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In the context of innovative patterns for tall buildings, Voronoi tessellation is certainly

worthy of interest. It is an irregular biomimetic pattern based on the Voronoi diagram,

which derives from the direct observation of natural structures. The paper is mainly

focused on the application of this nature-inspired typology to load-resisting systems

for tall buildings, investigating the potential of non-regular grids on the global

mechanical response of the structure. In particular, the study concentrates on the

periodic and non-periodic Voronoi tessellation, describing the procedure for generating

irregular patterns through parametric modeling and illustrates the homogenization-based

approach proposed in the literature for dealing with unconventional patterns. To

appreciate the consistency of preliminary design equations, numerical and analytical

results are compared. Moreover, since the mechanical response of the building strongly

depends on the parameters of the microstructure, the paper focuses on the influence

of the grid arrangement on the global lateral stiffness, therefore on the displacement

constraint, which is an essential requirement in the design of tall buildings. To this end,

five case studies, accounting for different levels of irregularity and relative density, are

generated and analyzed through static and modal analysis in the elastic field. In addition,

the paper focuses on the mechanical response of a pattern with gradual rarefying

density to evaluate its applicability to tall buildings. Displacement based optimizations are

carried out to assess the adequate member cross sections that provide the maximum

contribution in restraining deflection with the minimum material weight. The results

obtained for all the models generated are compared and discussed to outline a final

evaluation of the Voronoi structures. In addition to the wind loading scenario, the

efficiency of the building model with varying density Voronoi pattern, is tested for seismic

ground motion through a response spectrum analysis. The potential applications of

Voronoi tessellation for tall buildings is demonstrated for both regions with high wind

load conditions and areas of high seismicity.

Keywords: tall building, voronoi tessellation, nature-inspired pattern, tube system, size optimization

INTRODUCTION

In the last few decades, tall buildings have become a world architectural phenomenon. The modern
tendency toward lightweight and best performing designs has led, in recent years, to innovative
structural systems for skyscrapers, able to integrate aesthetic and engineering aspects. Traditional
structural systems have been progressively abandoned in favor of more efficient structures that
allow new “design challenges,” such as the search for increasing heights.
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In the design of tall buildings, the outer skin assumes a
more significant role than any other type of building. As
a matter of fact, the tallness of the building causes greater
vulnerability to wind forces. Following this line of reasoning,
Khan (1969) suggested the adoption of the so-called exterior
tubular structures: perimeter load-resisting systems, able to
provide a great contribution in terms of global structural
efficiency.

These structures are based on the concept of a continuous
perforated tube along the height of the building, obtained by
moving the structural members toward the perimeter to increase
the moment of inertia of the building, and as a consequence its
strength and stiffness.

The introduction of tubular systems offers the possibility
of achieving high efficiency and architectural potential.
The elimination of intermediate supports, indeed, positively
contributes to the definition of large spaces, without intermediate
supports, with great benefits on the flexibility of architectural
planning. From an engineering point of view, a perimeter
system involves greater stiffness and resistance to vertical and
lateral loads. In fact, if one considers the tall building as a
large cantilever beam fixed at the base (where the height of the
building is equivalent to the length of the beam), moving the
resistant parts from the neutral axis, outwards, is comparable
to increase the wing area of a beam, with a consequent increase
of the moment of inertia. This is a desirable requirement in
the design of tall buildings in order to achieve stiffer structures
against wind loads and earthquakes.

The last generation of tubular systems are perimeter grid tubes
with geometric patterns.

According to their configuration they can be distinguished
as: Diagrid (Figure 1A), PentaGrid (Figure 1B), HexaGrid
(Figure 1C), OctaGrid (Figure 1D) and the so-called Voronoi
grid (Figure 1E).

Diagrid structural systems have been widely adopted for high-
rise buildings in the last decades, due to their structural and
aesthetic efficiency.

In the last decades, several well-known diagrid examples have
been built, such as the Poly International Plaza tower in Beijing,
the Hearst Tower in New York, the 30 St. Mary Ax in London,
the Capital Gate Tower in Abu Dhabi and many others.

An important contribution to the state of the art of Diagrid is
provided by Moon, starting from 2007, with the study of optimal
diagonal inclination and the formulation of a preliminary
stiffness-based design methodology (Moon et al., 2007). Moon
proved that for diagrid heights ranging from 20 to 60 stories,
the optimal angle is about 53◦-76◦, where “optimal” means the
lighter and most economical solution in terms of material usage
(Moon, 2010).

In recent developments, the diagrid system has evolved into
other innovative patterns for tall buildings. Nature-inspired
patterns, i.e., geometric patterns that can be observed in nature,
represent a source of inspiration for a new generation of
tessellated tubes.

Such biomimetic patterns are derived by the arrangement of
regular or irregular unit cells, in order to create aesthetically
attractive façades.

The PentaGrid structural pattern is generated by the
arrangement of pentagons with different orientations.
Its irregular arrangement is strictly related to technical
considerations, in order to increase the global stiffness toward
the shear and bending moment. In particular, Pentagrid takes
advantage of an equitable distribution of stresses, with a
predominantly axial behavior in the members.

HexaGrid systems are inspired by honeycomb structures,
made up of several hexagons. The regular angle of 120◦ between
consecutive cells, determines a uniform distribution of the
stresses but a relatively low global stiffness.

Taranath et al. (2014) demonstrated that Pentagrid systems are
more efficient in containing lateral deflection when compared to
Hexagrids, reducing the displacements by 27–34% for 40-story
height buildings and 26–35% for 60-story height.

In 2012, de Meijer (2012) analyzed the mechanical
performances of tall building models with outer tubes discretized
using triangular, hexagonal and trihexagonal patterns. The
comparison showed that hexagrid structures exhibit a lower
stiffness than a triangular diagrid or a trihexagonal grid. In
particular, the stiffness of the hexagrid structures strictly depends
on the slenderness ratio of the members composing the grid, e.g.,
when the ratio decreases, the difference between the two systems
also decreases.

Further developments on the behavior of hexagrid structures
have been made by Montuori et al. (2015), who investigated
the mechanical properties of horizontal hexagrid patterns, to
evaluate their applicability on tall buildings, and compared their
potential efficiency with diagrid systems. As outlined by the
authors, the hexagrids, being bending-dominated structures, are
inherently less stiff, and consequently, less efficient in terms of
weight than diagrids that are stretch-dominated structures.

In the context of innovative patterns for tall buildings,
Voronoi tessellation is certainly worthy of interest. It is
an innovative and irregular pattern that derives from the
observation of natural structures, as they are visible in nature in
the ribs of the leaves, in the motifs of giraffe fur or circulatory
system of insect wings, etc.

Although diagrid and hexagrid have been widely applied in
recent designs and much has been said in the literature, studies
on alternative non-conventional patterns are still an open topic,
given their geometric complexity. Considering the potential
application of Voronoi tessellation and the interest of scholars
to the topic, this paper mainly focuses on the application of
this nature-inspired typology for tall buildings, investigating the
efficiency of non-regular grids on the global mechanical response.
In particular, the study focuses on the periodic and non-periodic
Voronoi tessellation.

In paragraph 2 the state of the art on the tessellated Voronoi
systems is exhaustively outlined and the geometric definition
of the Voronoi diagram is presented. In particular, this section
deals with the homogenization-based approach, proposed in the
literature, to take into account the discrete nature of the micro-
structure during the preliminary design of the tall building.

Finally, in section Voronoi pattern for tall buildings the
design of five irregular Voronoi-grid structures using parametric
modeling is described. The paper analyzes the mechanical
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FIGURE 1 | Grid examples: (A) Diagrid, (B) Pentagrid, (C) Hexagrid, (D) Octagrid, and (E) Voronoi grid.

behavior of periodic and non-periodic grid buildings with
varying degrees of irregularity and density coefficients, in order
to define the most suitable geometry that satisfies the stiffness
requirements. To appreciate the consistency of preliminary
design equations, numerical, and analytical results are compared.
Moreover, since the mechanical response of the building strongly
depends on the parameters of the microstructure, the paper
focuses on the influence of the grid arrangement on the global
lateral stiffness, thus on the displacement constraint, which is an
essential requirement in the design of tall buildings. To this end,
five case studies, accounting for different levels of irregularity and
relative density, are generated and analyzed through static and
modal analysis in the elastic field.

In addition, the paper focuses on the mechanical response of a
pattern with gradual rarefying density to evaluate its applicability
to tall buildings with Voronoi-like grids. Displacement-based
optimizations are carried out to assess the member cross sections
that provide the maximum contribution in limiting the top
deflection with the minimum material weight. Results obtained
for all the models generated are compared and discussed to
outline a final evaluation of the Voronoi structures.

In addition to the wind loading scenario, the efficiency of the
building model with varying density Voronoi pattern, is tested,
in section Seismic behavior of the Voronoi grid, for a Turkish
seismic ground motion through a response spectrum analysis.
Applications of the Voronoi tessellations for tall buildings are
investigated for both regions with high wind load conditions and
areas of high seismicity, in order to demonstrate the potential of
the innovative Voronoi patterns as an alternative to conventional
regular grids.

THE VORONOI TESSELLATION:
GEOMETRICAL AND MECHANICAL
PROPERTIES

The tendency of modern designs toward optimal structures often
leads to high performance and aesthetically appealing structures,
accounting for a multitude of multi-disciplinary requirements.

Making an efficient use ofmaterial, i.e., building lighter structures
able to satisfy loading conditions, is a recurrent topic for
designers and researchers. To this end, recent developments in
architectural design are strongly inspired by biological processes
through the use of mathematical models.

The evolution of living organisms through genetic selection
and the organization of unit cells on biological structures
represent a continuous source of inspiration for researchers.

The improvement of the computational tools has allowed,
in the last decades, the possibility to investigate new design
fashions and innovative solutions with affordable times
and costs, using mathematical methods. The Voronoi
tessellation (Voronoi, 1908) is an example of this concept,
representing a geometric diagram that reproduces non-
regular biomimetic cells easily observable in nature, e.g., on
the wings of the dragonflies, the shells of the turtles and
others.

Due to its ability of mathematically describing natural
models, Voronoi tessellation has gained a growing interest
spanning in many fields of science from biology to architectural
design. Recent applications have been addressed toward material
engineering for modeling cellular materials (Silva and Gibson,
1997; Vajjhala et al., 2000) and material science for representing
polycrystalline microstructures (Wigner and Seitz, 1933). In the
context of structural engineering, applications of the Voronoi
tessellation has been proposed by Beghini et al. (2014), eVolo1

and LAVA2.
Despite the lack of available literature, in the last years,

significant developments have been made in the adoption
of tubular systems with innovative patterns for skyscrapers.
Recently, indeed, Montuori et al. (2016) investigated the
mechanical potentials of non-regular tessellations for tall
buildings. In particular, through the definition of appropriate
correction factors, the authors described the behavior of the
Voronoi structure starting from that of a regular hexagrid
pattern.

1http://www.evolo.us/a-city-within-a-skyscraper-for-battery-park/
2http://www.l-a-v-a.net/projects/bionic-tower/
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Voronoi Diagram Definition
The decomposition of the metric space, determined by the
distances with respect to a certain set of discrete elements is
the basis of the Voronoi tessellation, which makes it possible
to transpose these biomimetic forms to the design environment.
Voronoi tessellation can be applied both to two-dimensional and
three-dimensional configurations, allowing several applications
in architectural and urban planning because the use of non-
conventional patterns in the configuration of tubular structures
offers numerous benefits, e.g., allows to have irregular and non-
repetitive façades.

Since the mechanical properties of the Voronoi pattern are
mainly influenced by its geometrical characteristics, to fully
understand this dependence it is necessary to deepen the
process for generating the Voronoi tessellation and its dual,
the Delauanay triangulation. The Voronoi pattern consists of a
spatial region discretized by convex polygons that fill the domain
without overlapping. The construction process begins with the
definition of a set of points (also called seeds, sites or generators)
within the generic design domain, as illustrated in Figure 2A.

As a consequence, each point is connected with the nearest
adjacent points, without overlapping; the resulting geometry is
called Delaunay triangulation (Figure 2B).

To identify the centers of Delaunay triangles, the midpoints
on each segment are marked and the bisector lines are drawn
(Figure 2C). The lines generated by the union of these orthogonal
segments (highlighted in Figure 2D) represent the edges of the
Voronoi regions. The final result is a set of polygonal cells that
define the Voronoi diagram.

Geometrical Construction of Voronoi
Pattern
To study the applicability of Voronoi systems for tall buildings,
it is essential to investigate the scientific progress made in the
context of the cellular solid field and thus transfer this theoretical
knowledge into the structural engineering environment.

Because the regular or random distribution of the nucleation
points leads to various configurations of the microstructures,
Voronoi tessellation is a commonly used method for analyzing
cellular solids and capturing the random features of the foam
microstructures (Silva and Gibson, 1997; Zhu et al., 2001b;
Gibson, 2005). A Voronoi tessellation based on a random set
of points is, indeed, topologically very similar to an isotropic
structure resulting from a growth process.

Two main approaches are generally adopted in the literature
to generate the Voronoi geometry numerically, as described
below: (i) the perturbation approach of the nodal locations,
starting from a regular honeycomb, and (ii) the so-called random
Voronoi approach.

Random Voronoi Approach
The random Voronoi method (Figure 3A), proposed by Silva
and Gibson (1997) and Zhu et al. (2001b), consists in generating
n random seeds in an arbitrary square area (A0).

For regular honeycombs, made up of identical cells with six
sides and an angle of the vertex of 120◦, the distance δi between
two neighboring points is everywhere constant and equal to d0,

with:

d0 =

√

2A0

n
√
3

(1)

To obtain n cells in the area A0, it is essential that the distance
between any two adjacent nuclei in the random configuration (δi)
is less than the distance between two seeds in the regular grid (d0).

The periodic Voronoi pattern is generated simply by copying
these points to adjacent regions and deleting the parts from the
squared area. Ameasure of the degree of irregularity of a Voronoi
tessellation can be obtained through:

α = 1−
δ

d0
(2)

which informs about the perturbated nature of the pattern.

Perturbation Approach
As discussed by Glaessgen et al. (2003), a Voronoi tessellation
is completely determined by the initial location of the seeds.
Therefore, an alternative approach (Van der Burg et al., 1997;
Fazekas et al., 2002) consists in starting from a regular
distribution of seeds to generate a regular Voronoi diagram, i.e., a
hexagonal honeycomb system (Figure 3B). This latter approach
is assumed in the following sections, since the adoption of a
regular initial unit cells allows to simplify the derivation of the
relationships of the structural properties and to dominate the
original random problem.

Once the regular structure is generated, a small random
translation of each nucleus is applied in a restricted area around
the initial position. This process allows to assume the nodal
coordinates of irregular cells as a perturbated function of the
regular cells through a random angle (θi), a random scale factor
(ϕi) and the irregularity factor (α). According to Li et al. (2005),
this leads to:

x1,i = x1,i + α
(

d0 cos θi
)

ϕi

x2,i = x2,i + α
(

d0 sin θi
)

ϕi (3)

Where,
x1,i , x2,i are the coordinates of the i-th seed of the regular

honeycomb.
x1,i ,x2,i are the perturbated coordinates of the Voronoi grid.
In practice, given a regular starting grid of seeds, the irregular

configuration is obtained by arbitrarily disturbing the position
of the initial nodes. By increasing or decreasing the range of the
scale factor ϕi of a value between 0 and 1 and that of the angle θi of
a value between 0 and 2π, a Voronoi configuration is generated.
Therefore, the final disordered grid has the same number of seeds
as the regular configuration and a certain degree of irregularity
that strictly depends on the values assumed for the two variables.
Examples of this procedure are illustrated in Figure 4.

For a regular honeycomb, the distance between two seeds
is constant, so δ is equal to d0, and the level of irregularity
α is 0 (Figure 4A). On the other hand, for a fully random
Voronoi tessellation, δ is equal to 0 and α = 1(Figure 4D). Any
arrangement between these two extreme conditions is admissible
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as shown in Figure 4B for a Voronoi grid with α = 0.5 and in
Figure 4C for a Voronoi grid with α = 0.7.

Effective Mechanical Properties of Voronoi
Grid
Several works in the field of materials science have shown that a
periodic microstructure, composed of an isotropic linear elastic
material, behaves macroscopically as isotropic material.

According to this statement, it can be deduced that the
macroscopic mechanical properties, also called “effective
properties,” of the cellular structures are influenced by
microstructural parameters, e.g., relative density, cell size
and cell morphology (Fazekas et al., 2002).

Silva and Gibson (1997) studied the effects of non-periodic
microstructure on the compressive failure behavior of Voronoi
honeycombs. Their results have shown that cellular materials

FIGURE 2 | Generation process of the Voronoi diagram. (A) Distribution of the seeds within the design domain, (B) Delauney triangulation, (C) Identification of the

bisector lines, (D) Voronoi tessellation.

FIGURE 3 | (A) Random Voronoi approach and (B) Perturbation of regular Voronoi approach.

FIGURE 4 | Voronoi tessellation with varying α: (A) regular α = 0, (B) α = 0.5, (C) α = 0.7, and (D) fully random α = 1.
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with random microstructural variations tend to reduce the
strength of Voronoi honeycombs by 30–35%, resulting in higher
strains.

We analyzed the effects of non-periodic microstructure
and defects on the compressive failure behavior of Voronoi
honeycombs using finite element analysis. Our results indicate
that the non-periodic arrangement of cell walls in random
Voronoi honeycombs (with cells approximately uniform in size)
results in higher strains in a small number of cell walls compared
to periodic, hexagonal honeycombs. Consequently, the Voronoi
honeycombs were approximately 30% weaker than periodic,
hexagonal honeycombs of the same density.

The difference between elastic behaviors and failures derives
from the wider distribution of the local strain of the Voronoi
honeycomb, due to the presence of imperfections in the cell
geometry, leading to a failure at a lower effective stress (or strain)
compared to the periodic case.

Fazekas et al. (2002) studied the effects of cell topology on
stiffness and strength properties and found that a disorder in the
regular structure leads to an increase of the Young’s modulus.
They confirmed that the introduction of microstructural
perturbation is advantageous in terms of stiffness and detrimental
in terms of strength, which drastically decreases as soon as the
microstructure loses regularity. In fact, due to the distribution
of local stress and strain for a non-regular honeycomb, the
first plastic hinge appears at a lower global stress than regular
structures.

Li et al. (2005) have generated models that incorporate the
effects of two co-existing imperfections: cell shapes and non-
uniform cell thickness on the elastic properties of 2D Voronoi
grids. He found that the elastic response of the honeycombs is
isotropic regardless of changes in the irregularity of the cell shape,
the non-uniformity of the cell wall thickness and the relative
density. For irregular honeycombs with cell walls of uniform
thickness, as the shape of the cells becomes more irregular, on
average, the elastic modulus increases considerably, while the
Poisson’s ratios are insignificantly affected. Also Zhu et al. (2001a)
demonstrated that the Young’s modulus and the shear modulus
increase as the cell irregularity increases, while preserving their
isotropic behavior and a Poisson’s ratio close to 1. On the other
hand, the Young’s modulus and the Poisson’s ratio of random
Voronoi combs with different degrees of regularity α, gradually
decrease with increasing relative density ρ.

The mechanical characterization of the regular honeycomb
grid and the conversion to the Voronoi-like pattern using
the homogenization approach proposed in the literature are
presented in this section. The main assumption in the design
of irregular grids for tall buildings, indeed, is to consider the
Voronoi tessellation as themicro-structure of the perimeter tube,
i.e., themacro-structure.

To capture the essential characteristics of the
microstructure of a typical cell, extracted from the global
Voronoi tessellation, many models have been developed
based on idealized unit cells. This allows to reduce
computational times and costs, otherwise prohibitive,
of micro-to-macro simulations of all the structural
members.

The unit cell can easily reproduce the overall geometry of a 2D
regular structure through direct replication, however, it cannot
predict its mechanical performances, unless manipulations are
made on its definition. To this end, the model of a Representative
Volume Element (RVE) was developed by the researchers (Hill,
1963), to take into account the geometric properties of the unit
cell together with the prediction on deformation and internal
forces.

It is clear that the accuracy and applicability of the method
strictly depends on the choice of the RVE, which should be
both realistic and computationally efficient (Smit et al., 1998;
Kouznetsova et al., 2001). Since the RVE numerically simulates
the mechanical behavior of the elastic deformations, to evaluate
the information on the static behavior of the grid structure and to
establish the deformation modes and the internal forces arising
in the unit cell, uniaxial compression tests (along two orthogonal
directions) and shear tests must be performed.

Although the unit cell-based models have been successfully
adopted to simplify periodic honeycomb patterns, providing
reliable results with closed-form relations, their applicability
toward irregular non-periodic Voronoi geometries is
significantly limited, given the disordered nature of the
cells. Thus, in the case of irregular grid structures, it is necessary
to introduce statistical models to take into account the stochastic
nature of the problem. However, as already discussed in section
The Voronoi tessellation: geometrical andmechanical properties,
the Voronoi grid can be generated from a regular honeycomb
grid by perturbing two random variables (θi and φi). This
observation suggested Hohe and Beckmann (2012) to introduce
a statistically representative Testing Volume Element (TVE) to
replace the RVE, which is able to capture only the structural
behavior of regular periodic grids.

To evaluate the structural performances of irregular grids,
the three main study models are described in detail below, i.e.,
the unit cell, the Representative Volume Element (RVE) and the
Testing Volume Element (TVE).

The Unit Cell
The unit cell, as shown in Figure 5, can be described as
a region A0 containing an elementary geometry capable of
reproducing the overall structure through replication, without
overlaps or gaps. This repetitive unit is usually a hexagonal
cell for 2D systems and cubic, tetrahedral, dodecahedral or
tetrakaidecahedral cells for 3D cases.

An essential geometrical parameter of the unit cell is the
relative density ρ, defined as the ratio between the volume
occupied by the solid material (ρ∗) and the total volume of the
unit cell (ρvol):

ρ =
ρ∗

ρvol
=

∑N
i=1 tiAi

L1 L2 b
(4)

where N is the total number of cell walls, L1, L2, and b are,
respectively, the vertical and horizontal dimensions and the
thickness of the square unit cell, Ai and ti are, respectively, the
section area and the thickness of the i-th grid member, adopting
a generic form. Referring to Figure 5, each unit cell is made up
of three elements (i.e., an horizontal member and two diagonal
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FIGURE 5 | Regular Voronoi with horizontal grid and definition of the unit cell.

members). Therefore, the section Ai assumes in (4) the values of
Ah and Ad, respectively, while the thickness ti assumes the values
th and td, respectively, depending on whether the element under
examination is diagonal or horizontal.

The relative density coefficient of the structure informs about
the density of the solid material on a prescribed area of the
domain. In the case of regular Voronoi honeycombs, the previous
relation becomes:

ρH =
h Ah + 2(d Ad)

[
(

h+ d cosθ
) (

2 d senθ
)

]b
(5)

where
h and Ah are the length and the cross-sectional area of the

horizontal element, respectively, d and Ad are the length and
the cross-sectional area of the diagonal element, θ is the angle
between the diagonal member and the horizon. For the sake of
clarity, all the parameters are illustrated in Figure 5.

The Representative Volume Element (RVE)
The RVE model allows to obtain a homogenized macro-response
of the mechanical behavior of the global structure, considering
only a small portion of it (Nemat-Nasser and Hori, 2013).
Because the RVE is representative of the mechanical behavior
of the unit cell, uniaxial compression and shear tests must be
numerically performed to establish the axial stiffness and shear
stiffness modification factors of the honeycomb grid. A Voronoi
grid, both regular and irregular is generally a bending dominated
structure consisting of short members with high radius of
gyration sections and low slenderness ratios. While in the case of
slender elements there is only a vertical deflection of the diagonal
elements due to bending, when the members become thicker also
the axial deformation and the shear deformation must be taken
into account.

Axial Stiffness Modification Factor
On the left of Figure 6, the diagrams of internal forces of a regular
Voronoi grid subjected to uniaxial compression are illustrated. As
can be observed, on the horizontal member no bending moments

(Figure 6A), axial forces (Figure 6B) and shears (Figure 6C)
arise. In the diagonal elements the bendingmoment in themiddle
is zero and the value at the ends is maximum.

Basing on the distribution of bending moments, fictitious
hinges are modeled at half the length of the diagonal and
horizontal elements to reproduce the information obtained
on the member deformation modes and the local resisting
mechanisms. This schematization converts the unit cell model
into a RVE (two half diagonals and one half horizontal), which
allows to define the axial modification factors of a regular
Voronoi grid through a uniaxial compression test.

According to the Hooke’s law, the effective elastic modulus
(E∗1) is defined as the uniaxial normal stress (σ ) divided by the
axial strain (ε). The normal stress is the average normal force
acting perpendicularly on a surface per unit cross-sectional area
and the axial strain is the shortening, or lengthening of the RVE
divided by the initial length, l, in the loaded direction:

E∗1 =
σ

ε
=

F1/A

(1l)/l
(6)

To determine the effective axial stiffness, the distributed stress, σ ,
acting on the unit cell is converted into a concentrated load, F1,
acting at the border of the RVE model (Figure 7A).

The global strain (ε) of the RVE in x-direction can be thought
as the sum of bending, axial and shear deformations of the
structural elements through the superposition principle, divided
by half the height of the unit cell, l (with l = d senθ):

ε =
1laxial + 1lshear+1lbending

l
(7)

The effective Young’s modulus of the unit cell in x-direction, E∗1 ,
normalized to the Young’s modulus of the solid material ES, gives
the axial stiffness modification factor. Expressing this ratio in
terms of geometrical properties of the microstructure leads to de
Meijer (2012):

E∗1
Es

=
12 Ad Id sin θ

b
(

h+ d cos θ
)

(cos2 θ (Ad d
2 + 24 Id χd (1+ ν) + 12 Id sin

2θ )
(8)
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FIGURE 6 | Distribution of (A) bending moment, (B) shear and (C) axial forces under uniaxial compression (left) and under shear load (right).

where Id is the moment of inertia of the diagonal member, ν is the
Poisson’s ratio of the solid material and χd is the shear correction
factor of the diagonal element.

It is worth noticing here that the horizontal members do not
contribute to the definition of the axial stiffness modification
factor, since no bending moment, shear forces and axial forces
arise from the application of a uniaxial compression load.

2. Shear Stiffness Modification Factors
The derivation of the effective shear stiffness modification factor
is worked out analogously to the case of axial stiffness. Axial
force, shear force and bending moment diagrams of a regular
honeycomb grid under shear load are displayed on the right of
Figure 6, showing that bending in the horizontal members is
twice the moments in the diagonal elements.

According to the distribution of the bending moments,
fictitious hinges are modeled where the bending moments are
equal to zero. The effective shear modulus (G∗

12) is defined as
the ratio of the shear stress (τ ) divided by the shear strain (γ ).
The shear stress is computed as the applied force divided by
the cross-sectional area, while the shear strain is the transverse
displacement divided by the initial length, l.

G∗
12 =

τ

γ
=

F2/A

(1l)/l
(9)

To determine the shear stiffness, the shear stress τ acting on the
unit cell is converted into a concentrated horizontal load, F2,
acting at the border of the RVE model (Figure 7B).

The resulting mechanical model produces a statically
indeterminate system. Thus, to calculate the shear displacement
at the location and in the direction of the force, the Castigliano’ s
second theorem is adopted:

δ =
∂U

∂F
(10)

where the displacements (δaxial, δshear, and δbending) are obtained
through the partial derivative of the strain energies (Uaxial, Ushear

and Ubending) with respect to the correspondent forces (F).
The effective shear stiffness of the unit cell G∗

12, normalized
to the shear modulus of the member solid material GS, gives the
shear stiffness modification factor. Expressing this ratio in terms

of geometrical properties of the microstructure leads to deMeijer
(2012):

G∗
12

Gs
=

24 Ad Ah Id Ih sin θ (1+ ν)
(

h+ d cos θ
)





12 Ah Id Ih b cos θ
(

2 d h+ cos θ
(

d2 + h2
))

+b sin2 θ (
(

12AhIdIhχd

(

d2 + 2h2 (1+ ν)
))

+ (Ad d h (Ah h
(

2 h Id + d Ih
)

+ 48 Id Ih χh (1+ ν))))





(11)
where Ih is the moment of inertia of the horizontal member, χh

is the shear correction factor of the horizontal element.
The axial stiffness modification factor

E∗1
ES

and the shear

stiffness modification factor
G∗
12
GS

, defined in Equations (8,
11), respectively, depend exclusively on the geometry of the
unit cell and the Poisson’s ratio of the solid material. These
parameters allow to calculate the macroscopic properties of the
regular Voronoi grid using a micro-mechanical homogenization
approach based on unit cells. Therefore, the effective Young’s
modulus (Egrid) and the effective shear modulus (Ggrid) of
the honeycomb depend on the mechanical properties of the
microstructure and also on the mechanical properties of the solid
structure. It is clear that, in the case of a solid perimeter tube, both
the stiffness modification factors are equal to 1 and the effective
Young’s and shear moduli of the grid are equal to the effective
properties of the solid, which leads to:

Egrid =
E∗1
Es

Es

Ggrid =
G∗
12

Gs
Gs (12)

where ES and GS are, respectively the elastic and shear moduli
of the solid material of which the grid members are made. As
already discussed, (E∗1)/ES and (G

∗

12)/GS are the axial and shear
stiffness modification factors, respectively and E∗1 and G∗

12 are
obtained by numerical tests.

In order to adopt the standard equations of the solid tube for
the description of the mechanical behavior of the homogenized
grid structure, it is necessary to define an effective bending
stiffness (EI)grid, eff and an effective shear stiffness (GA)grid, eff of
the regular Voronoi grid. This leads to:

(EI)grid, eff =

(

E
∗

1

Es
Es

)

Is
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FIGURE 7 | Uniaxial compression test (A) and shear test (B) schemes on the

RVE model.

(GA)grid, eff =

(

G
∗

12

Gs
Gs

)

As (13)

where EIgrid, eff and GAgrid, eff are the effective bending stiffness
and effective shear stiffness of the grid structure, respectively;
(E

∗

1)/Es and (G
∗

12)/Gs are the axial modification factor and the

shear modification factor of the grid structure, respectively; Es Is
and Gs As are the bending stiffness and shear stiffness of the
corresponding solid, respectively.

Since the effective stiffness of the unit cell is used to determine
the stiffness modification factor, this coefficient must take into
account the geometrical arrangement of the grid and the
connections between the members as well as the geometric and
elastic properties of the structural parts.

Modified RVE
As outlined by Montuori et al. (2015), the application of the
aforementioned procedure, proposed by de Meijer (de Meijer,
2012), for designing tall buildings with regular honeycomb
tessellation, showed significant disagreements with the numerical
results obtained through finite element analyses. In particular,
this effect was mainly observed on the flange panels, orthogonal
to the wind direction, rather than on the web façades, parallel to
the wind direction.

To deeply understand this problem, it is convenient to recall
here the main assumptions in the design of high-rise buildings.
The tall building, indeed, can be conceived as a vertical cantilever
beam fixed at the base and subject to wind loads, with two web
faces resisting shear forces and two flange faces resisting bending
through tension and compression stresses, depending on the
direction of loading. It is usually assumed that the floor slabs have
infinite in-plane stiffness, constraining perimeter system and core
to have the same horizontal deflection. On this assumption,
it is possible to employ diaphragm constraints, reflecting real
behavior quite well. Since the diaphragm constraint at each slab
causes a stiffening effect that reduces the vertical deformation of
the overall building, it should be included in the RVE model,
paying particular attention to the number of floors present along
the unit cell. For this purpose Mele et al. (2016) introduced the
so-called Modified RVEmodel that simply modifies the reference
volume element of the regular honeycomb grid to account for the
additional constraint of rigid diaphragm.

Since in the present work, all Voronoi models are generated
from an initial regular grid, which takes into account unit cells as
twice the interstorey height, the equation (8) of the axial stiffness
modification factor is modified as follows:

E∗1
Es

=

1
(h+d cos θ) b

[

1
Ad sin θ

+
cos θ

(

d2

12 Id
+ 2 χ (1+ν)

Ad
− 1

Ad

)

Ad sin θ
(

d2 sin2θ
12 Id cos θ +

2 χ (1+ν) sin2θ
Ad cos θ + cos θ

Ah

)

] (14)

On the other hand, the shear stiffness modification factor is not
affected by the presence of the diaphragm constraint, therefore it
is still provided by Equation (11).

It is worth specifying that, since the axial stiffnessmodification
factor strictly depends on the number of floors along the unit
cell, the relationship expressed in Equation (14) is closely related
to the preliminary modeling assumptions made in this study.
In other words, assuming different initial modeling parameters

inevitably leads to a variation in the calculation of
E∗1
Es
.
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The Testing Volume Element (TVE)
Since the effective mechanical parameters of the system are
determined numerically using a homogenization of the regular
honeycomb microstructure, as described up to here, in the
case of irregular Voronoi grids a probabilistic strain energy
homogenization scheme is required to account for the disordered
nature of the unit cells. The approach, first proposed by Hohe
and Beckmann (2012) consists in performing a large set of
repeated numerical analyses, i.e., axial and shear tests, on small
scale models, constructed for each couple of values of density
ρ and irregularity α. The Voronoi-like grids are generated
through a repositioning of the honeycomb cell walls, assuming
a Gaussian distribution for the perturbation. The numerical
simulations allow to access the effective mechanical properties
of the testing models, in terms of effective axial stiffness of the
k-th Voronoi TVE (E∗

1,V ,k
) and effective shear stiffness (G∗

12,V ,k
).

The correlation of themechanical properties of irregular Voronoi
tessellations with those of regular honeycombs can be reached
through appropriate correction factors (Montuori et al., 2016):

ηEi =
E∗i, V

E∗i, H
, ηGij =

G∗
ij, V

G∗
ij, H

(15)

where the subscripts H and V refer, respectively, to the regular
and irregular Voronoi grid.

Because the effective mechanical properties of the Voronoi
grid structure strictly depend on the level of irregularity α, the
relative density ρ, the random angle θi and the random scale
factor φi, it is straightforward to notice that the modification
factors are functions of these parameters as well.

VORONOI PATTERN FOR TALL BUILDINGS

Preliminary Design Procedure
In order to make the mechanical property equations, described in
section Effective mechanical properties of Voronoi grid, relevant
to the purpose of the paper, it is necessary to include them inside
standard relations for preliminary design of tall buildings.

This section deals with the analytical model assumptions,
which we refer to in common practice, and illustrate a hand
calculation method to determine preliminary section sizes for
Voronoi-like grids under stiffness requirements. The following
procedure has been already proposed by other authors (deMeijer,
2012; Mele et al., 2016; Montuori et al., 2016), however it is
recalled here for the sake of clarity.

The method considers the building as a vertical cantilever.
This simplification makes the problem statically determinate
and allows calculating the global deformations as the sum
of two contributes: bending deformation (δbending) and shear
deformation (δshear):

δTOT = δbending + δshear

with

δbending =
qH4

8EI

and

δshear = +
qH2

2GA
χ (16)

where q is the wind lateral load, H is the height of the cantilever
beam, i.e., of the building, A is the cross-sectional area, E is
the Young’s modulus, I is the moment of inertia, G is the shear
modulus and χ is the shear factor.

This latter approach was introduced by Kwan (1994) for
framed tubes and considers the overall structure as a box beam
with web and flange panels, with uniform stiffness throughout
the building height.

Kwan compared the structural analysis of grid structures with
a corresponding solid of the same width, height, and depth, as
the grid-like structure. The Young’s modulus of the solid is the
same as the modulus used for the individual members of the
grid structure; the same material is used in both the grid and
the solid. Shear and bending deformations contribute to total
building deflection through:

δTOT = δbending + δshear =
qH4

8(EI)grid
+

qH2

2(GA)grid
χ (17)

(EI)grid and (GA)grid represent, respectively the effective bending
stiffness and the effective shear stiffness of the regular Voronoi
grid that, according to Equations (13, 15), are evaluated through:

EIgrid = (E
∗

1, H ηE1 ) Is

GAgrid = (G
∗

12, H ηG12 ) As (18)

Because in tall buildings, drift problems related to lateral loads
are a dominant issue, so controlling lateral displacement becomes
fundamental. In order to estimate lateral displacements, the top
drift (1) parameter is considered and compared to the limit
state set by codes. Drift 1 corresponds to the maximum top
displacement with respect to the base:

1 = utop − ubase ≤ H/500 (19)

where utop and ubase are the displacements of the top and the base,
respectively, and H is the total height of the building.

The resulting equation (18) can be used to determine
preliminary section sizes while accompanying horizontal
displacements. The relation takes into account the characteristics
of the patterns through homogenization procedures and
therefore is applicable to any structural pattern.

Case Study
The reference structure assumed for the case study is 351 meters
high with a 36× 36m doubly symmetric plan, an 18× 18m steel
gravity core and a typical story height of 3.9m. The central core
(inner tube) is a rigid steel braced frame structure and occupies
almost 25% of the total floor (Figure 8F).

The outer and inner systems collaborate in resisting both
lateral and gravity loads. Floor slabs are placed between the two
tubes. It is usually assumed that the floor slabs have infinite in-
plane stiffness, constraining outer tube and core to have the same
horizontal deflection.
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FIGURE 8 | Building model: (A) Regular hexagrid (α = 0.0), (B) Voronoi grid with α = 0.3, (C) Voronoi grid with α = 0.7, (D) Voronoi grid with α =1.0, (E) Voronoi grid

with varying density ρ and (F) plan dimensions.

On this assumption, slabs are modeled as thin concrete shell
elements between the floor beams and a diaphragm constraint
is employed. The perimeter Voronoi pattern is assumed S275
steel material (with fyk = 275 N/mm2), as also the framed core
members and the framing floor structures.

Support conditions are assumed to be fixed. The connections
between the exoskeleton and the inner core are provided with
adequate plan-bracings to allow for the transmission of shear
stresses (induced by horizontal loads) between the two systems.

The wind load is established according to ASCE 7–05
(Minimum Design Loads for Buildings and Other Structures)
provisions. The building is assumed to be within category III,
with a basic wind speed of 50 m/s. The lateral wind load is
statically applied to the framework as horizontal point-loads on
the diaphragms of each floor. Live loads of 2.0 kN/m2 are applied
as uniformly distributed on the floor slab.

Pattern Generation Through Parametric
Modeling
The need to explore alternative Voronoi-grid designs requires
the use of parametric modeling software, which allows speeding
up the procedure and managing complex geometries simply
modifying its governing parameters.

To this end, models are generated in Grasshopper
environment (Rhinoceros 3D).

The pattern construction follows the theoretical procedure
described in section The Voronoi tessellation: geometrical and

mechanical properties gradually altering the coordinates of
regular equidistant points to obtain an irregular tessellation.

This approach results particularly convenient in the present
case, as it allows dealing with several irregular cell arrangements
starting from a single regular reference model.

It is well-known that the Voronoi’s diagram, based on a
regular distribution of points, results in a honeycomb grid.
Therefore, once the rectangular domain is set (351 × 36m),
which represents the building façade, the radius of each hexagon
and the total number of hexagons in the x-direction and y-
direction must be defined, this allows identifying the centers of
the hexagons, i.e., the seeds of the Voronoi grid. Because in the
present case each hexagon is two story height (7.8m) and the total
number of hexagons along the rectangular width is set to 5, radius
is calculated accordingly.

Each of these generated points undergoes a random
translation and rotation in the 2D space, according to a random
angle (θi) and a random scale factor (ϕi). Although the alteration
of the seed locations is completely random, the range of
maximum and minimum variation is included in a user-defined
domain, which allows controlling the grid variation. The random
angle is defined on the domain [0; 2π] and the random scale
factor on the domain

[

−h; h
]

, where h represents the story
height.

Increasing or reducing the range of the scale factor ϕi and that
of the angle θi leads to different irregularity degrees (αi), whereas
the variation in the number of seed points along the building
width causes changes in the relative density (ρi).

Frontiers in Built Environment | www.frontiersin.org 11 December 2018 | Volume 4 | Article 78

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Angelucci and Mollaioli Voronoi-Like Tall Buildings

Consequently the Voronoi-grid is generated through the
Grasshopper component “Voronoi,” which creates the final
tessellation, providing the initial rectangle boundaries as an
extreme limit for the pattern. Four Voronoi-grid alternatives are
generated assuming 6 seeds in the x-direction (i.e., assuming
a constant ρ): models with α = 0.0 (Figure 8A), α = 0.3
(Figure 8B), α = 0.7 (Figure 8C), and α = 1.0 (Figure 8D).

Numerical and Theoretical Results
The effectiveness of the hand calculation formula proposed
by Montuori et al. (2016) for the design of tall buildings
with structural systems constituted by irregular patterns are
investigated and comparisons with the numerical results
obtained through a finite element analysis are made.

Using standard deflection formulae for a cantilever beam
and referring the bending and shear stiffness of the grid to an
equivalent orthotropic membrane fixed at the base, Equation (18)
can be rewritten as:

δTOT =
qH4

8 (E∗1, H ηE1 ) Is
+

qH2

2 (G∗
12, H ηG12 ) As

χ ≤
H

500
(20)

where χ is the shear correction factor of the solid cantilever
beam. According to Young (1989), an approximate shear factor
for box beams can be set to 1.0 when considering only the area of
web panels in the calculation of the building cross-sectional area.

For the hand calculations, a uniform distributed wind load q is
applied, which is converted to concentrated loads acting at each
floor when checking the model with the finite element program.

According to the ASCE design code and assuming as a
reference the Chicago area, the wind load q is set equal to
394.06 kN.

The main advantage of Equation (20) is that the mechanical
characteristics of the building with a Voronoi-like grid can
be entirely assessed from the regular hexagrid, simplifying
the procedure. In fact, once the irregular grid is generated
by perturbating the initial honeycomb pattern, all parameters
relating to building geometry (H, χ , Is, As, Es) and hexagonal grid
(E

∗

1, H , G
∗
12, H) are known.

The influence of grid geometry on the global behavior of the
homogenized structure is taken into account through correlation
factors. It is quite evident that in the case of a regular honeycomb
pattern, both ηE1 and ηG12 equal to one. As already discussed
in section Effective mechanical properties of Voronoi grid, these
correlation factors are evaluated on a statistical basis through
axial and shear tests on a set of randomly generated specimens.
Further information on the calculation of the correction factors
and the related equations are provided in the reference (Mele
et al., 2016).

The correction factors are strictly dependent on the regular
grid geometry, i.e., its module height, the number of floors
contained in it and the angle between the members and it is
sufficient to calculate them only one time. Because each specimen
is obtained by perturbating a regular honeycomb grid, the whole
set accounts for different couples of α and ρ, thus, including
copious variations of the grid arrangement.

The simulation strategy is performed according to the steps
described below.

The regular honeycomb grid (α = 0.0) is assumed as a
reference model and proper parameters are entered in Equation
(20) to obtain preliminary cross-sections and perform the static
analyses. Since the correction factors ηE1 and ηG12 are equal to
1 for hexagonal grids and E∗1, H , and G∗

12, H are computed as
described in section Effective mechanical properties of Voronoi
grid, a steel box section of 1,300 × 1,300 × 160mm is
obtained iteratively. Adopting a constant cross-section for all
the grid members, a finite element analysis is performed for the
honeycomb, which produces a displacement of 0.436m.

In order to evaluate the influence of micro-structural
parameters on the mechanical properties of the tall building, i.e.,
relative density ρ and irregular degree α, the same cross section
adopted for the regular honeycomb case, is used here for models
with varying irregular factor.

Starting from hexagonal grid, several TVE specimens are
generated, which possess the same overall geometry and number
of unit cells but variable relative density value and different
degrees of irregularity. The specimens have been modeled as
assemblies of Timoshenko beam elements, for each one two
axial tests (along x-and y- directions) and a shear test are
performed using the finite element program. The results obtained
are acquired and elaborated using the relations in Mele et al.
(2016).

From hand calculations emerges that irregular grid models
with α = 0.3, α = 0.7, and α = 1.0 exhibit lateral displacements
of 0.456, 0.594, and 0.495m, respectively.

The structures, designed using these preliminary sections, are
analyzed through finite element analyses to assess the global
behavior and validate the correctness of the theoretical method.
A preliminary serviceability check is carried out considering the
top drift. Codes set the limit state at H/500, corresponding to
0,702m in the case-study. The inter-story drift parameter δ is also
considered in this study and is defined as the difference between
the maximum displacements of two subsequent floors:

δ = δi − δi−1 < hi/300 (21)

where hi represents the relative floor height. Inter-story drift ratio
along the building is assumed equal to h/300, corresponding to
0,013m. Both targets are shown in the following figures with
vertical lines.

Figure 9 provides the deflection curves of the regular and
irregular grid structures with respect to building height.

For all the cases investigated in this study, more than the
90% of the total lateral displacement is caused by bending
deformation. Results obtained from numerical analyses and
hand calculations (as shown in Table 1) differ from 2.2 to
8.6% with an overestimation of the top displacements for
the analytical method, this demonstrates that the approximate
preliminary design procedure is reliable and quite accurate.
The differences between results, in fact, are reasonable if
one considers that the methodology does not consider the
contribution of the central core, which inevitably contributes to
the overall lateral stiffness. However, the method allows assessing
immediate evaluations of the effects of varying geometrical and
mechanical parameters on the overall structural behavior. It
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FIGURE 9 | Inter-story drifts (on the left) and lateral displacements (on the right) under wind forces: (A) regular hexagrid model with α = 0.0, (B) model with α = 0.3,

(C) model with α = 0.7 and (D) model with α = 1.0.
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can be also used for manual checking of the computer analysis
results.

Changing Density Voronoi Tessellation
As already observed by Angelucci and Mollaioli (2017) for
diagrid structures, a changing density along the height of the
building allows for gradual lateral stiffness change with uniform
distribution along the building height, without developing
sudden rigidity peaks. In fact, authors demonstrated that,
despite considerable weight reduction, a local density increment
is not an efficient strategy in restraining top displacement
within the targets. More efficient solutions involve a varying
pattern density, rarefying the diagonal members from the base
toward the top of the building. A similar approach allows
for gradual lateral stiffness change with uniform distribution
along the building height, without developing sudden rigidity
peaks.

The same strategy of allocating stiffness demand by form,
rather than by section size, is adopted here for tube structural
systems with Voronoi tessellation in order to investigate the
influence of pattern gradation on themechanical properties of the
tall building. To this end, an additional Voronoi pattern with a
rarefying grid along the height is provided (Figure 8E), basing on
mechanical and modeling considerations. This solution accounts
for a variable relative density ρ that increases toward the base and
reduces toward the top (according to the bending distribution
of a cantilever beam) while keeping a fixed irregularity factor
α.

Among all the patterns analyzed, the one with an irregularity
of 0.3 is evaluated as the best compromise, having an acceptable
easy-to-modify geometry while exhibiting a satisfying lateral
stiffness

The initial grid with constant irregularity is split into five
modules along the height and a perturbation method is adopted,
which assigns a varying relative density from the base to the
top (Figure 8E). Density variation is assessed by progressively
increasing the number of generation seed along the width of the
building from 9 to 5.

The model is initially analyzed adopting, for all the members,
a constant cross-section of 1,300 × 1,300 × 160mm, in
order to estimate potential performance improvements with
respect to models with fixed density. Comparing maximum
displacement results emerges that, for a given irregularity (α =
0.3), the solution with varying density pattern along the height
(Figure 10A) develops higher stiffness than a constant density
configuration (Figure 9B). The strength check, performed for the
changing density model under gravity and imposed later loads,
shows a section utilization lower than 50% for the grid members.
The analyses, in fact, demonstrate that the adoption of a uniform
cross-section for the varying density grid (total weight equal to
216,963.07 ton), equivalent to that of the regular density model
(total weight equal to 190,160.02 ton), leads to overestimate
strength and stiffness requirements.

This consideration suggests the employment of an iterative
member minimization technique to increase the cross-section
utilization while satisfying a prescribed displacement.

TABLE 1 | Comparison of numerical and analytical results.

α Period (s) umax, n (m) umax,t (m) error (%)

0.0 6.375 0.496 0.436 6.00

0.3 6.819 0.542 0.456 8.60

0.7 7.570 0.675 0.594 8.10

1.0 6.789 0.517 0.495 2.20

Member Size Optimization
The iterative design process is carried out within SAP2000
program routine to check adequacy of member cross-sections
for each design load combination (CSI, 2007). The program
automatically design the optimal least weight section according
to the envelope of the member demand to capacity ratios (DCR).

The program calculates the flexural, axial, and shear forces
at several locations along the length of a member, and
then compares those calculated values with acceptable limits
prescribed by the design code. This comparison produces a
demand/capacity ratio, i.e., a measure of the acceptability of the
member section, which should not exceed a prescribedmaximum
value. In this case, the demand to capacity ratio is set equal
to 80%, which represents the maximum allowable cross-section
utilization.

The program also checks the other requirements on a pass
or fail basis. If the capacity ratio remains less than or equal to
the D/C ratio limit, the section is considered to be adequate;
otherwise the section is considered to have failed. Thus, each
structural member on the perimeter is designed to satisfy its most
critical stress state under lateral loading conditions (strength-
based member optimization).

In practice, model height is split into modules and a section
list is assigned to every group. The program can automatically
evaluate each section in the list and select the most economical
and least weight section that passes checks. The only constraint
imposed by the user is that all the members of a single module
must match identical cross sections. This tremendously reduces
the computational time of the optimization routine and allows
simplifying the problem. Due to the high concentration of
members on the perimeter, a full size optimization process cannot
be carefully monitored by the user and, moreover, such a large
number of steel sections is actually unfeasible and uneconomical
to be built.

The cross-sections obtained by the iterative optimization,
imposing a demand-to-capacity ratio (DCR) of 80% and a
displacement limit of 0.7m, are: 1,300× 1,300× 120mm for the
bottommodule, 1,300× 1,300× 100mm for the second module,
1,300 × 1,300 × 90mm for the third module, 1,300 × 1,300 ×
70mm for the fourth module and 1,300× 1,300× 50mm for the
top module.

The adoption of optimized cross-sections provides a structural
weight reduction from 216,963.07 ton when uniform member
sections are assumed to 136,527.25 ton when optimized cross-
sections are used. The steel utilization is drastically reduced of
around 40%, which highlights the economic advantages of the
size optimization routine.
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Analyses and Checks
The structural system is designed to render its response elastic
under most load conditions. The design of high-rise buildings
must assess three criteria: serviceability (related to human
comfort), strength and stability. The strength requirements are
checked through the member demand to capacity ratio (DCR).
Serviceability is satisfied by limiting drifts, and stability by a
sufficient factor of safety against buckling and P-Delta effects.

In order to estimate lateral displacements, two drift
parameters are considered: top drift (1) and inter-story
drift (δ). Member forces are calculated by a second-order non-
linear elastic analysis, which allows evaluating the effects of the
loads acting on the equilibrium of the deformed geometry of the
structure. A rigorous second order analysis or an amplification
of first order analysis results are often required by standard
design codes to estimate the effect of second order effects. In the
first case, the required strengths are determined directly from
the analysis results without any amplification factor. However,
to properly capture the P-δ effect in a finite element analysis,
each element, especially column elements, must be broken into
multiple finite elements, which is not convenient for other
analysis purposes.

To overcome the issue of discretizing each structural member,
the P-Delta analysis is based on amplification of responses

from first-order analysis for calculating the required flexural
strengths. The second order behavior is accounted for in the static
analysis, by creating a static non-linear load case for each load
combination.

Relative inter-story drifts and maximum lateral displacements
of the Voronoi pattern using optimized cross-sections are plotted
in Figure 10B. The charts show an increase of relative and
absolute drift values. Because the displacement growth provides
indications on stiffness distribution along the height, it can be
clearly observed that the reduction of grid cross-section sizes
results in a decrease of the global lateral stiffness. However, if
one considers the optimal solution as the one that meets stiffness
demandwith the highest material saving, it is easy to demonstrate
that the model with varying pattern density and changing section
sizes along the height represents the most efficient solution
among all the analyzed cases.

SEISMIC BEHAVIOR OF THE VORONOI
GRID

The seismic design of tall buildings has advanced significantly in
the last years. This growing recognition is mainly due to the fact
that current building codes generally refer only to conventional

FIGURE 10 | Inter-story drifts (on the left) and lateral displacements (on the right) under wind forces: varying density Voronoi pattern with constant cross-sections (A)

and optimized cross-sections (B).
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low- or medium-rise buildings. Such structures are designed for
strength requirements and their seismic response is typically
dominated by the first translational mode of vibration of the
structure.

Otherwise, tall building response is strongly influenced by
their complex dynamic behavior, since higher modes of vibration
may be more important than the first. Higher modes, in fact,
can result in higher flexural and shear demands. Neglecting
these requirements during the design stage can lead to excessive
damage, large residual deformations and possible collapses. The
seismic lateral forces, indeed, can produce critical stresses in the
structure and cause excessive lateral oscillations.

The efficiency of the perimeter tube system with Voronoi
tessellation for tall buildings is studied under earthquake loading.
Indeed, in addition to the wind loading scenario, the building
model is subjected to earthquake ground motion as a further
test to demonstrate the potential of the varying density Voronoi
pattern (described in the previous section). The building is
assumed to be in Istanbul, which is a region of the Anatolian
fault. Due to its location, Istanbul is particularly vulnerable to
damaging levels of seismic hazards, making it imperative to
include seismic load in the design of the high-rise building. In
the design process the Design Basis Earthquake (DBE) is taken
into account, which is defined as the site dependent ground
motion with 10% probability of exceedance in 50 years. For
more detailed information about the design spectrum adopted to
perform the response spectrum analysis, see the reference (Erdik
et al., 2011).

A response spectrum analysis is performed. The design dead
load is assumed to be 7.0 kN/m2 and live loads of 2.0 kN/m2 are
applied as uniformly distributed on the floor slabs.

To evaluate the seismic performance of the Voronoi model,
a seismic combination accounting for the gravity loads and the
equivalent static loads due to the earthquake ground motion,
obtained through the response spectrum analysis, is performed.
The results obtained are expressed in terms of inter-story drift,
story deflection, and modal parameters. The response spectrum
method of seismic analysis informs how the building response
characteristics vary with the structure frequency and allows
to predict displacements and member forces in the structural
system.

The high vulnerability to the lateral load of the selected area
can be considered comparable to that of the previous case located
in Chicago. In fact, although different actions are considered, i.e.,
earthquake on one side and wind on the other, in a preliminary
phase it is legitimate to assume for the pattern Voronoi of
the building located in Istanbul the identical sections of beams
obtained from pre-sizing with wind loading. This assumption
also makes it possible to compare the different behavior of the
building according to the load and determine which is the worst
condition.

The building is analyzed assuming a square box cross-sections
(1,300 × 1,300 × 160mm) for all the grid members. The results
of the modal analysis are plotted in Table 2.

The outcomes of the lateral displacements and inter-story
drifts, obtained from the response spectrum analysis, are shown
in Figure 11A with consideration of second order effects, as
explained in the previous paragraph. The charts illustrate that

the model exhibits a maximum top displacement of 0.63m and
a maximum inter-story drift of 0.010m.

This confirms that the preliminary design of the structural
system, which takes into account the uniform distributed wind
load, provides reliable cross-sections, even in the case of seismic
areas.

A comparison between the effects of the earthquake ground
motion and those of the wind load can be assessed in terms of
base shear and base overturning moments to provide further
information on the main differences during the preliminary
design stage. The maximum shear and overturning moment
computed at the base of the building are 2,527.13 MN and
56,927.24 MNm, respectively, when the model is subjected to
wind action plus vertical loads. On the other hand, the maximum
shear and overturning moment computed at the base of the
building are 1,547.13 MN and 37,141.35 MNm, respectively,
when the model is subjected to earthquake ground motion plus
gravity loads.

Analogously to the wind scenario, a member size optimization
is performed to assess the most economical and least weight
sections that meet the prescribed strength and displacement
requirements under the seismic load combination. The cross-
sections obtained by the iterative optimization, imposing a
demand-to-capacity ratio (DCR) of 80% and a displacement limit
of 0.7m, are: 1,300 × 1,300 × 140mm for the bottom module,
1,300 × 1,300 × 120mm for the second module, 1,300 × 1,300
× 100mm for the third module, 1,300 × 1,300 × 90mm for the
fourth module and 1,300 × 1,300 × 70mm for the top module.
The adoption of optimized cross-sections provides a remarkable
reduction of the structural weight of about 30%. The results of the
modal analysis are plotted in Table 3.

Inter-story drifts and lateral displacements of the Voronoi
pattern with changing density using optimized member sections
are illustrated in Figure 11B. The charts show maximum values
of 0.011m and 0.65m for the inter-story drifts and the lateral
displacements, respectively. Despite a small reduction of the
global stiffness with respect to the non-optimized configuration,
the Voronoi model with optimized members still exhibit the
best solution in terms of section utilization (i.e., strength
requirements) and drift control (i.e., stiffness requirements).

Comparing the results obtained for the same building located
in Istanbul (area of high seismicity) with those obtained in the
Chicago area (high wind load), it emerges that the preliminary
design according to seismic requirements is more stringent than
that of the wind. This allows to observe that, despite the tall
buildings are particularly vulnerable to the wind action given
their high slenderness, in areas of high seismic hazard it is
essential to take this aspect into consideration as well.

CONCLUSIONS

The paper investigates the potentialities of non-regular grids
for structural systems of tall building on the global mechanical
behavior, particularly; the study concentrates on periodic and
non-periodic Voronoi tessellation.

The work deals with the generation procedure of Voronoi-like
patterns through parametric modeling, gradually perturbating
a regular honeycomb configuration. Since the mechanical
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TABLE 2 | Results of the modal analysis for the model with constant member cross-sections.

Mode No. Period (s) Ux Uy Uz Rx Ry Rz

1 6.520149 0.456 0.134 0.000 0.090 0.312 0.000

2 6.519971 0.134 0.456 0.000 0.312 0.090 0.000

3 2.405643 0.000 0.000 0.000 0.000 0.000 0.702

4 1.530974 0.134 0.079 0.000 0.075 0.123 0.000

5 1.530948 0.079 0.134 0.000 0.123 0.075 0.000

6 0.940415 0.000 0.000 0.000 0.000 0.000 0.141

7 0.75295 0.066 0.001 0.000 0.002 0.100 0.000

8 0.752871 0.001 0.066 0.000 0.100 0.002 0.000

9 0.610814 0.000 0.000 0.747 0.000 0.000 0.000

10 0.571343 0.000 0.000 0.001 0.000 0.000 0.046

11 0.511704 0.035 0.004 0.000 0.009 0.069 0.000

12 0.511668 0.004 0.035 0.000 0.069 0.009 0.000

FIGURE 11 | Lateral displacements (on the left) and inter-storey drifts (on the right) under seismic load: varying density Voronoi pattern with constant cross-sections

(A) and optimized cross-sections (B).

response of the building strongly depends on the geometric
parameters of the microstructure, the paper focuses on the
influence of the grid arrangement on the global lateral stiffness
of the perimeter tube, thus on the displacement constraint,
which is an essential requirement in the design of tall
buildings. To this end, five case studies, representing different

levels of irregularity and relative densities, are generated and
analyzed through static and modal analysis in the elastic
field.

To appreciate the consistency of the preliminary design
equations proposed in the literature, the numerical and analytical
results are compared. An error lower than 10% occurs for hand
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TABLE 3 | Results of the modal analysis for the model with optimized member cross-sections.

Mode no. Period (s) Ux Uy Uz Rx Ry Rz

1 5.706 0.110 0.440 0.000 0.340 0.090 0.000

2 5.705 0.440 0.110 0.000 0.090 0.340 0.000

3 2.282 0.000 0.000 0.000 0.000 0.000 0.650

4 1.459 0.200 0.018 0.000 0.012 0.140 0.000

5 1.459 0.018 0.200 0.000 0.140 0.012 0.000

6 0.937 0.000 0.000 0.000 0.000 0.000 0.160

7 0.741 0.001 0.073 0.000 0.095 0.001 0.000

8 0.741 0.073 0.001 0.000 0.001 0.095 0.000

9 0.576 0.000 0.000 0.000 0.000 0.000 0.054

10 0.553 0.000 0.000 0.690 0.000 0.000 0.000

11 0.508 0.000 0.046 0.000 0.079 0.000 0.000

12 0.507 0.046 0.000 0.000 0.000 0.078 0.000

FIGURE 12 | Comparison of lateral displacements under wind forces of the analyzed models.

calculations. However, if the contribution of the central core to
the lateral stiffness is neglected, this margin is even lower. It can
be concluded that the method proposed by the literature is rather
accurate and represents a useful tool to simultaneously appreciate
the variation of mechanical performance when modifying grid
arrangements. The results show that, at the same density rate, cell
irregularity does not significantly affect the building performance
in terms of lateral stiffness, even though they provide higher
displacements than the regular honeycomb configuration.

Outcomes of the maximum displacement for the Voronoi grid
models are compared in Figure 12.

It emerges that the model with a gradual increasing
density toward the base and a constant cross-section (ρcon)
possesses the highest lateral stiffness. On the other hand,
the case with changing density and optimized cross-section
(ρopt), obtained through displacement-based size minimization,

exhibits the maximum top drift. However, it represents the best
compromise between strength and displacement requirements,
while providing a significant weight reduction of the structural
members at the same time.

It has been demonstrated that a gradual rarefying density
pattern is a suitable strategy for tall buildings with a Voronoi-like
grid, due to the higher efficiency in containing top displacements
within specific targets. Moreover, the chart is integrated with the
results obtained for a regular diagrid structure with optimized
cross-sections and a diagonal inclination of 82◦, in order to have
a comparable number of five modules as the Voronoi model with
varying density. Although a direct comparison on the material
usage is meaningless, due to the non-comparable number of
structural members, from a mechanical point of view it can be
observed that the diagrid stiffness performance results of the
same order as Voronoi-like grid models.
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In addition to the wind loading scenario, the efficiency
of the building model with varying density Voronoi pattern,
is tested for seismic ground motion through a response
spectrum analysis. The results obtained assuming constant
cross-sections for all the grid members are compared with
those achieved using optimized cross-sections, leading
to a remarkable reduction of the structural weight of
about 30%.

In conclusion, the paper confirms the potential applications
of Voronoi tessellation for tall buildings, demonstrating that
the innovative irregular patterns represent a valid alternative
to conventional grid, for both regions with high wind load
conditions and areas of high seismicity. For this reason their
application to tall building designs should be further investigated
and encouraged.
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