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Free Vibration Analysis of Variable
Cross-Section Single-Layered
Graphene Nano-Ribbons (SLGNRs)
Using Differential Quadrature Method
Subrat Kumar Jena* and Snehashish Chakraverty*

Department of Mathematics, National Institute of Technology Rourkela, Rourkela, India

In this article, free vibration of the variable cross-section (non-uniform) single-layered

graphene nano-ribbons (SLGNRs) is investigated by using the Differential Quadrature

Method (DQM). Here width of the cross-section is assumed to vary exponentially along

the length of the nano-ribbon. Euler–Bernoulli beam theory is considered in conjunction

with the nonlocal elasticity theory of Eringen. Step by step procedure is included and

MATLAB code has been developed to obtain the numerical results for different scaling

parameters as well as for four types of boundary conditions. Convergence study is carried

out to illustrate the efficiency of the method and obtained results are validated with known

results in special cases showing good agreement. Further, numerical as well as graphical

results are depicted to show the effects of the nonuniform parameter, nonlocal parameter,

aspect ratio and edge conditions on the frequency parameters.

Keywords: SLGNR, euler-bernoulli beam theory, DQM, vibration, variable cross-section

INTRODUCTION

Application of nanomaterials has expanded in the area of physics, chemistry, engineering, and
nanotechnology because of their special properties like mechanical, electrical and electronic (Dai
et al., 1996). As a result of these properties, nanomaterials play very significant roles in various
nano-mechanical systems and nanomaterials. These materials include nanowires, nanoparticles,
nanoribbons, nanotubes etc. Various applications concerning CNT reinforced structure like
reinforced beam, plate etc. can be found in the literatures (Tornabene et al., 2016, 2017; Banic et al.,
2017; Fantuzzi et al., 2017). One may also get detail information about nanobeams and nanoplates
in the book (Chakraverty and Behera, 2016). Among these nanostructures, single-layered graphene
nano-ribbons viz. nanobeams attract more attention due to their great potential in engineering
applications. Graphene nanoribbons (Geim and Novoselov, 2007; Geim, 2009; Novoselov et al.,
2012) are graphene nanostrip with width less than 50 nm. For the first time, Mitsutaka Fujita
and coauthors introduced Graphene ribbons as a theoretical model to examine the edge and
nanoscale size effect in graphene (Fujita et al., 1996; Nakada et al., 1996; Wakabayashi et al., 1999).
Reddy et al. (2006) investigated equilibrium configuration and continuum elastic properties of
finite sized graphene. GNRs possess additional advantages over graphene sheets. These advantages
include high aspect ratio, ultra-thin width, and opening band gap. So, one must have appropriate
knowledge about the mechanical behaviors for accurate prediction of vibration characteristics.
So far, many researchers have developed various nonclassical continuum theories such as couple
stress theory, strain gradient theory, micropolar theory, and nonlocal elasticity theory. Out of these

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://doi.org/10.3389/fbuil.2018.00063
http://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2018.00063&domain=pdf&date_stamp=2018-10-30
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sjena430@gmail.com
mailto:sne_chak@yahoo.com
https://doi.org/10.3389/fbuil.2018.00063
https://www.frontiersin.org/articles/10.3389/fbuil.2018.00063/full
http://loop.frontiersin.org/people/614350/overview
http://loop.frontiersin.org/people/137457/overview


Jena and Chakraverty Vibration Analysis of SLGNRs

nonclassical continuum theories, nonlocal elasticity theory
developed by Eringen (1972), has been extensively used in the
vibration.

Non-uniformity of nanomaterials is very useful in designing
of many nanoelectromechanical systems (NEMS) devices such
as oscillators, clocks, and sensor devices. In order to make
a NEMS device more efficient, nanobeams with non-uniform
cross-sections should be used. To be able to use non-uniform
nanobeams, mechanical behaviors in both static and dynamic
conditions should be known. So, vibration analysis is important
for many NEMS devices. Aydogdu et al. (2018) investigated
vibration of axially functionally graded nanorods and beams
with a variable nonlocal parameter and these variations are
assumed in the material properties viz. elasticity modulus,
density, and nonlocal parameter. Ece et al. (2007) investigated
the vibration of an isotropic beam with an exponentially varying
width along the length of the beam. Mirzabeigy (2014) studied
free vibration analysis of variable cross-section beams resting
on elastic foundation and under axial force by using a semi-
analytical approach. Transverse vibration of beam of linearly
variable depth with edge crack was Modeled of Chaudhari and
Maiti (1999). Attarnejad and Shahba (2011) used dynamic basic
displacement functions for free vibration analysis of centrifugally
stiffened tapered beams. A nonlocal version of Euler-Bernoulli
beam in conjunction with Eringen’s nonlocal elasticity was
studied by Peddieson et al. (2003).Wang et al. (2007) investigated
analytical solutions for vibration of nonlocal Euler-Bernoulli
and Timoshenko nanobeams. Application of nonlocal theories
for bending, buckling and vibration of beams can be seen
in Reddy (2007) and Aydogdu (2009) and vibration analysis
of Euler-Bernoulli nanobeams by using finite element method
can be found in Eltaher et al. (2013). Hosseini Hashemi and
Bakhshi Khaniki (2016) investigated an analytical solution for
free vibration of a variable cross-section nonlocal nanobeam. The
free transverse vibration of cracked Euler- Bernoulli nanobeams
based on nonlocal elasticity model was studied by Loya et al.
(2009). Beni et al. (2014) studied the transverse vibration of
cracked nano-beam based on modified couple stress theory.
Further, Bagdatli (2015) presented the non-linear vibration of
nanobeams. Now, literature related to development of various
approaches of Differential Quadrature (DQ) method have also
been briefly mentioned herein.

For the first time, Bellman and Casti (1971) introduced
the Differential Quadrature (DQ) method in the year 1971.
Therefore, this powerful technique is being used for solving linear
and nonlinear differential equations arising in various dynamic
problems. Later, Bert et al. (1988) used this method for solving
the dynamical problem arising in the field of structural dynamics.
Since then, this method is applied by various researchers for
solving different types of structural problems such as linear or
nonlinear. Different authors introduced various procedures to
use edge conditions in the DQ method. In this regard, for the
first time, Bert et al. (Jang et al., 1989) proposed δ technique to
use edge conditions. In this case (Shu, 2000), one may observe
that one edge condition is used at the boundary point whereas
other edge condition is at a distance δ from the boundary point.
This δ technique may be suitable for the C-C edge but this is

not useful for S-S and S-C edge conditions. In order to eradicate
the shortcomings of the above approach, Bert further presented a
new technique in applying edge conditions which may be found
in Bert et al. (1993, 1994), Wang and Bert (1993), Wang et al.
(1993), Bert and Malik (1996). In this technique, one just needs
to implement one boundary condition numerically while the
other edge condition can be obtained from the DQ weighting
coefficient matrices. Similarly, Tornabene et al. surveyed several
methods under the heading of strong formulation finite element
method (SFEM) which can be found in Tornabene et al. (2015).

To the best of the present authors’ knowledge, this article
provides first time the frequency parameters of the variable cross-
section (non-uniform) single-layered graphene nano-ribbons
(SLGNRs) by using Differential Quadrature Method (DQM). In
this article, Euler-Bernoulli beam theory in conjunction with
nonlocal elasticity theory has been considered to illustrate the
effects of the nonuniform parameter, nonlocal parameter, aspect
ratio and edge condition on the frequency parameter.

REVIEW OF NONLOCAL ELASTIC THEORY

Nonlocal stress tensor σ at a given point x in conjunction
to nonlocal elasticity theory can be expressed as Murmu and
Adhikari (2010)

σ (x) =
w
V
K

(∣

∣x′ − x
∣

∣ ,α
)

τ dV (x′) (1)

where τ is the classical stress tensor,K
(∣

∣x′ − x
∣

∣ , α
)

the nonlocal
modulus, and

∣

∣x′ − x
∣

∣ the Euclidean distance. One may note that
the volume integral is considered over the region V . Here α is the
material constant and it depends on both external and internal
characteristic lengths.

From Hooke’s law, one may have

τ (x) = C (x) : ε (x) (2)

where C is the fourth order elasticity tensor, ε is the classical
strain tensor and: denotes double dot product.

It may be noted that Equation (1) is the integral constitutive
relation and it is very complicated to solve. Hence we need an
equivalent form of this equation which may be expressed as
Murmu and Adhikari (2010)

(

1− α2L2∇2
)

σ = τ , α =
e0a

L
(3)

where∇2 is the Laplace operator, e0 is a material constant, a is an
internal characteristic length and L is the external characteristic
length of the nanostructure. Here e0a is the nonlocal parameter
which shows scale effect on the nanostructures.

MATHEMATICAL FORMULATION OF THE
PROPOSED MODEL

In this study, the Euler–Bernoulli beam theory along with the
nonlocal elasticity theory of Eringen (1972) has been considered
for the investigation. In this regard, one must have adequate
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knowledge about energies. Strain energyU for local elasticitymay
express as

U =
1

2

Lw

0

w

A

σxxεxx dA dx , (4)

where σxx is the normal stress, L is the length and A is the
cross-section area. The strain-displacement relation is given as

εxx = −z
∂2w

∂x2
, (5)

where εxx is the normal strain and w is the deflection function.
Substituting Equation (5) in Equation (4), one may obtain

U = −
1

2

Lw

0

M
∂2w

∂x2
dx , (6)

where M =
r
A

zσxxdA, is the bending moment. In this study,

the free harmonic motion is considered viz. we take w =
w0(x) sin ωt, whereω is the natural frequency of vibration. Using
free harmonic motion in Equation (6), we may obtain the strain
energy U as

U = −
1

2

Lw

0

M
d2w0

dx2
dx . (7)

The kinetic energy T is given as

T =
1

2

Lw

0

ρAω2w2
0 dx , (8)

where ρ is the mass density and A is the area.
Using Hamilton’s principle and setting the co-efficient of δw0

to zero, one may obtain the governing equation as

d2M

dx2
= −ρAω2w0. (9)

Based on Eringen’s nonlocal elasticity theory, the nonlocal
constitutive relation for EBT may be expressed as

M − µ
d2M

dx2
= −EI

d2w0

dx2
(10)

where µ is the nonlocal parameter which can be expressed as
µ = (e0a)

2 with e0 and a denoting material constant and internal
characteristic length respectively, I is the second moment of area
and E is Young’s modulus. By using Equation (9) and Equation
(10),M may be expressed as

M = −EI
d2w0

dx2
+ µ

(

−ρAω2w0

)

(11)

Structural members with variable cross section play very
significant role in civil, mechanical, and aeronautical engineering.

Since we have considered the width of the cross-section is varied
exponentially along the length of the nanoribbon, so we will have
(Hosseini Hashemi and Bakhshi Khaniki, 2016)

A(x) = A0e
nx and I(x) = I0e

nx (12)

where, n is the non-uniform parameter, I0 and A0 are the second
moment of area and cross-section of nanoribbon respectively.
Using Equation (11) along with Equation (12) in Equation (9),
one may obtain the governing equation in terms of displacement
as

EI0
d4w0

dx4
+ 2nEI0

d3w0

dx3
+ EI0

(

n2 +
ρA0µω2

EI0

)

d2w0

dx2

+ 2ρA0µω2n
dw0

dx
+ ρA0ω

2w0(µn
2 − 1) = 0 (13)

Let us introduce the following non-dimensional terms
X = x

L = Dimensionless co-ordinate
W = w0

L = Dimensionless transverse displacement

λ2 = ρA0ω
2L4

EI0
= Frequency parameter

α = e0a
L = Dimensionless non-local parameter

η = nL= Dimensionless non-uniform parameter.
Using the above non-dimensional terms in Equation (13), we

obtain the nondimensionalized form of the governing differential
equation as Hosseini Hashemi and Bakhshi Khaniki (2016)

d4W

dX4
+ 2η

d3W

dX3
+ η2

d2W

dX2

= λ2
{

(1− α2η2)W − α2 d
2W

dX2
− 2α2η

dW

dX

}

(14)

Next, we introduce an overview of the differential quadrature
method.

DIFFERENTIAL QUADRATURE METHOD

In this investigation, Quan and Chang (1989) approach is taken
into consideration along with Chebyshev-Gauss-Lobatto grid
points which are expressed as

Xi =
1

2

[

1− cos

(

i− 1

N − 1
.π

)]

. (15)

One may express the derivatives of displacement function W(X)
at a given discrete point i as Behera and Chakraverty (2015)

W′
i =

N
∑

j= 1

AijWj

W′′
i =

N
∑

j= 1

BijWj (16)

W′′′
i =

N
∑

j= 1

CijWj

Wi
IV =

N
∑

j= 1

DijWj
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where i = 1, 2, . . . , N and N is the number of discrete grid
points.

Here Aij,Bij,Cij, and Dij are the weighting coefficients of the
first, second, third and fourth derivatives respectively.

Determination of Weighting Coefficients
Computation of weighting coefficient matrix A = (Aij) plays
significant role in DQ method. As per Quan and Chang ’s
approach, the matrixA = (Aij) can be computed by the following
procedure.

For i 6= j

Aij =
1

Xj − Xi

N
∏

k 6=i
k 6=j
k=1

Xi − Xk

Xj − Xk
i = 1, 2, . . . ,N j = 1, 2, . . . ,N

(17)

for i = j

Aii =
N

∑

k 6=i
k=1

1

Xi − Xk
i = 1, 2, . . . ,N. (18)

After weighting coefficients of first-order derivatives are
computed, one may easily get the weighting coefficients of
higher order derivatives by simple matrix multiplication which
is given as

B = Bij =
N

∑

k= 1

AikAkj (19)

C = Cij =
N

∑

k= 1

AikBkj (20)

D = Dij =
N

∑

k= 1

AikCkj =
N

∑

k= 1

BikBkj. (21)

Application of Boundary Conditions
Four classical boundary conditions such as SS,CS,CC, andCF are
taken into consideration in the present study where the letters
S,C, and F denote simply supported, clamped and free edge
conditions respectively.

Let us now denote

A =











A11 A12 · · · A1,N−1 A1,N

A21 A22 · · · A2,N−1 A2,N

...
...

...
...

AN1 AN2 · · · AN,N−1 AN,N











Ā =











0 A12 · · · A1,N−1 0
0 A22 · · · A2,N−1 0
...

...
...

...
0 AN2 · · · AN,N−1 0











Ā1 =









0 A1,2 · · · A1,N

0 A2,2 · · · A2,N

· · · · · · · · · · · ·
0 AN,2 · · · AN,N









Ā2 =









A1,1 A1,2 · · · A1,N−1 0
A2,1 A2,2 · · · A2,N−1 0
· · · · · · · · · · · · · · ·
AN,1 AN,2 · · · AN−1,N−1 0









.

The weighting coefficients of higher order derivatives for
different edge conditions are given below.

Simply Supported-Simply Supported

{W′} = [Ā]{W}.
{W′′} = [A] [Ā]{W} = [B̄]{W} with B̄ = [A] [Ā].

{W′′′} = [Ā] {W′′′} = [Ā] [B̄] {W} = [C̄] {W}.
{WIV} = [A] {W′′′} = [A] [C̄] {W} = [B̄] [B̄] {W} = [D̄] {W}

where [D̄] = [B̄] [B̄] or [D̄] = [A] [C̄].

Clamped-Simply Supported

{W′} = [Ā] {W}
{W′′} = [Ā1] {W′} = [ Ā1] [Ā] {W} = [B̄] {W} with [B̄] = [Ā1] [Ā].

{W′′′} = [Ā2] {W′′} = [Ā2] [B̄] {W} = [C̄] {W} with [C̄] = [Ā2] [B̄].

{WIV } = [A] {W′′′} = [A] [C̄] {W} = [D̄] {W} with [D̄] = [A] [C̄].

Clamped-Clamped

{W′} = [Ā] {W}
{W′′} = [Ā] {W′} = [ Ā] [Ā] {W} = [B̄] {W} with [B̄] = [Ā] [Ā].

{W′′′} = [A] {W′′} = [A] [B̄] {W} = [C̄] {W} with [C̄] = [A] [B̄].

{WIV } = [A] {W′′′} = [A] [C̄] {W} = [D̄] {W} with [D̄] = [A] [C̄].

TABLE 1 | Comparisons of first fundamental frequency parameter (λ ) for SS

Nano beam.

µ Present Reddy, 2007 Aydogdu, 2009 Eltaher et al., 2013

0 9.8696 9.8696 9.8696 9.8696

1 9.4159 9.4159 9.4124 9.4159

2 9.0195 9.0195 9.0133 9.0195

3 8.6693 8.6693 8.6611 8.6693

4 8.3569 8.3569 8.3472 8.3569

TABLE 2 | Comparisons of first fundamental frequency parameter (λ ) for SS

Nanobeam.

µ Aydogdu, 2009 Eltaher et al., 2013 Present

0 9.8696 9.8798 9.8696

1 9.7498 9.4238 9.7500

2 9.6343 9.0257 9.63473

3 9.5228 8.6741 9.5234

4 9.4150 8.3606 9.4158
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TABLE 3 | Comparisons of frequency parameter
(√

λ
)

for SS case.

α = e0a/L
1st Mode 2nd Mode 3rd Mode 4th Mode 5th Mode

Mode
Present Wang et al.,

2007

Present Wang et al.,

2007

Present Wang et al.,

2007

Present Wang et al.,

2007

Present Wang et al.,

2007

0 3.1416 3.1416 6.2832 6.2832 9.4248 9.4248 1.566 1.566 15.708 15.708

0.1 3.0685 3.0685 5.7817 5.7817 8.0400 8.0400 9.9161 9.9161 11.5111 11.5111

0.3 2.6800 2.6800 4.3013 4.3013 5.4422 5.4422 6.3630 6.3630 7.1568 7.1568

TABLE 4 | Comparisons of frequency parameter
(√

λ

)

for CS case.

α = e0a/L
1st Mode 2nd Mode 3rd Mode 4th Mode 5th Mode

Mode
Present Wang et al.,

2007

Present Wang et al.,

2007

Present Wang et al.,

2007

Present Wang et al.,

2007

Present Wang et al.,

2007

0 3.9266 3.9266 7.0686 7.0686 10.2102 10.2102 13.3518 13.3518 16.4934 16.4934

0.1 3.8209 3.8209 6.4649 6.4649 8.6517 8.6517 10.469 10.469 12.018 12.018

0.3 3.2828 3.2828 4.7668 4.7668 5.8371 5.8371 6.7143 6.7143 7.4773 7.4773

TABLE 5 | Comparisons of frequency parameter
(√

λ

)

for CC case.

α = e0a/L
1st Mode 2nd Mode 3rd Mode 4th Mode 5th Mode

Mode
Present Wang et al.,

2007

Present Wang et al.,

2007

Present Wang et al.,

2007

Present Wang et al.,

2007

Present Wang et al.,

2007

0 4.7300 4.7300 7.8532 7.8532 10.9956 10.9956 14.1372 14.1372 17.2787 17.2787

0.1 4.5945 4.5945 7.1402 7.1402 9.2583 9.2583 11.016 11.016 12.520 12.520

0.3 3.9184 3.9184 5.1963 5.1963 6.2317 6.2317 7.0482 7.0482 7.7955 7.7955

Clamped-Free

{W′} = [Ā1] {W}

{W′′} = [Ā1] {W′} = [Ā1] [Ā1] {W} = [B̄] {W} with [B̄] = [Ā1] [Ā1].

{W′′′} = [Ā2] {W′′} = [Ā2] [B̄] {W} = [C̄] {W} with [C̄] = [Ā2] [B̄].

{WIV } = [Ā2] {W′′′} = [Ā2] [C̄] {W} = [D̄] {W} with [D̄] = [Ā2] [C̄].

Substituting the expression of Equation (16) into Equaion (14),
one may obtain generalized eigenvalue problem as

[S] {W} = λ2 [T] {W} (22)

where S is the stiffness matrix and T is the mass matrix.

NUMERICAL RESULTS AND DISCUSSIONS

Equaion (22) is solved by using a MATLAB program which is
developed by the authors and frequency parameters

√
λ have

been obtained. DQ method has been implemented along with
the boundary conditions in the coefficient matrix. Following
parameters (Reddy et al., 2006) are taken for the computational

purpose.

E = 1.012TPa, L = 10, Poisson’s ratio (ν) = 0.245,

and unless mentioned
L

h
= 10.

Validation
For validation of present method, we consider a nanobeam
with uniform cross-section viz. results of fundamental
frequency parameter (λ) are then compared with (Reddy,
2007; Aydogdu, 2009; Eltaher et al., 2013) for different
nonlocal parameters (µ) which are presented in Tables 1, 2. In
Table 1, aspect ratio (L/h) is taken as 10. Similarly, in Table 2,
fundamental frequency parameter (λ ) for SS nanobeam is
compared with (Aydogdu, 2009; Eltaher et al., 2013) with
an aspect ratio (L/h) as 20. Again results are compared
with (Wang et al., 2007) for different α = e0a

L which are
presented in Tables 3–6. From these Tables 1–6, one may
observe close agreement of results with those available in the
literature.

Convergence
A minimum number of grid points have been obtained by
studying convergence to obtain the final results. In order
to show how the solution is affected by the grid points,
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TABLE 6 | Comparisons of frequency parameter
(√

λ
)

for CF case.

α = e0a/L
1st Mode 2nd Mode 3rd Mode 4th Mode 5th Mode

Mode
Present Wang et al.,

2007

Present Wang et al.,

2007

Present Wang et al.,

2007

Present Wang et al.,

2007

Present Wang et al.,

2007

0 1.8751 1.8751 4.6941 4.6941 7.8548 7.8548 10.9955 10.9955 14.1372 14.1372

0.1 1.8792 1.8792 4.5475 4.5475 7.1459 7.1459 9.2569 9.2569 11.016 11.016

0.3 1.9154 1.9154 3.7665 3.7665 5.2988 5.2988 6.1385 6.1385 7.1450 7.1450

FIGURE 1 | Variation of frequency parameters with number of terms for SS, CS, CC, and CF conditions. (A) Convergence of SS Nanobeam. (B) Convergence of CS

Nanobeam. (C) Convergence of CC Nanobeam. (D) Convergence of CF Nanobeam.

TABLE 7 | Convergence for SS case.

N
√

λ1
√

λ2
√

λ3
√

λ4

4 3.1757 5.2692 – –

6 3.0647 5.7140 9.1157 9.9598

8 3.0650 5.7839 8.0678 9.5855

10 3.0650 5.7839 8.0429 9.9002

12 3.0650 5.7839 8.0421 9.9171

14 3.0650 5.7839 8.0421 9.9177

16 3.0650 5.7839 8.0421 9.9177

18 3.0650 5.7839 8.0421 9.9177

20 3.0650 5.7839 8.0421 9.9177

variations of the frequency parameters (
√

λ) with number of
grid points (N) are shown in Figure 1 and in Tables 7–10
for SS, CS, CC, and CF cases respectively. Here, we have
considered L = 10, η = 0.5 and µ = 1. From this

TABLE 8 | Convergence for CS case.

N
√

λ1
√

λ2
√

λ3
√

λ4

4 3.5411 4.7682 – –

6 3.7592 6.3183 9.2660 9.4740

8 3.7550 6.4284 8.6839 10.0281

10 3.7552 6.4359 8.6309 10.3517

12 3.7552 6.4357 8.6336 10.4583

14 3.7552 6.4357 8.6333 10.4556

16 3.7552 6.4357 8.6333 10.4559

18 3.7552 6.4357 8.6333 10.4559

20 3.7552 6.4357 8.6333 10.4559

figure, one may note that with an increase in number of
grid points, the convergence is achieving fast. One may also
observe that 12 grid points are sufficient to get the converged
results.
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TABLE 9 | Convergence for CC case.

N
√

λ1
√

λ2
√

λ3
√

λ4

4 1.2706 4.2537 – –

6 4.6198 7.0750 10.3179 –

8 4.5975 7.4555 9.4853 12.6027

10 4.5987 7.1200 9.2525 12.1127

12 4.5986 7.1451 9.2616 10.9317

14 4.5986 7.1435 9.2606 11.0373

16 4.5986 7.1436 9.2607 11.0154

18 4.5986 7.1436 9.2607 11.0175

20 4.5986 7.1436 9.2607 11.0175

TABLE 10 | Convergence for CF case.

N
√

λ1
√

λ2
√

λ3
√

λ4

4 1.9018 3.8806 4.4163 –

6 1.9171 4.5549 6.7626 –

8 1.9171 4.5274 7.1286 9.3090

10 1.9171 4.5284 7.1447 9.2490

12 1.9171 4.5284 7.1447 9.2605

14 1.9171 4.5284 7.1447 9.2597

16 1.9171 4.5284 7.1447 9.2597

18 1.9171 4.5284 7.1447 9.2597

20 1.9171 4.5284 7.1447 9.2597

TABLE 11 | Frequency parameter
(√

λ
)

for SS case for different nonlocal

parameter.

µ
√

λ1
√

λ2
√

λ3
√

λ4

0 3.1377 6.2850 9.4266 12.5680

1 3.0650 5.7839 8.0421 9.9177

2 3.000 5.4348 7.3031 8.8012

3 2.9414 5.1707 6.8133 8.1204

4 2.8881 4.9604 6.4534 7.6414

5 2.8393 4.7869 6.1720 7.2770

Effect of Nonlocal Parameter
In this subsection, the first four frequency parameters

(√
λ

)

of

nanobeam are obtained for different nonlocal parameters. We
have taken the values of nonlocal parameter as 0, 1, 2, 3, 4,
5nm2. In this study, classical boundary conditions such as SS, CS,
CC, and CF are considered for investigation. Both tabular and
graphical results are depicted by taking other parameters such as
non-uniform parameter (η) as 0.5 and L = 10 nm. First four
frequency parameters of SS, CS, CC, and CF edges for different
nonlocal parameters are presented in Tables 11–14. From these
tables, one may observe that frequency parameters decrease
with increase in nonlocal parameter except first fundamental
frequency parameter of CF nanobeams. One may also notice that
frequency parameters increase with increase in mode number.
Here one important point is to note that CC nanobeams are
having highest frequency parameters than other set of boundary
conditions. Figure 2 shows variation of frequency parameters

TABLE 12 | Frequency parameters
(√

λ
)

for CS case for different nonlocal

parameters.

µ
√

λ1
√

λ2
√

λ3
√

λ4

0 3.8593 7.0356 10.1877 13.3348

1 3.7552 6.4357 8.6333 10.4559

2 3.6634 6.0279 7.8240 9.2697

3 3.5817 5.7240 7.2934 8.5513

4 3.5082 5.4846 6.9057 8.0473

5 3.4416 5.2885 6.6037 7.6645

TABLE 13 | Frequency parameters
(√

λ
)

for CC case for different nonlocal

parameters.

µ
√

λ1
√

λ2
√

λ3
√

λ4

0 4.7336 7.8561 10.9979 14.1390

1 4.5986 7.1436 9.2607 11.0174

2 4.4805 6.6661 8.3759 9.75553

3 4.3758 6.3135 7.8022 8.9952

4 4.2821 6.0375 7.3857 8.4628

5 4.1975 5.8125 7.0627 8.0587

TABLE 14 | Frequency parameters
(√

λ
)

for CF case for different nonlocal

parameters.

µ
√

λ1
√

λ2
√

λ3
√

λ4

0 1.9074 4.6532 7.8249 10.9722

1 1.9171 4.5284 7.1447 9.2597

2 1.9272 4.4103 6.6866 8.3720

3 1.9377 4.2975 6.3535 7.7845

4 1.9487 4.1895 6.1007 7.3456

5 1.9602 4.0855 5.9037 6.9929

(√
λ

)

with nonlocal parameters for different edge conditions

such as SS, CS, CC, and CF.

Effect of Non-uniform Parameter
Effect of the non-uniform parameter η on first four frequency
parameters is analyzed by taking non-uniform parameter η

as 0, 0.2, 0.4, 0.6, 0.8, and 1. Tables 15–18 depict frequency
parameters of SS, CS, CC, and CF edges for different non-
uniform parameters and Figure 3 illustrates the variation of
frequency parameters with non-uniform parameter η for classical
boundary conditions SS, CS, CC, and CF. Here, computation
is done with nonlocal parameter µ =1nm2 and L = 10. It is
evident from the Figure 3 and Tables 15–18 that the frequency
parameters decrease with increase in the non-uniform parameter
for the fundamental frequency of SS condition while other modes
are increasing. With the increase in non-uniform parameter,
frequency parameters decrease for all mode of CS edge whereas
this is exactly opposite in case of CC nanoribbons. For the CF
case, fundamental frequency increases, second mode decreases,
and other modes show random behavior with increase in the
non-uniform parameter.
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FIGURE 2 | Variation of frequency parameter with nonlocal parameter. (A) Variation of Nonlocal parameter for SS Nanobeam. (B) Variation of Nonlocal parameter for

CS Nanobeam. (C) Variation of Nonlocal parameter for CC Nanobeam. (D) Variation of Nonlocal parameter for CF Nanobeam.

TABLE 15 | Frequency parameter
(√

λ

)

for SS case for different non-uniform

parameters.

η
√

λ1
√

λ2
√

λ3
√

λ4

0 3.0685 5.7816 8.0399 9.9161

0.2 3.0679 5.7820 8.0403 9.9163

0.4 3.0662 5.7831 8.0413 9.9171

0.6 3.0634 5.7850 8.0430 9.9184

0.8 3.0595 5.7876 8.0454 9.9202

1 3.0545 5.7909 8.0485 9.9225

TABLE 16 | Frequency parameters
(√

λ

)

for CS case for different non-uniform

parameters.

η
√

λ1
√

λ2
√

λ3
√

λ4

0 3.8208 6.4648 8.6516 10.4687

0.2 3.7944 6.4525 8.6438 10.4632

0.4 3.7682 6.4411 8.6366 10.4582

0.6 3.7421 6.4306 8.6302 10.4537

0.8 3.7161 6.4210 8.6245 10.4498

1 3.6900 6.4124 8.6196 10.4464

Effect of Length-to-Height Ratio
In this subsection, the effect of length-to-height ratio (L/h) on
the first four frequency parameters has been analyzed for the
classical boundary conditions such as SS, CS, CC, and CF. First
four frequency parameters of nanobeam are given in Tables 19–
22 for different L/h (10, 20, 30, 40, 50). Here, computation is done

TABLE 17 | Frequency parameters
(√

λ

)

for CC case for different non-uniform

parameters.

η
√

λ1
√

λ2
√

λ3
√

λ4

0 4.5944 7.1402 9.2583 11.0157

0.2 4.5951 7.1407 9.2587 11.0160

0.4 4.5971 7.1424 9.2598 11.0168

0.6 4.6005 7.1450 9.2617 11.0181

0.8 4.6053 7.1488 9.2644 11.0199

1 4.6114 7.1537 9.2678 11.0223

TABLE 18 | Frequency parameters
(√

λ

)

for CF case for different non-uniform

parameters.

η
√

λ1
√

λ2
√

λ3
√

λ4

0 1.8791 4.5474 7.1458 9.2568

0.2 1.8951 4.5412 7.1460 9.2585

0.4 1.9105 4.5332 7.1454 9.2595

0.6 1.9224 4.5231 7.1438 9.2597

0.8 1.9278 4.5107 7.1414 9.2591

1 1.9237 4.4958 7.1381 9.2577

with µ = 1nm2 and η = 0.5. Graphical results are presented in
Figure 4, where variation of first four frequency parameters with
L/h has been shown. From these tables, one may observe that
frequency parameters increase with increase in length-to-height
ratio except fundamental frequency parameter of CF nanobeams.
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FIGURE 3 | Variation of frequency parameter with non-uniform parameter. (A) Variation of Non-uniform parameter for SS Nanobeam. (B) Variation of Non-uniform

parameter for CS Nanobeam. (C) Variation of Non-uniform parameter for CC Nanobeam. (D) Variation of Non-uniform parameter for CF Nanobeam.

TABLE 19 | Frequency parameters
(√

λ
)

for SS case for different

length-to-height ratio.

L/h
√

λ1
√

λ2
√

λ3
√

λ4

10 3.0650 5.7839 8.0421 9.9177

20 3.1187 6.1390 8.9659 11.5651

30 3.1292 6.2180 9.2075 12.0704

40 3.1329 6.2468 9.3002 12.2758

50 3.1346 6.2604 9.3448 12.3771

TABLE 20 | Frequency parameters
(√

λ
)

for CS case for different

length-to-height ratio.

L/h
√

λ1
√

λ2
√

λ3
√

λ4

10 3.7552 6.4357 8.6333 10.4559

20 3.8320 6.8590 9.6642 12.2326

30 3.8471 6.9543 9.9379 12.7857

40 3.8524 6.9893 10.0434 13.0118

50 3.8549 7.0058 10.0942 13.1236

Effect of Boundary Conditions
One need to have adequate knowledge about boundary
conditions for designing engineering structures. It helps
designers to gather important information without carrying
out detail experimental investigation. Therefore, it is quite
important to study the effect of boundary conditions on
frequency parameter. Figure 5 illustrates variation of frequency

TABLE 21 | Frequency parameters
(√

λ
)

for CC case for different

length-to-height ratio.

L/h
√

λ1
√

λ2
√

λ3
√

λ4

10 4.5986 7.1436 9.2607 11.0174

20 4.6981 7.6449 10.4067 12.9317

30 4.7177 7.7588 10.7149 13.5354

40 4.7246 7.8006 10.8342 13.7835

50 4.7279 7.8204 10.8918 13.9063

TABLE 22 | Frequency parameters
(√

λ
)

for CF case for different

length-to-height ratio.

L/h
√

λ1
√

λ2
√

λ3
√

λ4

10 1.9171 4.5284 7.1447 9.2597

20 1.9098 4.6213 7.6246 10.3932

30 1.9084 4.6389 7.7328 10.6956

40 1.9080 4.6452 7.7724 10.8123

50 1.9078 4.6480 7.7911 10.8686

parameter with nonlocal parameter for different boundary
conditions. The values of other parameters are taken as
L = 10nm and η = 0.5. One may observe from
the figure that CC nanobeams are having highest frequency
parameter whereas CF nanobeams possess the lowest frequency
parameter.
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FIGURE 4 | Variation of frequency parameter with length-to-height ratio. (A) Variation of L/h for SS Nanobeam. (B) Variation of L/h for CS Nanobeam. (C) Variation of

L/h for CC Nanobeam. (D) Variation of L/h for CF Nanobeam.

FIGURE 5 | Variation of frequency parameter with boundary condition. (A) Variation of boundary condition for 1st mode. (B) Variation of boundary condition for 2nd

mode. (C) Variation of boundary condition for 3rd mode. (D) Variation of boundary condition for 4th mode.
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CONCLUSIONS

Free vibration of the variable cross-section (non-uniform)
single-layered graphene nano-ribbons (SLGNRs) is investigated
using the Differential Quadrature Method (DQM). Euler–
Bernoulli beam theory is considered in conjunction with the
nonlocal elasticity theory of Eringen. In this study, width of
the cross-section is varying exponentially along the length of
the nano-ribbon while other parameters are kept constant.
Complete procedure of Differential Quadrature Method (DQM)
is depicted clearly including application of boundary conditions
and MATLAB code has been developed to obtain the numerical
results for different scaling parameters as well as for four types
of boundary conditions. Numerical as well as graphical results
are presented to show the effects of the nonlocal parameter, non-
uniform parameter, aspect ratio and the boundary conditions
on the frequency parameters. one may observe that the effect
of the nonlocal parameter is more in higher modes and
another interesting observation is that fundamental frequency
(1st mode) parameter of the cantilever (CF) nanobeam does not
decrease with increase in nonlocal parameters whereas frequency
parameters of other modes of nanobeam decrease with increase
in nonlocal parameters. Frequency parameters decrease with
increase in the non-uniform parameter for the fundamental
frequency of SS condition while other modes are increasing.With

the increase in non-uniform parameter, frequency parameters
decrease for all mode of CS edge whereas this is exactly opposite
in case of CC nanoribbons. For the CF case, fundamental
frequency increases, second mode decreases, and other modes
show random behavior with increase in the non-uniform
parameter. One may also conclude that frequency parameters
increase with increase in length-to-height ratio (aspect ratio)
except fundamental frequency parameter of CF nanobeam.
Moreover, it is also found that clamped (CC) case possesses
highest frequency parameters and cantilever (CF) nanobeam
possesses the lowest among all other types of boundary
conditions.
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