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A finite element approximation of a theory recently proposed for the geometrically

nonlinear analysis of laminated curved beams is developed. The application of the given

finite element model to the computation of stability points and post-buckling behavior of

beams with arbitrary curvature is also carried out, on taking into account the influences

of shear deformation and warping effects on the in-plane and out-plane responses of

the beam. The stability analysis is performed through a path-following procedure and a

bordering algorithm. Several numerical results are given and comparisons with classical

beam theories and other theories available in the relevant literature are established. The

given results highlight that the proposed finite element model is well suited to study

the stability of structures that incorporate laminated composite beams, such as, e.g.,

light-weight roof structures and arch bridges.

Keywords: composite laminates, curved beams, fiber-reinforced composites, buckling-analysis, finite element

method

INTRODUCTION

Laminated composite (fiber-reinforced) structures are increasingly used in a wide range of
engineering applications (naval, aeronautical, automation, mechanical, civil, medical engineering,
etc.), due to the outstanding proprieties that such structures may exhibit when a proper design
of the material and the lamination scheme are employed: light weight, high stiffness-to-weight
and tensile strength-to-weight ratios, high damping, excellent corrosion, thermal and high impact
resistance (Fraternali et al., 2011, 2012; Bencardino et al., 2012). Nowadays, laminated composite
structures play a crucial role in the production of various innovative structures or products, which
include: light-weight roof structures, arch bridges, impact energy mitigation and vibration isolation
devices, just to name a few examples. In order to capture the puzzling mechanical response of
such structures, various theoretical and numerical approaches have been proposed in the literature,
including zig-zag displacement-based theories and stress-based methods, with special attention
on the modeling of anisotropy, warping, fracture and damage (Feo and Fraternali, 2000; Roberts
and Al-Ubaidi, 2001; Fraternali et al., 2002, 2010, 2011, 2012; Fraternali, 2007; Schmidt et al.,
2009; Feo and Mancusi, 2010; Bencardino et al., 2012; Markkula et al., 2013; Viera et al., 2013;
Özütok and Madenci, 2017). Shear deformation and warping effects may be rather important in
composite beams. At this regard (Özütok andMadenci, 2017) by Özütok andMadenci analyses the
effects of a non-linear distribution of the shear stress through the beam thickness within a higher-
order shear deformation theory; Roberts and Al-Ubaidi develop in Roberts and Al-Ubaidi (2001)
an approximate theory for assessing the influence of shear deformation on restrained torsional
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warping of pultruded bars; while Viera et al. develop a thin-walled
beam model able to simulate warping and higher order effects
in Viera et al. (2013). For what concerns stability phenomena,
which are of peculiar interest in the case of composite beams
due to the characteristic slenderness of such structures, it is
worth mentioning the non-linear elastic approaches proposed in
Ascione et al. (2011, 2013); Fraternali et al. (2013); Mascolo and
Pasquino (2016); Özütok and Madenci (2017), and Mascolo et al.
(in press). The recent study illustrated in Fraternali et al. (2013)
presents a geometrically nonlinear theory of laminated curved
beams, which assumes that cross-section rotations and shear
strains are moderately large, while axial strains are infinitesimal.
Due to its minor complexity with respect to the finite elasticity
theory, the model presented in Fraternali et al. (2013) is
particularly convenient for computing the first stability point of a
composite laminated beam and studying its behavior near such a
point.

In the present paper, we develop a comprehensive finite-
element approximation of the mechanical model given in
Fraternali et al. (2013), which is founded upon the use of
Lagrangian isoparametric elements (section Finite Element
Model). The adopted model proves to be a robust and versatile
tool that allows to model the geometrically non-linear response
and the buckling behavior of laminated composite beams with
arbitrary curvature. It takes into account both shear deformations
and warping effects, which are essential to accurately predict
in-plane and out-plane buckling loads. The proposed stability
analysis employs the path-following procedure proposed by
Bathoz and Dhatt (1979) and the algorithm for computing
stability points proposed by Simo and Wriggers (1990) (section
Finite Element Analysis of the Stability of Composite Curved
Beams). The accuracy of the proposed finite-element model is
assessed by presenting different numerical results relative to
the stability of isotropic and composite beams and establishing
comparisons with the corresponding results of classical beam
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theories and other theories available in the relevant literature
(section Numerical Results). We end with concluding
remarks and directions for future work in section Concluding
Remarks.

FINITE ELEMENT MODEL

Let us denote by Ch a finite-element discretization of axis curve
of a laminated beam, and let us assume that the elements
C1, . . . , Cn belong to the Lagrange family (Reddy, 1992) (see
Figure 1)

Ch =
⋃ne

e=1
Ce. (1)

On adopting an isoparametric finite-element
approximation (Reddy, 1992) we use the same shape
functions to approximate both the geometry and the
(generalized) displacement field over the generic element
Ce
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NI ûI . (2)

In Equation (2) NI is the shape function corresponding to
the node I and consists of a complete polynomial of order
n − 1; Z2I and Z3I are the coordinates of I with respect to
the global frame {0,Z1,Z2,Z3} (Figure 1); ûI is the generalized
displacement vector relative to the same node.

In particular, for a four-node Lagrangian element, we
represent in Figure 2 the transformation (2)1,2 which maps the
master element onto a curved (cubic) element.

The Jacobian of the transformation from the local coordinate
ξ (Figure 2) to the global coordinate X3 (Figure 1) is given by
Nomizu and Kobayashi (1963)
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NI, ξ being the derivative of NI with respect to ξ . Denoting by (·)′
the derivative with respect to X3, we have:

NI
′ = dNI

dX3
= J−1N1, ξ . (4)

By making use of Equation (2)1,2, we obtain the following
approximation of the curvature radius R (Nomizu and
Kobayashi, 1963)

Coming back to Equation (2)3, we now observe that it can be
written in the following compact form

ûhe = NUe (6)

where Ue is the M-dimensional vector collecting nodal,
generalized, displacements of

Ce

(

Ue =
[

ûT1 , û
T
2 , . . . , ûTn

]T
)

, (7)

while N is the following matrix

N[m×M] = [N1, N2, . . ., Nn] , (8)

whose blocks are diagonal submatrices

NI[m×m] = diag (NI NI . . . NI) . (9)
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FIGURE 1 | Finite element discretization of the axis of a laminate curved beam (nl : numbers of layers).

FIGURE 2 | Standard (A) and distorted (B) four-node Lagrangian element.

Equation (6) leads us to obtain the following approximation of
the generalized strains

Êhe (Ue)=Ê(1)he (Ue)+
1

2
Ê(2)he (Ue, Ue) (10)

where

Ê(1)he (Ue)=BoUe (11)

Ê(2)he (Ue, δUe)=BL (Ue) δUe

B0 and BL (Ue) being the following σ ×M matrices

B0 = [B01, B02, . . . , B0n ] ,

BL (Ue) = A (Ue)G. (12)

The σ ×m submatrices B0I in Equation (12)1 are given by
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The matrices A and G, which appear in Equation (12)2, are
instead given by
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FINITE ELEMENT ANALYSIS OF THE
STABILITY OF COMPOSITE CURVED
BEAMS

Path-Following Procedure
Let us consider the variational formulation of the equilibrium
equations. The use of Equations (6, 10, 11) allows us to set such
equations into the following discrete form

δ5h = δUTR(U, λ)

=
∑ne
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where 5h is the discretized functional of the total potential
energy 5; δ5h is the first variation of 5h with increment δU ;
R(U , λ) (residuai vector) is the Gateaux derivative of 5h with

respect to U
(

R = DU5h
)

.

On accounting for a possibility of non-linear elastic response
of the material, we assume that the elasticity matrix D̂, whose
elements are the resultants and the resultant moments of the
local elastic moduli (Fraternali et al., 2013), depends on the
deformation of the beam (D̂= D̂ (U)).

Equation (18) can also be written in the following compact
form

δUTR (U , λ)=δUT
{

K (U)U−λ
[

Q(1)+Q(2) (U)

]}

=0, (19)

where K(U) is the N × N global (secant) stiffness matrix, which
derives from the assembly of the element stiffness matrices
Ke (e = 1, 2, . . . , ne). Such matrices are defined by the equations

Ke (Ue) (Ue)=
∫ 1

−1

[

BT
0+BT

L (Ue)

]

Ŝ (Ue) Jdξ , (20)

where Ŝ is the generalized stress vector

Ŝ (Ue)=D̂

[

B0+
1

2
BL (Ue)

]

Ue, (21)

while Q(1) and Q(2)(U) are the global force vectors, which derive
from the assembly of the element vectors

Q(1)
e =

∫ 1

−1
NT q̂(1)e Jdξ , Q(2)

e (Ue)=
∫ 1

−1
NT q̂(2)e (Ue)Jdξ , (22)

and the nodal force vectors Q̂
(1)
I and

Q̂
(2)
I

(

ûI
)

(I = 1, 2, . . . , nn).
Due to the arbitrariness of δU , Equation (19) is equivalent to the
following nonlinear system of N equations

R (U , λ) = K (U)U − λ
[

Q(1) + Q(2) (U)

]

= 0, (23)

which can be solved by employing one of the algorithms known
in literature as path-following methods (for an overview of such
methods (see e.g., Riks, 1972). The basic idea of path-following
methods is to append a constraint Equation f (U , λ) = 0 to
(23). Here, following Bathoz and Dhatt (1979), we adopt a
displacement control and assume

f (U) = eTpU − u = 0, (24)

where ep is the vector of RN which has only the pth component
different from zero and equal to 1, while µ is a prescribed value
of the pth component of U . Therefore, we are led to solve the
extended system

R
∗
(U , λ) =

{

R (U , λ)

eTpU − µ

}

= 0, (25)

The linearization of Equation (25) by the Newton-Raphson
method gives the system of incremental equilibrium equations

R∗ (U + 1U , λ + 1λ) = R
∗
(U , λ) +

[

DUR DλR

eTp 0

]{

1U

1λ

}

= 0,

(26)
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The matrix DUR, which is usually referred to as tangent stiffness
matrix and denoted byKT , is given in theAppendix. Concerning
the vector DλR, from Equation (23) we deduce

DλR = −
[

Q(1) + Q(2) (U)

]

. (27)

The non-symmetric system (26), that we rewrite in the form

[

KT −
(

Q(1) + Q(2)
)

eTp 0

]

{

1U

1λ

}

= −
{

R (U , λ)

eTpU − µ

}

, (28)

can be solved by a procedure known in literature as bordering
algorithm (see e.g., Keller, 1977). Such algorithm and the overall
procedure for the solution of the extended system (25) are
described in Table 1.
In particular, if the first predictor U satisfies the constraint (24),
Equation (31) reduces to

1λ =
eTp 1UR

eTp 1UQ

(34)

We point out that, since we proceed by displacement control,
we apply the above iterative procedure in incremental steps.
Within the generic step, say the ith one, we increment by δ

the displacement component Up which exhibited the largest
variation in the previous step. We hence set in the extended
system (25)

µ = eTp U i−1 + δ (35)

and begin the new iteration loop by assuming the predictor
Ũ = U i−1 + δep, λ̃=λi−1, which satisfies Equation (24).

Computation of Stability Points
In the current section we get a finite-element approximation of
the problem of computing stability points based on the Trefftz
criterion (Trefftz, 1930).

TABLE 1 | Bordering algorithm.

Algorithm

Assure a predictor Ũ , λ̃ for U, λ and evaluate

R̃ = R
(

Ũ, λ̃
)

, K̃T = KT

(

Ũ, λ̃
)

, Q̃(2) = Q(2)
(

Ũ
)

. (29)

Repeat (setting Ũ= U, λ̃ = λ)

From (28)1 compute the partial solutions

1UQ = K̃−1
T

(

Q(1) + Q(2)
)

,1UR=−K̃−1
T

R̃. (30)

Solve (28)2 for 1λ

1λ = −
eTp 1UR+

(

eTp Ũ−µ
)

eTp 1UQ
(31)

Compute total displacement increment by

1U =1λ1UQ+1UR, (32)

update: U=Ũ+ 1U, λ=λ̃ + 1λ

until
∥

∥

∥
R*(U,λ)

∥

∥

∥

∥

∥ λ
(

Q(1)+ Q(2)(U)
)
∥

∥

≤ tol (33)

Within the previous settings, we obtain the following discrete
equation

D2
U

∏h

e
(U , λ)U1δU = δUTKT (U , λ)U1 = 0 (36)

which must be satisfied by every variation δU .
A point U , λ such that Equation (36) holds for some U1 is

usually called stability point, while U1 is called buckling mode
(or eigenvector) associated with U , λ.

Due to the arbitrariness of δU , Equation (36) is equivalent to
the system of N Equations

KT (U , λ)U1= 0 (37)

In the following we will denote U1 by V . In order to exclude the
trivial case V=0, it is necessary to append a constraint equation
l (V)= 0 to system (37). Possible choices of such an equation are

‖V‖−1= 0 (38)

eTpV−V0 = 0 (39)

V0 being a fixed (non-zero) value of the pth component of V .
In this work we make use of Equation (39) and, after having
reduced KT to an upper triangular matrix (by Gauss elimination
technique), we identify the index p with the equation number
where the lowest diagonal term of the reduced stiffness matrix
appears. In this way we prevent the pth component of V

becoming exceedingly large. Concerning V0, we set

V0=
eTpV0

‖V0‖
(40)

V0 being the initial approximation to V .
Stability points can be classified in limit (or turning) and
bifurcation points (Budiansky, 1974). Following Spence and
Jepson (Spence and Jepson, 1985) we can distinguish between the
two cases by using the following criteria

Bifurcation point: VT
(

Q(1) + Q(2) (U)

)

= 0 (41)

Limit point: VT
(

Q(1) + Q(2) (U)

)

6= 0 (42)

An efficient procedure for the computation of stability points
has been proposed by Simo and Wriggers (1990). It consists of
solving the extended system

R∗∗ (U ,V , λ,µ) =















R (U , λ)

KT (U , λ)V

eTpV − V0

eTpU − µ















= 0 (43)

which derives from the addition of Equations (37, 39) to the
system of non-linear equilibrium Equations (25).

Since the tangent stiffness matrix becomes progressively ill-
conditioned as the solution approaches the stability point, where
KT is singular, from a numerical point of view it is convenient to
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transform the extended system (43) into the following equivalent
form Simo and Wriggers (1990)

R∗∗
η (U ,V , λ,µ) =























R (U , λ) + η
(

eTpU − µ
)

ep

KT (U , λ)V+η
(

eTpV − V0

)

ep

eTpV − V0

eTpU − µ























= 0,(44)

η being an arbitrary positive number. The linearization of
Equation (44) by the Newton-Raphson method leads us to obtain
the set of incremental equations









KTη
0 −Q −ηep

DU (KTV) KTη
Dλ (KTV) 0

0T eTp 0 0

eTp 0T 0 −1























1U

1V

1λ

1µ















=



















R (U , λ) + η
(

eTpU − µ
)

ep

KTη (U , λ)V−ηV0ep
eTpV − V0

eTpU − µ



















(45)

where Q=Q(1) + Q(2) (U), while

KTη (U , λ) = KT (U , λ) + ηepe
T
p (p not summed) (46)

is a rank-one updated stiffness matrix. The solution of the
non-symmetric system (45) can be obtained by a bordering
algorithm similar to that described in the previous section Path-
Following Procedure.Table 2 shows this algorithm and the global
procedure for the solution of the extended system (44).

We furnish the expressions of the vectors hj (j = 1, . . . , 4),
which appear in Equations (50), in the Appendix.

Overall Algorithm for Stability Analysis
We compute the pre-buckling and post-buckling equilibrium
paths of a laminated beam by combining the procedures
described in Sections Path-Following Procedure and
Computation of Stability Points.

More precisely, denoted the initial stiffness matrix by K0 (see
theAppendix) and an arbitrary numeric value by λ0, we consider
the couple λ0, U0=λ0K

−1
0 Q(1) as the initial predictor of the first

equilibrium state.
We hence correct this predictor as described in section

Path-Following Procedure and keep computing equilibrium
states along the primary path. We check for the sign of
the tangent stiffness matrix determinant in correspondence of
each state, which is a simple operation since the solution of
the extended system (25) requires the factorization (i.e., the
triangular decomposition) of KT .

If the sign of detKT changes between two successive states, say
i and i + 1, a stability point has passed. We hence switch from
the path-following procedure to the procedure for computing
stability points.

In particular we assume Ũ=Ui+1, Ṽ=V0 = K−1
0 ep, λ̃ = λi+1,

µ̃ = eTp U
i+1

(for the meaning of the index p see the beginning of
section Computation of Stability Points).

TABLE 2 | Bordering algorithm.

Algorithm

Assume a predictor Ũ, Ṽ, λ̃, µ̃ and evaluate

R̃= R
(

Ũ, λ̃
)

, K̃Tη
=KTη

(

Ũ, λ̃
)

, Q̃(2)=Q(2)
(

Ũ
)

. (47)

Repeat (setting Ũ= U, Ṽ= V, λ̃ = λ, µ̃ = µ)

From (45)1 compute the partial solutions

1U1 = K̃−1
Tη

(

Q(1) + Q̃(2)
)

1U2 = −K̃−1
Tη

R̃

1U3 = −K̃−1
Tη

ep (48)

From (45)2 compute the partial solutions

q1 = K̃−1
Tη

h1

q2 = K̃−1
Tη

h2

q3 = K̃−1
Tη

h3

q4 = K̃−1
Tη

h4

(49)

where

h1 = −DU
(

KTV
)

1U1

h2=−DU
(

KTV
)

1U2

h3 = −DU
(

KTV
)

1U3

h4 = −Dλ

(

KTV
)

(50)

Compute 1λ and 1µ.

The increments 1λ and 1u can be computed from Equations (453 to

45)4, which can be written as




eTp
(

q1 + q4
)

η eTp q3

eTp 1U1 η eTp 1U3 − 1











1λ

1u







=







g1

g2







(51)

where

g1 = V0 − eTp

[

q2 + η V0 1U3 + η
(

µ − eTp Ũ
)

q3

]

g2 = µ − eTp

[

Ũ+ 1U2 + η
(

µ − eTp Ũ
)

1U3

]

(52)

Compute 1U and 1V from the equations

1U = 1λ1U1 + 1U2 + η
(

µ 1µ − eTp Ũ
)

1U3

1V = −Ṽ + 1λ
(

q1 + q4
)

+ q2 + η
[ (

µ + 1µ − eTp Ũ
)

q3 + V0 1V3

]

(53)

and update: U = Ũ+ 1U, V = Ṽ + 1V, λ = λ̃ + 1λ, µ = µ̃ + 1u.

until

∥

∥

∥
Rη

**(U,V, λ,µ)

∥

∥

∥

∥

∥ λ
(

Q(1)+ Q(2)(U)
)∥

∥

≤ tol (54)

Once the stability point Uc, λc has been computed, we check
if it is a limit or a bifurcation point. In the case of a limit point
we come back to the path-following procedure to complete the
primary path. In the case of a bifurcation point, we switch to
the secondary (or bifurcated) path by adding to Uc a vector
proportional to the eigenvector V

U =Uc+ζ
V

‖V‖ (55)

ζ being a scaling factor to be determined in such a way that it
results R (U ,λc) ≤ tol.

We then follow the secondary path using the path-following
procedure and arrest the calculations when the cross-section
rotations or the shear strains are more than moderately large or
the axial strains are more than infinitesimal (18).
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NUMERICAL RESULTS

We present in this section several numerical results relative to
the evaluation of the stability points and to the post-buckling
behavior of straight and curved beams.

In all the examples we supposed the beam cross-section to
be rectangular with lengths H1 and H2 along the directions
X1 and X2, respectively. We denoted the cross-section area by
A = H1H2, the moments of inertia by I1 and I2, the polar
moment of inertia by IG and the De Saint Venant torsional
rigidity by Jt

I1 =
H1H

3
2

12
, I2 =

H3
1H2

12
, IG = I1 + I2, Jt =

H3
1H2

3
. (56)

Concerning the expression of the warping function w, we
examined the following three cases:

No Warping (NW): w = 0
Warping Function (W1): w = w11X1X2

Warping Function (W3): w = w20X
2
1+w11X1X2+w02X

2
2+

w30X
3
1 + w21X

2
1X2 + w12X1X

3
2 + w03X

3
2 .

We used cubic Lagrangian finite elements and a four-point
Gauss quadrature formula to compute the tangent stiffness
matrix and its derivatives. By this choice we avoided the
numerical inconvenient known in literature as shear and
membrane (or inplane) locking (see e.g., Prathap and Bhashyam,
1982; Reddy and Averill, 1990).

We always assumed that the external loads retain their
directions during the deformation of the beam (dead loading).

BIFURCATION POINTS OF ISOTROPIC,
STRAIGHT AND CURVED BEAMS

In order to assess the accuracy of our numerical model, we
firstly present some results concerned with bifurcation points
of isotropic straight and curved beams. They can be compared
with those available in the relevant literature and corresponding
to classical beam theories (see e.g., Timoshenko and Gere, 1961;
Brush and Almroth, 1975). We assumed a ratio E/G = 0.385
between Young’s and shear moduli.

The first example deals with a circular ring submitted to a
radial dead load of intensity q, which is uniformly distributed
along the centerline. We discretized one half of the ring by 20
finite elements imposing the following boundary conditions (no
warping was considered)

v1 = v2 = v3 = φ1 = φ2 = φ3 = 0 for X3 = 0,

v1 = v3 = φ1 = φ2 = φ3 = 0, for X3 = πR, (57)

where R is the initial radius of the centerline. In particular, the
ratios H1/ H2 = 2, R/ H2 = 20 were considered.

According to Donnel’ s theory (see e.g., Brush and Almroth,
1975), the first bifurcation point occurs at a load level qbif =
4 E I1/R

3 and the buckling mode corresponds to an ovalization
of the ring.

It has to be remarked that the first bifurcation point occurs at
a sensibly different load level qbif = 3 E I1/R

3 if the external load

TABLE 3 | Convergence behavior or the first bifurcation point or a circular ring

submitted to a radial dead load q uniformly distributed along the centerline

(H1/ H2 = 2, R/ H2 = 20, 20 element mesh).

Iteration η= 0 η=
(

Dop−Dp

)

× 10 η =

(

Dop−Dp

)

×1000

λ ε λ ε λ ε

1 4.3056 0.1822 4.3056 0.6018 ×10 4.3056 0.6069×103

2 4.2871 0.1645 ×10−2 4.2871 0.1643×10−2 4.2871 0.1645×10−2

3 3.9886 0.1022 ×10−3 3.9891 0.1154 ×10−3 3.9916 0.1327×10−3

4 3.9883 0.4035 ×10−5 3.9888 0.4821 ×10−6 3.9887 0.1010×10−5

5 3.9892 0.3295 ×10−5 3.9888 0.1920 ×10−8 3.9888 0.4257×10−6

6 3.9887 0.2094×10−3 3.9888 0.1920×10−8

7 3.9889 0.4045 ×10−3

λ = qbifR
3

E I1

dimensionless residual ε =
∥

∥

∥
R**

η

∥

∥

∥

‖λ Q‖

remains orthogonal to the axis during the deformation of the ring
(see e.g., Timoshenko and Gere, 1961; Brush and Almroth, 1975).

Table 3 shows the numerical convergence of the solutions of
the extended system (44) for increasing values of the parameter η.

Denoting by Dp the least diagonal term of the factorized
tangent stiffness matrix and by Dop the corresponding term
in the factorized initial stiffness matrix K0, in our numerical
experiments we set η = 0, η =

(

Dop − Dp

)

× 10 and η =
(

Dop − Dp

)

× 1000.
As already observed by Simo and Wriggers (1990), for η =

0 the results exhibit oscillations near the bifurcation point,
while for η > 0 they converge in a stable way to the value
3.9888 EI1/R3.

Table 3 also shows that in the latter case the solution is rather
insensitive to the value of η.

The small difference existing between our and Donnel’s
bifurcation load can be justified observing that Donnel’s theory
does not account for shear deformation and for the quadratic
terms in X1 and X2 of the axial strain E33, which are
instead present in our model. In all the subsequent numerical
applications we η =

(

Dop − Dp

)

× 10.
The second example we considered deals with the classical

case of a simply supported straight beam loaded by a compressive
force at one end (X3 = L).Table 4 compares the bifurcation loads
computed by using the present theory with those corresponding
to Euler’s theory (PEul = π2 EI1/L

2) and Timoshenko’s theory,
for several the values of the ratio L/H2, assuming H1/H2 = 2.
Upon putting ρ = χ PEul/GA (χ = 1.2 shear correction factor),
we considered both the exact values deriving from Timoshenko’s
Theory

Pbif

PEul
= − (4+ 3ρ) +

√

(4+ 3ρ)2 + 16ρ

2ρ
(58)

and the approximate ones (see e.g., Timoshenko and Gere, 1961)

Pbif

PEul
= 1

1+ ρ
. (59)
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TABLE 4 | First bifurcation load of a simply supported, axially loaded straight

beam for several ratios L/ H2 (H1/ H2 = 2, 20 element mesh).

λbif=Pbif/PEul

L/ H2 ETTa ATTb PTNWNŴc PTW3NŴd PTNWŴe PTW3Ŵf

5 0.90892 0.90700 0.92127 0.90741 0.89622 0.88437

10 0.97516 0.97501 0.97909 0.97500 0.97143 0.96756

20 0.99364 0.99363 0.99465 0.99358 0.99261 0.99164

40 0.99840 0.99840 0.99868 0.99840 0.99817 0.99790

100 0.99974 0.99974 0.99981 0.99976 0.99971 0.99966

aExact Timoshenko’s Theory.
bApproximate Timoshenko’s Theory.
cPres.Th.-No warping-No Γ terms.
dPres.Th.-W3 warping-No Γ terms.
ePres.Th.-No warping-Γ terms incl.
fPres.Th.-W3 warping-Γ terms incl.

Concerning the comparisons between our and classical theories,
we stressed the influences of warping and quadratic terms in X1,
X2 of the axial strain E33 (Ŵ terms). It has to be remarked that our
theory turns into a first-order shear deformation theory with no
shear correction factor (χ = 1) in absence of warping and Ŵ

terms.
Table 4 shows that our results corresponding to a cubic

warping function and absence of Ŵ terms closely approximate
those by Timoshenko. Furthermore, the influence of Ŵ terms is
found to be appreciable (up to 2.7%) for thick beams. We took
into account Ŵ deformation terms in all the successive numerical
applications.

We complete this first group of numerical results by showing
some further examples concernedwith lateral buckling of straight
bars and semicircular arches.

We firstly considered a narrow simply supported beam
transversally loaded at the middle point and a narrow cantilever
transversally loaded at the free end (H1/H2 = 0.1, L/H2 = 10).
The kinematical boundary conditions of the first case are

v1 = v2 = v3 = φ3 = 0 for X3 = 0,

v1 = v2 = φ3 = 0 for X3 = L, (60)

Three positions of the load were considered: load at the centroid,
load at the extrados (X1 = 0, X2 = −H2/2 ) and load at the
intrados (X1 = 0, X2 = H2/2 ). The last two cases obviously give
rise to a deformation-dependent loading (Q(2) (U) 6= 0 ).

Table 5 shows a comparison between the first bifurcation
points computed within the present theory and those
corresponding to the classical Prandtl’s theory (See e.g.,
Timoshenko and Gere, 1961).

In the context of the present theory, we adopted a bilinear
warping function (W1) and assumed both a linear and a
(geometrically) nonlinear pre-buckling behavior (the first was
treated by discarding the part KL of the tangent stiffness matrix,
see the Appendix).

We also generalized Prandtl’s theory in order to include a
nonlinear pre-buckling behavior. This was obtained by using our

TABLE 5 | First lateral bifurcation point of a simply supported beam loaded by a

transverse force Q at the middle point and of a cantilever loaded by a transverse

force Q at the free end (H1/H2 = 0.1, L/H2 = 10, 20 element mesh).

CT-LPB PT-LPB CT-NLPB PT-NLPB

LOAD AT THE CENTROID

simple supported vm/L× 100 0.4380 0.4483 0.4401 0.4520

λbif 16.940 16.902 17.020 17.040

cantilever vf /L× 100 1.6600 1.7240 1.7026 1.7776

λbif 4.0130 4.1840 4.1159 4.2695

LOAD AT THE EXTRADOS

simple supported vm/L× 100 0.4053 0.4152 0.4071 0.4183

λbif 15.752 15.654 15.745 15.772

cantilever vf /L× 100 1.5912 1.6647 1.6337 1.6993

λbif 3.8513 3.9910 3.9422 4.0737

LOAD AT THE INTRADOS

simple supported vm/L× 100 0.4656 0.4832 0.4743 0.4874

λbif 18.127 18.215 18.346 18.376

cantilever vf /L× 100 1.7199 1.8099 1.7621 1.8459

λbif 4.1747 4.3559 4.2683 4.4428

CT, Classical Theory.

PT, Present Theory.

vm, middle point in-plane displacement.

vf , free end in-plane displacement.

λbif = Qbif L
2√

EI2GJt
.

LPB, Linear Pre-Buckling; NLPB, Nonlinear Pre-Buckling.

TABLE 6 | First lateral bifurcation load of a hinged and a clamped semicircular

arch loaded by a radial dead load q uniformly distributed along the centerline

(H1/H2= 0.1, R/H2= 10, 20 element mesh).

λbif=
qbifR

3

EI2

Classical theory Present theory

hinged arch 1.9358 1.9361

clamped arch 13.514 13.774

model, neglecting shear deformation, warping and Γ terms and
making the torsional stiffness equal to GJt .

It has to be remarked that the present theory assumes a
torsional rigidity equal to GIG (as in the De Saint Venant theory
of torsion without warping) and takes into account warping
effects by introducing in the displacement field a polynomial
warping function.

It is evident that our numerical results agree better with those
by Prandtl when the warping is unconstrained, as in the case
of the simply supported beam. On the contrary, in the second
example (cantilever), our and Prandtl’s results somewhat differ
due to the presence of the restraint which doesn’t allow the
warping of the built-in end.

Further on we remark that the assumption of a linear pre-
buckling behavior, as in the original Prandtl’s theory, is less
accurate for the cantilever than for the simply supported beam.
Indeed, in the first case the in-plane displacements are sensibly
higher than in the second case and produce moderate rotations.
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Finally, Table 6 shows the bifurcation loads of hinged and
clamped narrow semicircular arches (v1 = v2 = v3 = φ3 = 0
for X3 = 0, πR in the first case). The load consists of a uniform
radial dead load along the centerline.

The results of the present theory are compared with those
given in Timoshenko and Gere (1961), which are relative to the
classical beam theory. In particular, the first ones correspond to
the choice of a bilinear warping function (W1).

CONCLUDING REMARKS

This work has developed a finite element model of the moderate
rotation theory (MRT) of laminated composite beams proposed
in Fraternali et al. (2013), and its application to the computation
of nonlinear equilibrium paths and stability points of a variety
of numerical examples. The proposed model describes laminated
composite beams with arbitrary curvature of the beam axis,
and takes into account shear deformation, warping effects, in-
plane and out-of-plane instability. For the straight and curved
beams examples analyzed in the present study, we conclude the
following:

(i) the moderate rotation theory (MRT) and the classical beams
theories correlate very well in almost all isotropic cases;

(ii) the influence of warping effects on the bifurcation load
is generally pretty high for beams made up of composite
materials.

Future work will apply the model presented in this
work to a wide collection of technically relevant case-
studies, with special emphasis on the study of the stability
of light-weight roof structures and arch bridges, which
make use of laminated composite beams (Fraternali et al.,
2013).
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NOTATION

We report below the list of the main notations used in the text. Throughout this paper we use boldface character to denote numerical
vectors and matrices; we also use the superscript T to denote the transpose of a vector or a matrix.

C axis curve of a laminated beam

L length of C

X3 ∈ [0, L] line coordinate along C

R
(

X3
)

curvature radius of C at the generic point

6
(

X3
)

generic cross-section of the beam

X1, X2 orthogonal coordinates on 6 with origin at the centroid

H1, H2 dimensions along X1, X2 of a rectangular cross-section

v
(

X3
)

=
{

v1, v2, v3
}T

displacement vector of the generic point of C

φ
(

X3
)

=
{

φ 1, φ 2, φ 3
}T

vector associated with the skew part of Σ-moderate rotation tensor

w
(

X3
)

=
{

w1, w2, w3
}T

vector collecting warping function coefficients

mw number of warping coefficients

û
(

X3
)

=
{

vT , φT , wT
}T

generalized displacement vector

m = 6+mw number of generalized displacements

Ê
(

û
)

vector collecting generalized strains

Ê(1)
(

û
)

, 1
2 Ê

(2)
(

û, û
)

linear and quadratic parts of Ê

Ŝ vector collecting generalized stresses

σ = 9+ 2 mw number of generalized stresses and deformations

D̂ σ × σ elasticity matrix

λ load multiplier

q̂(1), q̂(2) (u) vectors of first-order and second-order generalized forces per unit of length of C

Q̂
(1)
l

, Q̂
(2)
l

(

Ul
)

vectors of first-order and second-order generalized forces applied at the cross- section 6I

ne number of elements of the finite element mesh

Ce generic finite element

n number of nodes of Ce

nn = ne × (n− 1) + 1 total number of nodes of the finite element mesh

M = m× n number of degrees of freedom per element

Ue M-dimensional nodal displacement vector of Ce

Ke (Ue) M×M secant stiffness matrix of Ce

Q̂
(1)
e , Q̂

(2)
e (Ue) first-order and second-order nodal force vectors of Ce

N total number of equations

U N-dimensional global displacement vector

K (U) N× N global secant stiffness matrix

Q̂(1), Q̂(2) (U) first-order and second-order global force vectors

R (U, λ) residual vector

KT (U, λ) tangent stiffness matrix

R
N field of real numbers

‖·‖ norm operator in R
N

tol fixed tolerance

Given a scalar function f (U , λ) :RN×R → R, we denote by DU f the vector which represents the Gateaux derivative of f with
respect to U

VTDUF = limγ→0
1
γ

[

f (U + γ V , λ) − f (U , λ)
]

, ∀ V ∈ R
N ,

and by Dλf the partial derivative of f with respect to λ.
Similarly, given a vector function R (U , λ) :RN×R →R

N , we denote by DUR the N × N matrix which represents the Gateaux
derivative of R with respect to U

DUR V = limγ→0
1
γ
[R (U + γ V , λ) − R (U , λ)] , ∀ V ∈ R

N ,

and by DλR the partial derivative of R with respect to λ.
Finally, in the case of a scalar function f (U , λ), we denote by D2

U f the bilinear operator

D2
U f V1 V2 = VT

2 DU

(

DU f
)

V1,∀ V1, V2 ∈ R
N
.
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