature, that has been demonstrated effective in reproducing
the rubber bearing horizontal behavior under constant axial load.
In the proposed approach, the parameters dependency on axial
loading is embedded in the model formulation such that at any
step of a time history analysis the parameters are updated.

The methodology adopts to available laboratory cycling tests
at variable axial load, as the target for illustrating the capabilities
of the new numerical procedure, and the optimization processes
needed to define the model parameters. Both automatic and
user-driven procedures have been used for the parameters
identification.

Preliminary analyses carried out by using the proposed
numerical model highlight the effects that the axial load can
have on the device horizontal response. For the larger values
of the axial load herein considered, this can be substantial.
Subsequently, the proposed model is tested through numerical

TABLE 6 | Values of dissipated energy [J].

Variable Max value halved Max value Mean value

FIGURE 12 CYCLES

527 514 539 530

FIGURE 13 CYCLES

1,149 1,239 1,032 1,234
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simulations on a nuclear building. The proposed model has
been demonstrated effective in reproducing the coupled vertical
horizontal response of the isolation system.

The proposed formulation overcomes the limits of the original
model in this respect, and consistently preserves the original
compactness and satisfactory representation of the experimental
response for both cyclic and seismic loading at small and large
value of relative displacement between the device ends.

This work is limited to the biaxial formulation (vertical-
horizontal) and the general tri-axial formulation is out of the

scope of this study. However, consistently with the original
model, the generalization to the tri-axial version can be obtained.
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