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Granular soils, e.g., sand, ballast, and rockfill, usually experience dynamic loads in the

field. Traditional constitutive models for monotonic loading conditions cannot be used

for advanced characterization of the complex loading behavior of granular soils. In this

study, a simple fractional plastic model is developed, based on the generalized fractional

plastic flow rule which considers the loading and unloading differences under triaxial

compression and extension conditions. The model is further validated against a series of

cyclic loading behavior of different granular soils, where a good predicting performance

is observed.

Keywords: left-sided fractional derivative, right-sided fractional derivative, fractional plasticity, fractional flow rule,
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INTRODUCTION

According to many experimental (Aursudkij et al., 2009; Nimbalkar et al., 2012; Nimbalkar and
Indraratna, 2016; Sun et al., 2017a, 2018e) and numerical (de Bono andMcDowell, 2014; McDowell
and Li, 2016; Li et al., 2018) studies, it is widely recognized that granular soils, including sand,
ballast and rockfill, usually exhibit complex strength and deformation behavior, such as contraction
accompanied by strain hardening and dilation accompanied by strain softening, when subjected
to static and dynamic loads. Correct representation of such complex behavior of granular soils
is the key factor for the design and safe operation of engineering facilities, for example, railroad
and retaining wall (Nimbalkar and Choudhury, 2008; Nimbalkar et al., 2018). Hence, a number of
different approaches, e.g., elastoplasticity, viscoplasticity, damage-plasticity, and bounding surface
plasticity has been proposed. The models can be divided into three categories: (i) models that did
not consider state dependence; (ii) models that cannot reflect non-associated flow; (iii) models that
were not suitable for cyclic loading. For category (i), a number of constitutive methods can be
found, for example, the disturbed state concept by Desai and Toth (1996) which was adopted for
constitutive modeling of rockfills (Varadarajan et al., 2006) under different confining pressures;
the damage-plasticity concept (Einav et al., 2007; Sun et al., 2015a), the diffuse failure models
by Daouadji et al. (2011), the micromechanical models by Yin et al. (2010, 2017), the fractional
cumulative models (Sun et al., 2015b, 2016a,b), the bounding surace models (Dafalias, 1986; Sun
et al., 2014, 2017b; Sun and Shen, 2017). Some other models captured the state dependence but
fall within category (ii), for example, the elastoplastic models by Sun et al. (2013, 2018c,f). In
addition, most monotonic models cannot appropriately simulate the cyclic behavior of soil without
modification on material flow and hardening, and thus fall within category (iii), for example, the
state-dependent plastic models (Gajo and Muir Wood, 1999b; Li and Dafalias, 2000; Einav et al.,
2007; Sun and Xiao, 2017; Sun et al., 2018d, 2019a).
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To capture the state-dependent non-associated plastic
behavior of sand, Been and Jefferies (1985) firstly suggested the
concept of state dependence for sands, which was then promptly
developed in various constitutive models (Li and Dafalias,
2000; Yang and Li, 2004; Sun et al., 2018a,b,c, 2019a). However,
most of these models usually assumed a plastic flow rule that
was only suitable for monotonic loads. For more complex
loading conditions, for example, the cyclic loading case, more
work needs to be carried out. In addition, classical constitutive
models (Gajo and Muir Wood, 1999b; Imam et al., 2005; Collins
et al., 2010) were usually dependent on the assumption of
an additional plastic potential function, in order to correctly
capture the non-associated stress-strain behavior of granular
soils under either monotonic or cyclic loads. Is there a possible
way to capture the state-dependent non-associated behavior
of granular soils without using additional plastic potential?
Sumelka (2014a,b) suggested the incorporation of fractional-
order derivatives into classical associated plasticity, from which
a non-associated plastic flow rule can be achieved, without
using additional plastic potential. However, the approach did
not consider the physical practice in geomaterials, thus cannot
reflect the underlying strength and deformation mechanisms of
granular soil, unless proper modifications have been made. By
connecting the state-dependent stress-dilatancy phenomenon
with fractional plastic flow rule, a family of fractional plasticity
models has been developed and applied in characterizing the
non-associated stress-strain behavior of granular soil (Sun et al.,
2017c, 2018b,c,d,f, 2019b,c). As demonstrated, the directions of
plastic flow are no longer necessarily normal to the yielding or
potential surfaces. However, these models did not consider the
flow and hardening differences between loading, unloading and
reloading, thus cannot properly capture the cyclic behavior of
granular soils.

In fact, unlike the integer order derivative usually used in
classical plasticity, the fractional order derivatives are non-
local which induces a strong memory of the loading stress σ .
Therefore, by using fractional derivative, the plastic flow of a
material point was not only determined by the current stress
state but also by its loading history. The size of the history
and collection of yielding information are dependent on the
employed definition of the derivative, for example, the Riesz-
Caputo definition used by Sumelka and Nowak (2016) and the
Riemann-Liouville definition used by Sun et al. (2016b). The
choice of whatever fractional operator should rely on the specific
physical issues is to be taken into consideration.

However, the present fractional plasticity models were mainly
based on monotonic fractional flow rule, and cannot be used
for capturing the cyclic behavior of granular soils, without
possible modifications. Unlike monotonic models (Gajo and
Muir Wood, 1999a; Li, 2002; Yang and Li, 2004), the plastic flow
behavior and hardening/softening behavior loading, unloading
and reloading should be different. Thus, the previous fractional
plasticity model cannot properly capture the cyclic behavior
of granular soils. To extend the fractional plasticity approach,
a possible extension of the previous fractional plastic flow
rule and hardening modulus for monotonic loading should
be carried out. In contrast to previous works (Sun et al.,

2018d, 2019c), this paper presents a simplified fractional-order
elastoplastic model for granular soils subjected to cyclic loads,
based on a general fractional plastic flow rule suitable for both
monotonic and cyclic loads, which is the main innovation of
this study. The study is structured as follows: section Definition
of Fractional Derivative presents the basic definition of the
fractional derivatives, while section Constitutive Model presents
the basic constitutive relations; section Calibration of Model
Parameters discusses how to identify each model parameters,
while section Model Performance validates the proposed model;
section Conclusions concludes the study by summarizing several
main findings.

DEFINITION OF FRACTIONAL DERIVATIVE

To begin, it is necessary to present a clear definition of the
fractional derivative being used. According to the theory of
fractional calculus, the fractional derivatives of the loading and
unloading dynamic processes are different. In previous studies
(Sun and Shen, 2017; Sun and Xiao, 2017), only the triaxial
behavior of granular soils subjected to monotonic loading was
considered. Therefore, only the left-sided Caputo fractional
derivative with moving upper terminal (loading stress, σ ′) and
fixed lower terminal (initial stress state, σ ′

0) was introduced in
constitutive modeling. However, in this study, both the loading
and unloading behaviors in triaxial tests will be addressed.
The left-sided fractional derivative is suitable for describing
the loading and unloading states of a material under triaxial
compression where the deviator stress q > 0, while the right-
sided fractional derivative is an operator performed on the
loading and unloading states of a material subjected to triaxial
extension where the deviator stress q< 0. Therefore, in this study,
both the left-sided and right-sided Caputo’s fractional derivatives
(Agrawal, 2007) of a function f are used, such that:

aD
α
x f (x) =

1

Ŵ(n− α)

x
∫

a

f (n)(τ )dτ

(x− τ )α+1−n
, x > a (1)

xD
α
b f (x) =

(−1)n

Ŵ(n− α)

b
∫

x

f (n)(τ )dτ

(τ − x)α+1−n
, b > x (2)

where D means derivation; Ŵ denotes the gamma function,
defined as Ŵ(x) =

∫ ∞

0 e−τ τ x−1dτ . a and b are the lower and
upper terminals used for integration. x is an independent variable
and is designated as loading stress, σ , in this study. The fractional
order, α , ranges from n−1 to n, where n = 1 or 2. Clearly, the
fractional derivative is defined on an interval that is contrary to
the integer order differential operators defined at a single point.
Therefore, due to this non-locality, fractional approach in this
study would intrinsically memorize the cyclic loading history.

CONSTITUTIVE MODEL

In this study, only homogeneous and isotropic materials loaded
under triaxial stress conditions are under consideration, where
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compressive stress and strain are regarded as positive. All the
stresses used for derivation are effective stresses unless otherwise
specified. Therefore, the following triaxial stress notations can
be given:

εe =
[

εev, ε
e
s

]T
(3)

εp =

[

ε
p
v , ε

p
s

]T
(4)

where ε indicates strain tensor for triaxial loading while the
superscripts, e and p, indicate elastic and plastic components,
respectively. The total volumetric (εv) and shear (εs) strains can
be, respectively, defined as:

εv = ε1 + 2ε3 (5)

εs = 2(ε1 − ε3)/3 (6)

where ε1 and ε3 are the first and third principal strains,
respectively. The total strain tensor ε = εe + εp, while the
effective stress tensor, σ ′, can be expressed as:

σ =
[

p′, q
]T

(7)

where the mean effective principal and deviator stresses can be,
respectively, defined as:

p′ =
(

σ ′
1 + 2σ ′

3

)

/3 (8)

q = σ ′
1 − σ

′
3 (9)

in which σ ′
1 and σ ′

3 are the first and third effective principal
stresses, respectively. In this study, calculation of the elastic stress
and strain response is based on the traditional theory of elasticity.
However, the plastic strain is determined by using fractional
plasticity (Sun and Xiao, 2017). A fundamental difference
between classical and fractional plasticity is the calculation of the
incremental plastic strain. In classical plasticity, the incremental
plastic strain tensor, ε̇p, is obtained by:

ε̇p = 3D1f (σ ) (10)

where a superimposed dot indicates increment. 3 is the plastic
multiplier and f often denotes the plastic potential or yielding
function, depending on the flow rule that is chosen. Due to the
equivalence between the first-order derivative and the classical
differentiation of a point, the derivative interval in Equation (10)
is omitted for clarity. As can be expected from Equation (10),
the direction of plastic flow is fixed at each stress point once
the function f is given. However, the plastic flow of granular soil
varies with soil types. A plastic flow rule without considering the
varied plastic flow was usually not able to unified modelling of
the constitutive behavior of granular soils. Therefore, a flow rule
for granular soils modified by using fractional-order differential
operator was proposed (Sun and Shen, 2017; Sun and Xiao,
2017) where the incremental plastic strain tensor, ε̇p, can be
determined by:

ε̇p = 3Dα f (σ ) (11)

where the modified Cambridge (Schofield and Wroth, 1968)
relation (f ) is used in this study for simplification:

f =
(

2p′ − p′0
)2

+

(

2q

M

)2

− p′
2
0 = 0 (12)

where p′0 is the intercept of f with the abscissa. M =

6 sinϕc/(3t−sinϕc), is the critical-state stress ratio under triaxial
compression. t =+1 for compressive loading whereas t =−1 for
extensive loading. According to Sun and Xiao (2017), the plastic
strain can be expressed as:

ε̇p =
1

5
mTnσ̇ (13)

where the generalized flow direction (n) can be expressed as:

n =
[

nv, ns
]T

(14)

in which nv and ns are the flow directions induced by
compression and shearing, respectively. Due to the distinct
formulae of the fractional derivatives in describing loading and
unloading, a generalized plastic flow rule suitable for both cases
can be derived by substituting Equation (12) into Equations (1)
and (2) (Sun et al., 2018a), such that:

nv = t
8
[

p′ − (2− α)p′0/2
]

p′1−α

Ŵ(3− α)
∥

∥Dα f (σ ′)
∥

∥

(15)

ns = t
8M−2

∣

∣q
∣

∣

1−α

Ŵ(3− α)
∥

∥Dα f (σ ′)
∥

∥

(16)

where the gradient,
∥

∥Dα f (σ ′)
∥

∥, is defined as:

∥

∥Dα f (σ ′)
∥

∥ =
8

Ŵ(3− α)

√

(

q1−α

M2

)2

+

[

p′ −
(

1−
α

2

)

p′0

]2
p′2−2α

(17)
The stress-dilatancy relationship for loading and unloading can
be therefore obtained by using Equations (16) and (17), where the
classical modified Cam-clay stress-dilatancy relationship can be
also achieved by using α = 1. Detailed derivations of Equations
(15) and (16) can be found in Sun et al. (2018a) and thus not
repeated here for simplicity. In addition, the loading tensor m is
assumed to be the same as the flowing tensor, such that:

mv = t
d

√

1+ d2
(18)

ms = t
1

√

1+ d2
(19)

where the dilatancy ratio d can be defined as:

d =
M2 − (1− α/2 )[η2 +M2]

t|η|2−α
(20)

The hardening modulus 5 should satisfy the following
conditions according to Li (2002): (i) 5 = +∞ when the stress

Frontiers in Built Environment | www.frontiersin.org 3 March 2019 | Volume 5 | Article 40

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Li et al. Cyclic FP Model

ratio η = q/p′ = 0, (ii) 5 = 0 when specimens are at the
critical and drained peak stress states. Therefore, the loading
plastic modulus5 can be expressed as:

5 = hLG
tηp − η

η
emψ (21)

wherem is a model constant; the shear modulus (G) is defined as:

G = G0
(2.97− e)2

1+ e
pa

√

p′

pa
(22)

in which G0 is the elastic modulus of the material and

hL = (h1 − h2ψ) (23)

where h1 and h2 are hardening parameters. The state parameter
ψ is defined as

ψ = e− ec (24)

where e is the current void ratio; ec is the critical-state void ratio
that can be expressed as (Li and Wang, 1998):

ec = eŴ − λ(p′/pa)
ξ

(25)

where λ , eŴ , and ξ are critical state parameters, describing the

critical state line in the e − p′ξ plane. It should be noted that the
current model does not explicitly consider the particle breakage
behavior of granular soil. But, as evidenced by laboratory tests
(Bandini and Coop, 2011; Ghafghazi et al., 2014; Yu, 2017a,b),
the influence of particle breakage on the mechanical behavior
of granular soil was reflected by shifting the critical state line in
the e − ln p′ plane. To capture this behavior, numerous critical
state lines incorporating particle breakage in the e − ln p′ plane
were proposed. However, as suggested in Li and Wang (1998),

a linear representation of the critical state line in the e − p′ξ

plane can be simply used to implicitly consider the particle
breakage, which had been used by a number of researchers,
including Gajo and Muir Wood (1999a,b) and Dafalias and
Taiebat (2016), etc.

Moreover, a slight difference of the hardening parameter is
found between the current and previous study (Sun and Xiao,
2017) where hL was correlated to the initial ψ0 and e0 rather than
the evolution of the current ψ and e. However, one may not be
able to know the initial ψ0 and e0 of soils that have been already
sheared. In such cases, the modification shown in Equation (23)
works. ηp is the virtual peak stress ratio, which can be correlated
to the state parameter as:

ηp = Me−mψ (26)

For reloading, the plastic modulus can be further expressed as:

5 = hLhCG
tηp − η

η
emψ

(

1+
tM

η

)n

(27)

where hC = e−rεv , is the densification factor, considering
accumulation of strain caused by loading and reloading; and n

and r are material constants, which are only used for capturing
cyclic loading. For undrained loading condition, εv = 0,
the plastic modulus is not affected by hC , as suggested by
Ling and Yang (2006). Hence, the dependence of material
hardening on the material density occurs via its dependence
on ψ .

To characterize the unloading behavior of granular soils, the
unloading plastic modulus by Ling and Yang (2006) is used:

5 = hUhCG

(

M

ηU

)ϑ

(28)

where hU and ϑ are model parameters. ηU is the stress ratio at
which the unloading occurs. For tests with |M/ηU | ≤ 1, ϑ = 0

To consider the elastic deformation during loading and
unloading, the hyperelasticity is used to determine the elastic
incremental strain, such that:

ε̇e = Ce
: σ̇ (29)

where Ce is the elastic compliance tensor:

Ce =

[

1/K
1/(3G)

]

(30)

where the bulk modulus (K) can be defined as:

K =
(2+ 2ν)

3(1− 2ν)
G (31)

where ν is the Poisson’s ratio, describing the lateral deformation
capability of the material. Thus, a complete description
of the elastoplastic stress-strain behavior of granular soils
under cyclic loads can be achieved, by using Equations (13)
and (29).

CALIBRATION OF MODEL PARAMETERS

There are in total 14 model parameters, i.e., four critical state
parameters (ϕc, λ , eŴ , ξ ), one fractional order (α ), seven
hardening parameters (h1, h2, m, hU , r, n, ϑ ) and two elastic
constants (G0, ν ). Details of how to determine the model
parameters are described as follows.

The critical state parameters (ϕc, λ , eŴ , ξ ) define the
critical state of the material, which can be determined by fitting
the critical state points in the p′ − q and e − p′ planes. For
most granular soils, the critical state friction parameters are
independent of the loading state.

The fractional order, α , determines the plastic flow directions
of thematerial. Therefore, it can be determined by using the least-
squares method to fit the stress-dilation relationship as shown
in Figures 1, 2. To be compatible with the critical state soil
mechanics, α is equal to unit when the critical state void ratio
is reached.

The hardening parameters, h1 and h2, determine the
hardening and softening behavior of the material, which can
be determined by fitting the εs − η relationship of specimens
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FIGURE 1 | Model prediction of the undrained monotonic behavior of Fuji

River sand (Ishihara et al., 1975): (A) deviator stress vs. shear strain, (B)

deviator stress vs. mean effective principal stress.

FIGURE 2 | Model prediction of the drained monotonic behavior of Fuji River

sand (Ishihara et al., 1975): (A) deviator stress vs. axial strain, (B) volumetric

strain vs. axial strain.

under different initial monotonic test conditions, as discussed
in Sun and Shen (2017). The peak failure constant, m, can

be calibrated from the stress points at peak failure state
by using:

m =
1

ψp
ln

M

ηp
(32)

whereψp and ηp are two values ofψ and η at the peak stress state.
The peak stress decreases as k increases. There are four hardening
parameters (hU , θ , r, n) for describing the unloading/reloading
behavior of the material. hU can be determined by fitting the
slope of the first unloading stress-strain curve while ϑ can
be determined from the rate of change of the slope of the
first unloading curve. r is determined by fitting the hysteretic
loops in the stress-strain curve. n can be obtained by fitting
the first reloading stress-strain curve of the material. Detailed
discussions on determining the hardening parameters for cyclic
loads can be found in Ling and Yang (2006) and thus not
repeated here.

The elastic constant, G0, mainly determines the elastic
characteristics of the material, which can be obtained by
rearranging Equation (19):

G0 =
(1+ e)G

(2.97− e)2
√

p′pa
(33)

The Poisson ratio, ν , usually ranges between 0.05 and 0.35 for
most granular soils. It defines the lateral deformation ability that
can be determined by:

ν ≈
9εs − 2εv

18εs + 2εv
(34)

Detailed values of the model parameters of each material
simulated in this study can be found in Table 1.

MODEL PERFORMANCE

In this section, the proposed fractional order elastoplastic model
is validated by simulating the drained and undrained triaxial
behaviors of different granular soils, including sand and rockfill.
Specifically, Figures 1–3 present the model simulations of the
monotonic and cyclic behavior of Fuji River sand (Ishihara et al.,
1975). The model simulations of the drained triaxial behavior of
rockfill (Li, 1988; Fu et al., 2014) are shown in Figures 4–6.

Figures 1–3 present the model predictions of the drained and
undrained triaxial behavior of Fuji River sand (Ishihara et al.,
1975). Thematerial primarily consisted of sub-angular aggregates
with d50 of 0.22mm and Cu of 2.21. Samples of 50mm in
diameter and 100mm in height were prepared by pluviating
fresh sand into the molds which were filled with deaired water.
The e0 used for simulating undrained tests are 0.740, 0.731,
and 0.718, with the corresponding σ ′

3 equal to 98, 196, and
294 kPa, respectively. The e0 for simulating drained monotonic
tests are 0.750, 0.747, and 0.751, with the corresponding σ ′

3

equal to 98, 196, and 294 kPa, respectively. It can be observed
in Figures 1, 2 that the undrained and drained monotonic
stress-strain relationship of Fuji River sand with various initial
conditions can be well-captured by using α = 0.95. The initial
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TABLE 1 | Model parameters related to monotonic loading.

Soil type Test condition G0 ν M λ eŴ ξ α m h1 h2

Fuji river sand (Ishihara et al., 1975) Drained, undrained 90 0.30 1.49 0.033 0.810 0.7 0.95 3.91 0.35 2.66

Xiaolangdi rockfill (Fu et al., 2014) Drained 60 0.20 1.76 0.011 0.249 0.7 0.93 0.33 3.64 4.86

FIGURE 3 | Model prediction of the undrained cyclic behavior of Fuji River sand (Ishihara et al., 1975) (a) measured deviator stress vs. measured mean effective

principal stress, (b) measured deviator stress vs. measured axial strain, (c) predicted deviator stress vs. predicted mean effective principal stress, (d) predicted

deviator stress vs. predicted axial strain.

contraction and the subsequent dilation of the samples (Figure 2)
are well-simulated, highlighting the rationality of the adopted
fractional flow rule. Moreover, the simulated deviator stress
increases rapidly until reaching a critical state, which agrees well
with the experimental results shown in Figure 2. The undrained
cyclic performance of Fuji River sand with e0 = 0.737 and σ ′

3

= 206.5 kPa is simulated in Figure 3, by using the additional
model parameters: hL = 0.5, hU = 0.1, r = 130, n = 1, ϑ = 4.
It is found that the model simulation of the stress path is in
reasonable agreement with the corresponding test results prior
to liquefaction. However, the simulation result of the variation of
deviator stress vs. axial strain is less favorable as strain increases.

Monotonic and cyclic test results of Xiaolangdi rockfill
reported by Fu et al. (2014) and Li (1988) are simulated

in Figures 4–6. The material primarily consisted of slightly
weathered sandstones. The e0 equal to 0.199 was used for
all the tests. Figure 4 shows the model prediction of the
monotonic stress-strain behavior of Xiaolangdi rockfill (Fu
et al., 2014). Concordance between the model simulations and
corresponding test results can be observed by using α =

0.93. More specifically, the material hardening and softening
accompanied by volumetric contraction at high confining
pressure and dilation at relatively low confining pressure are
well-characterized. Figures 5, 6 show the model simulations
of the cyclic behavior of rockfill. The initial σ ′

3 = 0.5
and 1 MPa while the additional model parameters used for
model simulation are: hL = 0.2, hU = 8, r = 10, n = 2,
ϑ = 3.3. It can be observed that the loading and unloading
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FIGURE 4 | Model prediction of the drained monotonic behavior of Xiaolangdi

rockfill (Fu et al., 2014): (A) deviator stress vs. axial strain, (B) volumetric strain

vs. axial strain.

FIGURE 5 | Model prediction of the drained cyclic behavior of Xiaolangdi

rockfill (Li, 1988) at low confining pressure: (A) deviator stress vs. axial strain,

(B) volumetric strain vs. axial strain.

stress-strain responses can be reasonably simulated by the
proposed fractional-order model.

CONCLUSIONS

A fractional-order plastic flow rule was suggested in previous
studies. However, due to the limitations induced by the
mathematical definitions of the (left-sided) fractional derivative,

FIGURE 6 | Model prediction of the drained cyclic behavior of Xiaolangdi

rockfill (Li, 1988) at high confining pressure: (A) deviator stress vs. axial strain,

(B) volumetric strain vs. axial strain.

the suggested fractional-order flow rule can only be applied
to model the monotonic stress-strain response of granular
soils. To solve this problem, a new cyclic fractional plasticity
model was developed in this study. The main conclusions can
be drawn as:

(1) A generalized fractional flow rule for both monotonic and
cyclic loading conditions was proposed in this study by using
the left-sided and right-sided Caputo fractional derivatives.

(2) Then, a fractional plasticity model for granular soils under
cyclic loads was proposed in this study. The proposed model
contained fourteen parameters that can be all obtained from
triaxial tests.

(3) The proposed model was further validated by simulating
a variety of test results for different granular soils, e.g.,
sand, ballast, and rockfill subjected to monotonic and
cyclic loads. It was found that the simulation results were
in good agreement with corresponding experimental data.
The model was able to characterize the key features, for
example, loading/unloading stress-dilatancy behavior, strain
hardening and softening as well as monotonic and cyclic
liquefactions, of granular soils.

(4) However, it should be noted that only limited cyclic
test conditions, e.g., undrained test with constant stress
amplitudes and drained test without extension, were
examined by the proposed model in this study. A more
comprehensive application of the proposed model to
simulate the cyclic performance of granular soils under a
number of different test conditions needs to be conducted
in future.
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