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Assessing seismic vulnerability at large scales requires accurate attribution of individual

buildings to more general typological classes that are representative of the seismic

behavior of the buildings sharing same attributes. One-by-one evaluation of all buildings

is a time-and-money demanding process. Detailed individual evaluations are only suitable

for strategic buildings, such as hospitals and other buildings with a central role in

the emergency post-earthquake phase. For other buildings simplified approaches are

needed. The definition of a taxonomy that contains the most widespread typological

classes as well as performing the attribution of the appropriate class to each building

are central issues for reliable seismic assessment at large scales. A fast, yet accurate,

survey process is needed to attribute a correct class to each building composing the

urban system. Even surveying buildings with the goal to determine classes is not as

time demanding as detailed evaluations of each building, this process still requires large

amounts of time and qualified personnel. However, nowadays several databases are

available and provide useful information. In this paper, attributes that are available in

such public databases are used to perform class attribution at large scales based on

previous data-mining on a small subset of an entire city. The association-rule learning

(ARL) is used to find links between building attributes and typological classes. Accuracy

of wide spreading these links learned on <250 buildings of a specific district is evaluated

in terms of class attribution and seismic vulnerability prediction. By considering only three

attributes available on public databases (i.e., period of construction, number of floors,

and shape of the roof) the time needed to provide seismic vulnerability scenarios at city

scale is significantly reduced, while accuracy is reduced by <5%.
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INTRODUCTION

Seismic-risk assessment at urban scale is an essential step toward
earthquake-resilient communities; not only in highly seismic-
prone regions but also in regions with low-to-moderate seismic
hazard. The concept of resilience is not exclusively related to
safety of inhabitants, but also to the capacity of systems to
recover from a seismic event and to get back to previous levels of
load-bearing capacity (Bruneau and Reinhorn, 2007; Cimellaro
et al., 2010a,b; Alexander, 2013; Burton et al., 2015). Indeed,
even slight damages can cause production interruptions and
communication breakdowns with potential consequences on the
prosperity of entire regions that last for months and even years.
Architects, engineers and urban planners should be involved in
the pre-earthquake phase, not only in towns with high seismicity,
for the definition of scenarios regarding seismic vulnerability.
Such scenarios are useful to estimate the levels of damage that
urban systems are expected to suffer in case of seismic events.
Thus, efficient pro-active actions can be implemented, which help
increasing the general resilience.

Evaluating seismic risk at large scale is a complex and wide
process of knowledge. Multiple domains are involved: seismic
hazard, exposure and seismic vulnerability (Carreño et al., 2007).
Several models and datasets exist in literature: WHE—World
Housing Encyclopedia (EERI, 2004); FEMA—Federal Emergency
Management Agency (ATC (Applied Technology Council), 2005;
Pager—Prompt Assessment of Global Earthquakes for Response
(Jaiswal and Wald, 2008); GEM—Global Earthquake Model
(Brzev et al., 2013). The time demand and the expensiveness
of evaluations depend on the type of detail required. In
order to develop scenarios of urban vulnerability, several
thousands of buildings would need to be evaluated. Lately,
researches have been developed for large scale building-by-
building evaluations (Yamashita et al., 2011; Xiong et al.,
2018). In general, building-specific and detailed evaluation of
the entire building stock is undermined by the economic and
technical needs of such a process, even more so in regions with
low-to-moderate seismic hazard. Therefore, simplifications are
necessary. First, a reduction in the number of assessed buildings
is performed: buildings are clustered into typological classes and
the vulnerability of each class—rather than each building—is
calculated in detail.

A fundamental starting point to urban assessment is thus
the definition of an appropriate taxonomy. The taxonomy is
particularly important because several typological classes are
introduced to describe accurately the structural behavior of the
existing building stock. In Europe, several studies have defined
taxonomies: starting with the EMS-98 (Grünthal et al., 2001)
with the definition of building classes and vulnerability classes
and then with the Risk-UE project (Lagomarsino and Giovinazzi,
2006) who have implemented the EMS-98 classes by adding
some specifications.

Once the taxonomy is defined, a specific typological class can

be attributed to each building. This attribution process is essential

to achieve meaningful seismic evaluations at urban scale, since

the estimation of the expected damage is directly related to the

building type. Attributing types to buildings is commonly based

on surveys (ATC (Applied Technology Council), 2005). Several
approaches exist to survey existing buildings: starting with the
well-established building-by-building visual inspection, which at
urban scale has the drawback of being highly time demanding
(McEntire and Cope, 2004;Marquis et al., 2017). Over the last few
years, surveys involving drones, satellites, and open maps have
been introduced to reduce the time demand (Suzuki et al., 2010;
Ehrlich et al., 2013). Deep-learning approaches, collecting data
from pictures of buildings or other sources are then implemented
for automatic attribution of types (Mallepudi et al., 2011) or
directly for seismic-vulnerability estimates (Alizadeh et al., 2018).

At the current state of the art, an increase in the speed of the
survey phase (i.e., attribution of typological classes to all buildings
and consequently the estimation of the expected damage) can be
obtained by using building data that is readily available in public
databases (Riedel et al., 2014). By the selection of appropriate
attributes (such as number of floors, material and year of
construction) and the application of data-mining methods,
correlations between building attributes and typological classes
on small learning sets can be defined (Riedel et al., 2014).
The association-rule learning (ARL) is a data-mining method
(Agrawal et al., 1993) that is based on finding association rules
between attributes of buildings that help discovering statistical
links between building features. Once correlations are defined
on the learning set, a class (or a probability to belong to a class)
can be attributed to each building that is subsequently analyzed.
The ARL method allows to use available building attributes
to assign buildings to predefined classes and, by extension, to
define their vulnerability. Vulnerability represents the intrinsic
predisposition of a building to be affected and to suffer damage
following the occurrence of a given event (Guéguen, 2013).

When dealing with vulnerability analysis at larger scales, the
aim is to assess the impact of an earthquake on a set of buildings
within an area of interest. Twomain approaches exist for seismic-
vulnerability assessment of existing buildings at large scale:
empirical (or macro-seismic) methods and mechanical methods
(Lestuzzi et al., 2016). In empirical methods, the vulnerability of
each class is measured in terms of a vulnerability index, V, that is
calculated based on the observed damage of buildings of every
class in past earthquakes. Mechanical methods are based on a
model-based evaluation of the structural behavior of buildings:
by the interaction between the structural behavior (identified for
example by capacity curves) and the seismic demand (identified
for example by response spectra), the expected damage reached
by a typological class is determined.

In Europe, a fundamental research project for both empirical
and mechanical method is the Risk-UE project. The Risk-UE
project represents the first collaborative and comprehensive
research program that studied territorial seismic risk focused on
the European built environment (Lestuzzi et al., 2017).

Within the Risk-UE project (Mouroux et al., 2004; Mouroux
and Le Brun, 2006), which proposes “an advanced approach to
earthquake risk scenarios with applications to different European
towns,” the vulnerability of existing buildings is evaluated
according to the two approaches: Level 1 or LM1, based on the
empirical method; and Level 2 or LM2, based on the mechanical
method. The empirical method, LM1, involves themacro-seismic
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intensity according to EMS-98 (Grünthal et al., 2001) and
vulnerability and ductility indexes. Lagomarsino and Giovinazzi
(2006) proposed a correlation betweenmacro-seismic intensity of
the European macro-seismic scale EMS-98 and building damage.
This correlation is shown in terms of vulnerability curves for
each building type. The vulnerability indexes are derived from
the vulnerability curves of EMS-98 (Giovinazzi and Lagomarsino,
2001). In EMS-98, the expected damage of each type is defined
using linguistic terms (“few,” “many,” “most”) considering five
damage grades. With the LM1 methods of the Risk-UE project,
these terms have been transformed into numbers (parameter
V) applying an implicit Damage Probability Matrix and using
the fuzzy set theory (Dubois and Parade, 1980). For LM1
calculations, the European macro-seismic scale, EMS-98, defines
the hazard and the damage-grade scale (from D1 to D5).

Mechanical models (LM2) are based on the structural
response of the buildings, expressed by the force-displacement
curve (capacity curve). Three parameters are needed to
represent capacity curves in a simplified elastic-perfectly
plastic model: dy—yield displacement; Ay—yield acceleration;
du—ultimate displacement. In general, several mechanical
methods exist in literature, many of them are based on
the Capacity Spectrum Method of ATC-40 (ATC (Applied
Technology Council), 1996). Within the framework of this
paper, vulnerability is calculated using the macro-seismic
approach (LM1).

In this paper, the application of the ARL method for
attributing typological classes (for seismic evaluation) to
buildings is proposed. The methodology is then applied to the
city of Basel, in Switzerland, where several datasets are available
containing information of all buildings. The analyzed datasets
provide elementary attributes and characteristics of buildings.
The main goal of the paper is to evaluate the performance in
the attribution of typological classes on a learning set (containing
more than 700 buildings), considering various combinations of
attributes. In a second phase, the distribution matrixes obtained
are applied to the entire city of Basel, which has been partially
surveyed as part of a Master thesis at the IMAC Lab, EPFL
(Thiriot, 2019).

METHODOLOGY

When assessing the seismic vulnerability of existing buildings
at large scale, the definition of typological classes and their
attribution to the building stock of an urban system are
elementary. The building-by-building evaluation is a process
that can hardly be performed at urban scales, since it requires
amounts of time and money that are not available, especially
in regions with low-to-moderate seismicity that have reduced
mobilization of resources (Riedel et al., 2015). Thus, methods
are needed to attribute, in a simplified way, a specific typological
class to each building in a region of interest. Such a list of
typological classes (or types) that compose the urban system
is called taxonomy (Porter et al., 2001). The classes proposed
by Lagomarsino and Giovinazzi (2006) have been adopted by
the Risk-UE project. This taxonomy is an improvement of the

TABLE 1 | Typological classes that are considered for the city of Basel.

Typological classes Type of structure

UNREINFORCED MASONRY

M1 Rubble stone

M2 Adobe (earth bricks)

M3 Simple stone

M4 Massive stone

M5 Unreinforced masonry (bricks) with flexible floors

M6 Unreinforced masonry—RC floors (rigid floors)

REINFORCED/CONFINED MASONRY

M7 Reinforced/confined

REINFORCED CONCRETE

RC1 Moment frame

RC2 Shear walls

RC3 Dual system

WOOD STRUCTURES

W Wood

STEEL STRUCTURES

S Steel

previous taxonomy proposed in EMS-98. In order to provide an
example of a taxonomy, all building classes that are considered to
form part of the city of Basel, which is considered as a case study
in this paper (see section Case Study) are presented in Table 1.
The typological class definitions can be retrieved in the Risk-EU
project and in the EMS-98.

The aim of the presented methodology is to find correlations
between building attributes, such as period of construction,
number of floors (related to the building height), shape of the
roof and footprint surface [as described in section Collection
of Building Attributes (STEP 1)], which are available in large
datasets, and typological classes (seeTable 1). By doing so, a given
class is attributed, with a certain probability, to a given building.
The process of identifying patterns, defining correlations and
attributing types is based on data-mining large datasets. The
method used for the determination or correlations between
attributes and typological types is the ARL (Association Rule
Learning) method. In detail, understanding the influence of
attributes and their combination on the general performance
of the proposed class attribution is investigated. The flowchart
presented in Figure 1 describes the methodology applied in the
present work explaining how typological classes are attributed
and vulnerability is assessed for large-scale studies: in step 1
attributes of buildings are gathered from large-scale databases;
in step 2 a data-mining process is applied on a training set of
buildings to find correlations between attributes and typological
classes; in step 3 typological classes are assigned to buildings;
and finally in step 4 vulnerability assessment is performed. Two
validation phases are included: one at the end of step 3 regarding
the performance of class attribution; one at the end of step
4 regarding the performance of vulnerability evaluations. The
validation process can only be performed on the parts of the
city for which information concerning the real typological classes
is available, for instance from visual inspection of buildings.
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FIGURE 1 | Flowchart describing the learning of correlations in the training set using the association rule learning (ARL) in order to attribute a type to each building

and to determine seismic vulnerability at city scale.

Therefore, the two validation phases that are involved in the city-
scale steps (steps 3 and 4), are performed exclusively on a part of
the learning set where knowledge is complete. As the distribution
of building types is not homogeneous within a city, the case study
analyzed in this paper involves a further validation set, which
is lying outside the learning set (see section Evaluation of the
Accuracy of Damage Distributions).

In the following sections, the four steps involved in learning
correlations between building attributes and typological classes in
order to determine city-scale seismic vulnerability are described.

Collection of Building Attributes (STEP 1)
The first step consists in the selection of the attributes needed
to describe the analyzed building stock. While several other
parameters could be possibly chosen from databases, such as
number of inhabitants and monetary value of buildings, four
building attributes are collected in this paper in order to apply
the ARL method: the period of construction; the number of
stories; the footprint surface; and the shape of the roof. These
attributes are selected because they are considered to fulfill
two criteria: having an influence on the structural behavior of
buildings and being retrievable from city-wide databases. Thus,
these four parameters are estimated to facilitate understanding of
correlations between building attributes and typological classes.

The period of construction, the number of stories and the shape
of the roof have been chosen accordingly to the previous work of
Riedel et al. (2015) while the footprint surface has been added
in order to evaluate its influence on the final results. Other
valuable attributes, such as shape and percentage of openings,
are not considered as few current databases contain this type
of attributes.

For applications in Switzerland, the date of construction can
be taken from the Federal Register of Buildings and Dwelling
(RegBL) of the Federal Statistical Office (BFS in German/OFS
in French). This register includes all residential buildings in
Switzerland and their dwellings. Data is updated on a trimester
basis. Five intervals for the period of construction are defined:
before 1900; 1900–1944; 1945–1969; 1970–1988; and after 1989.
These intervals correspond to major construction periods: the
year 1900 corresponds to a turning point in the development
of brick constructions; 1945 and the end of the World War II,
has led to a widespreading of new methods in the construction
industry; the year 1970 corresponds to the first and very basic
seismic considerations in Swiss building codes; and finally
in 1989 real seismic considerations have been introduced in
Switzerland (Lestuzzi and Badoux, 2013).

The number of floors and the footprint surface are derived
from the same database (RegBL). The intervals chosen for the
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number of floors are: less than 4 stories; between 4 and 6 stories;
7 or more stories. As well other data, such as the official number
of the building (EGID number) and geo-coordinates, that are
useful for the combination of attributes and for figure editing, are
available on the same database.

The shape of the roof (flat/sloped) is not available in the
Federal Register of Buildings and Dwellings. This attribute
provides information regarding the nature of the roof material
and, as a consequence, regarding the constructionmaterials of the
entire building. Information concerning the shape of the roof is
therefore taken from another source. For the case study of section
Case Study, the 3D Model of the city of Basel is considered. This
model contains all the buildings of the city in 3D with their roof.
Each 3D model corresponds to a single building with its proper
EGID (federal building identifier) reference number. Therefore,
it is possible to link every 3D with the corresponding building in
the RegBL database.

The four attributes selected have been collected for all the
buildings composing the asset of the city of Basel.

The Association-Rule-Learning Method
(STEP 2)
An essential step of the methodology consists in learning
correlations between building attributes and typological classes
on a learning subset of the city, for which attributes and
typological classes are both known. The method used within
the framework of this paper for the attribution of typological
classes to buildings is the Association Rule Learning (ARL)
method (Riedel et al., 2014): a method for determining
relationships between variables in large databases (such as
databases of buildings in a city). It has been introduced by
Agrawal et al. (1993) as a list of if/then statements that help
discovering relationships between seemingly unrelated data. The
combination of attributes of buildings (Yj) and the typological
classes, Xi, are linked together by a conditional matrix that is
derived from the learning set. The probability that the building
belongs to a specific class Xi knowing that the combination Yj

has a non-zero probability is written P (Xi|Yj ) and is defined by:

P
(

Xi|Yj

)

=
P

(

Xi∩Y j

)

P
(

Yj

) (1)

This method has first been used for seismic applications in the
assessment of the city of Grenoble (France) (Riedel et al., 2014).
In the case of Grenoble, the vulnerability classes (A, B, C, D
and E) of EMS-98 have been considered. Used attributes have
been those available in the INSEE (French Institute of Statistics)
database, such as the number of floors and the construction
period. In this paper, the classes of the Risk-UE project are
considered. As mentioned before, the object of the study is the
city of Basel in Switzerland.

Definition of the Learning Set
For the learning phase, a small subset of the building stock of
the city should be selected. On this learning subset buildings are
evaluated individually in order to derive the typological class and
the building attributes (as shown in step 2 of Figure 1). Ideally,

classes are attributed based on original drawings. However,
often such drawings cannot be retrieved and specific types
are attributed based on expert-conducted visual inspection. A
support for decision-making that takes the form of a decision
tree is developed to help data collectors in the field to classify
buildings and to guarantee uniform and correct attributions.
When typological class attribution is based on visual inspection,
misclassifications cannot be excluded. The number of floors—for
seismic evaluations—is taken as the number of vibrating masses
(number of floormasses in amultiple-degree-of-freedommodel).
At the end of the survey campaign, all the buildings composing
the learning set correspond to a specific typological class (see
Table 1) and are characterized by the four attributes collected
in step 1.

As first step for the application of the ARL method and to
enable a subsequent validation step, the learning set is divided
into two parts. The first part is the training set and is composed
of randomly selected 30% of the buildings forming the learning
set. The training set is used to define correlations between
building attributes and typological classes. The remaining 70%
of the surveyed buildings are used to evaluate the accuracy of
class attribution using the correlations that are defined from the
training set. Riedel et al. (2014) have shown that using 30% of the
learning set for training results in stable values for assessing the
performance of the correlations for type attribution.

The data-mining process defining the ARLmethod consists in
generating a distribution matrix that contains the probability for
a building—defined by a combination of the selected attributes—
to belong to each typological class. Once the distribution matrix
is derived from the training set, the attribute combination allows
each building to be assigned with a typological class.

Typology Determination (STEP 3)
The third step consists in the attribution of typological classes to
all the buildings composing the city. For the buildings that are not
part of the training set, the real typological class is not available
since performing a building-by-building survey campaign is
hindered by the associated time and money demands. Therefore,
for the whole city, only the attributes collected in step 1
are available.

Once correlations between building attributes and typological
classes are derived, classes can be attributed following three
approaches. The first two methods—called Pmax and Prandom–
associate each building to one specific class. The Pmax method
attributes each building to the class that has the maximum
probability among the same attribute combination. The second
method, Prandom, attributes a class to buildings according to
random selection. A cumulative probability is calculated for each
combination and then, a number from the interval [0, 1] is
randomly generated. The random number defines the class of the
building from the cumulative probability distribution. The third
method—called Pdistribution–does not associate each building to a
single class; it associates to each building the probability to belong
to each class. Formore specifications, see sectionWide-Spreading
the Typological Association to the Entire City of Basel (STEP 3).

An important step related to city-scale applications of
association rules, which are learned on a small subset (training
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TABLE 2 | Summary of methods to associate a class with ARL and the evaluation

of the accuracy using the training set.

Method Associate Accuracy calculated based on

One type Distribution

typology

Confusion

matrix

Typology

distribution

Pmax X – X X

Prandom X – X X

Pdistribution – X – X

set) of buildings, is validation on a set (validation set) of buildings
that are not used to learn association rules and for which real
typological classes are known. Depending on the attribution
method, various approaches for validation are available, as
discussed in the following section.

Validation of Typology Attribution
The accuracy of distribution matrixes can be assessed in two
ways, which are related to the two approaches: attributing classes
to buildings (association of one specific type to each building,
using either Pmax or Prandom) or repartition of probability values
corresponding to each type (Pdistribution). For both ways of
attribution, the accuracy can be evaluated based on the total
distribution of classes. Only for the case of associating one
specific typological class to each building, the accuracy of the
distribution matrix can also be evaluated using a confusion
matrix. Table 2 summarizes the approaches that are used to
associate classes to buildings and to evaluate the accuracy on the
validation set.

Within this paper, accuracy is defined with respect to both,
false positives and false negatives. However, when a typology
distribution is used to evaluate building attribution, only false
negatives affect the accuracy (while false positives tend to increase
the accuracy). On the other hand, a confusion matrix allows, in
the case of direct association of a specific type to each building
(Pmax and Prandom), to compare the attribution of buildings to
typological classes by the ARLmethod with the attribution that is
obtained by visual survey. An example of such a confusionmatrix
is shown in Table 4 (section Evaluation of the Typological-
Attribution Accuracy on the Learning Set). Columns of this
matrix correspond to the “real” classes attributed, which are
obtained by visual survey. Rows correspond to classes that are
associated by the ARL method. The values of the diagonal
correspond to correctly associated buildings: a building on the
diagonal is assigned to the same class by the ARL method and
by visual surveys. Buildings that are outside of the diagonal are
assigned by the Pmax–ARL method to another class than based
on visual surveys.

For confusion matrixes, the accuracy is defined as the number
of buildings, for which classes are correctly attributed (elements
of the diagonal, Aii), divided by the total number of buildings
(Stehman, 1997). In other terms, the accuracy is the sum of the
diagonal divided by the sum of all elements (correctly attributed
elements are limited to true positives as in a confusion matrix
true negatives for one class are equivalent to true positives for

another class):

accuracyconf.=

∑

i Aii
∑

i

∑

j Aij
(2)

Thus, confusion matrixes provide the accuracy with respect to
false positives and false negatives. An additional step can be done
by separating the assessment of accuracy in columns or lines: on
one hand, non-diagonal elements in one column provide false
negatives and thus, allow calculating the recall score; on the other
hand, non-diagonal elements in one row provide false positives
and thus, allow quantifying the precision.

Evaluating classification accuracy using probability
distributions of classes involves checking whether the general
distribution of each class is conserved between the ARL method
and visual surveys. The real distribution of classes is the outcome
of visual surveying. This distribution is compared with the
distribution provided by the ARL method. The distribution
corresponding to the ARL method is obtained by multiplying
the probability distribution for a given combination of attributes
and the number of buildings having this given attribute
combination. The accuracy is derived as the difference (in
number of buildings) between the “real” and the “derived”
distribution (see for an example Table 5 at section Evaluation of
the Typological-Attribution Accuracy on the Learning Set):

accuracydistr.= 1−

∑

k

∣

∣classkREAL−classkARL
∣

∣

tot. build.
(3)

The main difference between the two validation methods is
based on the fact that the confusion matrix allows a building-by-
building attribution. As a consequence, all miscategorizations are
considered as errors. The accuracy values obtained with Equation
(2) are therefore lower (accuracy is checked with respect to false
positives and false negatives) than the accuracy obtained with the
probability distribution. Indeed assessing accuracy with respect
to distributions, is a comparison of the sum of columns of the
confusion matrix (real distribution) with the sum of rows of
the confusion matrix (ARL-based type distribution) and thus,
compensation between errors increases accuracy. Probability
evaluation is commonly used for large-scale evaluations. It is a
mean to understand the total distribution of types. The goal is to
establish the total number of buildings in a certain typological
class. Thus, errors (whether false positives and false negatives)
can compensate each other without impacting the final results.
Therefore, general accuracy is higher than the accuracy based
on the confusion matrix. If the goal is to obtain an estimate
of seismic vulnerability of a given region, rather than the
vulnerability of a specific building, this approach is deemed
acceptable. It is recalled that both accuracy evaluations can only
be performed on the parts of the city where the real typology
classification is available.

Seismic-Vulnerability Assessment (STEP 4)
The typological-class attribution (step 3) is the starting point for
seismic-vulnerability assessment at urban scale. As introduced
in section Introduction, the vulnerability of each type is defined
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TABLE 3 | Example of a St. Alban typology probability matrix (30% of the visual inspection | 213 buildings) with three attributes (number of stories, construction period,

and roof shape).

Attributes # M1 M2 M3 M4 M5 M6 M7 RC1 RC2 RC3 S W

<1900 & <4 fl. & flat 0 – – – – – – – – – – – –

<1900 & <4 fl. & sloped 28 – – 93% – 7% – – – – – – –

<1900 & (4–6) fl. & flat 2 – – 100% – – – – – – – – –

<1900 & (4–6) fl. & sloped 34 – – 94% – 6% – – – – – – –

<1900 & >6 fl. & flat 0 – – – – – – – – – – – –

<1900 & >6 fl. & sloped 0 – – – – – – – – – – – –

(1900–1944) & <4 fl. & flat 2 – – – – 50% – – – – – 50% –

(1900–1944) & <4 fl. & sloped 11 – – 18% – 73% 9% – – – – – –

(1900–1944) & (4–6) fl. & flat 3 – – – – 67% – – – 33% – – –

(1900–1944) & (4–6) fl. & sloped 54 – – 11% 2% 76% 11% – – – – – –

(1900–1944) & >6 fl. & flat 1 – – – – – 100% – – – – – –

(1900–1944) & >6 fl. & sloped 1 – – – – 100% – – – – – – –

(1945–1969) & <4 fl. & flat 2 – – – – – 50% – – 50% – – –

(1945–1969) & <4 fl. & sloped 5 – – – – 60% 20% – – 20% – – –

(1945–1969) & (4–6) fl. & flat 6 – – – – – 17% – – 83% – – –

(1945–1969) & (4–6) fl. & sloped 39 – – 3% – 79% 15% – – 3% – – –

(1945–1969) & >6 fl. & flat 11 – – – – 9% 36% – – 55% – – –

(1945–1969) & >6 fl. & sloped 3 – – – – 33% 33% – – 33% – – –

(1970–1988) & <4 fl. & flat 2 – – – – – 50% – – 50% – – –

(1970–1988) & <4 fl. & sloped 2 – – 50% – 50% – – – – – – –

(1970–1988) & (4–6) fl. & flat 8 – – – – – 50% – – 38% 12% – –

(1970–1988) & (4–6) fl. & sloped 3 – – 33% – – 67% – – – – – –

(1970–1988) & >6 fl. & flat 5 – – – – – 40% – – 60% – – –

(1970–1988) & >6 fl. & sloped 0 – – – – – – – – – – – –

>1988 & <4 fl. & flat 3 – – – – – – – – 100% – – –

>1988 & <4 fl. & sloped 4 – – – – – 100% – – – – – –

>1988 & (4–6) fl. & flat 11 – – – – – 46% – 18% 36% – – –

>1988 & (4–6) fl. & sloped 1 – – – – – 100% – – – – – –

>1988 & >6 fl. & flat 3 – – – – – 33% – – 67% – – –

>1988 & >6 fl. & sloped 0 – – – – – – – – – – – –

TABLE 4 | Example of a confusion matrix obtained by Pmax-ARL method on the St. Alban district, considering 30% of the visual survey as training set.

“Real” typology (given during the visual survey)

M1 M2 M3 M4 M5 M6 M7 RC1 RC2 RC3 S W

Ty
p
o
lo
g
y
g
iv
e
n
b
y
P
m
a
x
-A

R
L

M1 0 – – – – – – – – – – –

M2 – 0 – – – – – – – – – –

M3 – – 157 – 19 1 – – – – – –

M4 – – – 0 – – – – – – – –

M5 – – 24 1 261 39 – 1 8 – 1 –

M6 – – 1 – 5 56 – 2 30 3 1 –

M7 – – – – – – 0 – – – – –

RC1 – – – – – – – 0 – – – –

RC2 – – 1 – 1 29 – 1 50 1 – –

RC3 – – – – – – – – – 0 – –

S – – – – – – – – – – 0 –

W – – – – – – – – – – – 0

∅ – – 7 – – 3 – – 7 – – –

The association rule with three attributes (number of stories, construction period and roof shape) is subsequently applied to all the buildings that have been visually surveyed. Bold

values are on the diagonal and provide the number of buildings that are correctly assigned by the method.
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TABLE 5 | “Real” distribution of buildings in St. Alban (obtained from the visually surveyed buildings) and the distribution given by ARL with the Pmax method.

M1 M2 M3 M4 M5 M6 M7 RC1 RC2 RC3 S W

“Real” distribution 0 0 190 1 286 128 0 4 95 4 2 0

Pmax-ARL distribution 0 0 177 0 335 98 0 0 83 0 0 0 sum

1 (in absolute value) 0 0 13 1 49 30 0 4 12 4 2 0 115

Bold values are the difference in absolute value between the real distribution and the Pmax-ARL distribution.

according to appropriate vulnerability functions. Such functions
are described by Equation (4):

µd=2.5

[

1+ tanh

(

I + 6.25V − 13.1

Q

)]

(4)

Where I is the seismic input provided in terms of macro-seismic
intensity according to the European scale EMS-98; V is the
vulnerability index according to the value of the vulnerability
indexes for each type of construction; Q is the ductility index of
the structure; µD is the mean damage value that the building is
expected to sustain.

Each typological class is linked to specific vulnerability
and ductility indexes (V and Q), following previous studies
(Lagomarsino and Giovinazzi, 2006). Vulnerability of buildings
of the same typological class changes with the height category
they belong to. The macro-seismic model (LM1) is used to
perform vulnerability assessments. The mean damage that is
expected for each class is determined using Equation (4). Thus,
the accuracy achieved with the ARL method is assessed with
respect to the predicted vulnerability. Classes, such as type M3
and M5, which are hard to distinguish in classification have
similar vulnerability indexes, an improvement in accuracy can be
expected with respect to typological-class attribution.

Starting from the mean damage (see Equation 4) obtained for
each type and height category (related to the number of floors),
damage distributions can be obtained. The probability, pk, related
to each damage grade Dk (k = 0 · · · 5), for a given mean damage
µD, is evaluated according to the probability mass function of the
binomial distribution (Lagomarsino and Giovinazzi, 2006):

pk=
5!

k! (5− k) !

(µd

5

)k (

1−
µd

5

)5−k
(5)

Vulnerability can be assessed in two ways. The first one involves
a deterministic evaluation: it is only based on the mean damage
(µD) (Equation 4) for each class and height category. The second
one is based for each class and height category on the distribution
of damage grades obtained according to a probability mass
function (using Equation 5).

Validation of Vulnerability Assessment
For both methods of vulnerability determination (deterministic
and probabilistic), the accuracy is calculated as the sum of the
differences in absolute value between the number of buildings
attributed by the ARL to each damage grade and the “real”
number of building for each damage grade (Diana et al., 2018),

according to the following equation:

accuracyvuln.= 1−

∑5
k=0 |n

◦build.kreal−n◦build.kattr.|

tot. build.
(6)

In a similar way to typology attribution (see section Validation
of Typology Attribution), the validation of vulnerability
assessments is performed exclusively on the parts of the city for
which real typological classes are available following a visual
inspection campaign.

CASE STUDY

The objective of this paper is related to the seismic-vulnerability
assessment of the city of Basel. Seismic hazard is not uniform
throughout Switzerland. Some areas are characterized by higher
hazard, such as the Basel region in northwestern Switzerland. In
particular, the region of the city of Basel is classified in Zone Z3a,
where the design value of horizontal acceleration of the ground is
agd = 1.3

[

m/s2
]

(SIA, 2014). The Basel region is characterized
by the second-highest seismic hazard in Switzerland after the
Valais region (Z3b), according to Appendix F of Swiss codes SIA
261 (SIA, 2014).

In 1356, the Basel region suffered the strongest earthquake
ever recorded in the North of the Alps (Lestuzzi and Badoux,
2013). The Swiss Seismological Service (SED) estimates that
this earthquake was of magnitude 6.6 on the Richter scale
(Swiss Seismological Service, 2016). The return period of this
earthquake is larger than the actual one of building codes (475
years) and is estimated to exceed 2000 years. In the present work,
the Basel region is exposed to a macro-seismic intensity of IX
according to the EMS-98, which corresponds to the shaking level
of the 1,356 earthquake.

The Collection of Building Attributes
(STEP 1)
Three out of four attributes listed in methodology step 1 [section
Collection of Building Attributes (STEP 1)] are collected in the
Federal Register of Buildings and Dwelling (RegBL): the period
of construction, the number of stories, and the footprint surface.
The shape of the roof is collected in the 3D Model of the city
of Basel. All these attributes are collected for the whole building
stock of the city of Basel, composed of almost 21,000 buildings.

Concerning the number of floors, when performing the visual
inspection phase that is essential to step 2, a slight difference
between the attribute listed in the RegBL database and the data
retrieved on site has been pointed out. For some buildings (32%
of the buildings visually inspected) the number of stories listed
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in the RegBL database does not correspond to the number of
stories derived from visual survey. These differences result from
underground floors being included in the floor count of the
Federal Statistical Office (BFS/OFS). In addition, “Attics and
basements are only taken into account if they are designed,
even partially, for housing. However, cellars are not taken into
consideration” (Federal Statistical Office, 2017, p. 67). As the
number of stories (seismic masses) is defined in groups (less than
4 stories, 4–6 stories, equal or more than 7 stories), errors are
reduced. Only 8.2 percent of buildings composing the learning
set [see section The Learning Phase (STEP 2)] are classified by
the RegBL database in a different height category than by on-site
visual inspections.

In order to derive the shape of the roof, data are collected
from a vectorial 3D model of the entire city, which contains
building-by-building features. In order to be able to process roof
attribution in an algorithm, data are exported with a specific code.
For each building, a mesh polyface of the building coordinates
is extracted as a string of coordinates representing triangles of
the surfaces.

An algorithm detects which triangles form the three-
dimensional surface of the roof. Then, the inclination of the
roof is calculated as the angle between the normal vector of the
triangle surface and the vertical. In case of multiple surfaces, if
horizontal triangles represent more than 40% of the roof surface,
then the roof is considered as flat. If not, the roof is considered as
sloped. For sloped roofs, the highest slope of all surfaces is taken
to define the inclination.

The Learning Phase (STEP 2)
The learning set for the city of Basel is composed of 710
buildings, which are all located in the St. Alban district. The St.
Alban district is chosen to be the learning set as it is deemed
representative of the general distribution between the typological
classes for the entire city of Basel. Indeed, the St. Alban district
presents a miscellaneous building stock: buildings with different
periods of constructions, heights (number of floors), materials
and construction techniques (in aggregates or isolated), compose
this district. The district is composed: for the 26% of simple stone
masonry buildings (M3), for the 38% of unreinforced masonry
brick buildings with flexible floors (M5) and for the 17% of
masonry brick buildings with r.c. floors (M6). The remaining
17% is composed of r.c. buildings (RC1 + RC2 + RC3), mainly
with resisting walls (RC2). As a consequence, applying ARL
method on this district reduces the risk to bias the evaluation.
Therefore, the typology correlations that are obtained for St.
Alban can be expanded at city scale.

In addition to the four attributes collected in the public
databases (step 1), the typological class for each building is
defined for the 710 buildings composing the learning set of
St. Alban. The attribution of typological classes to buildings
is performed by analyzing archive drawings (on 30 buildings)
and by performing either on-site or remote visual inspections.
In total, among the 710 buildings, 53% have been surveyed
online (using google maps or street view), 43% by on-site
visual one-by-one inspection, and 4% based on archive drawings.
The determination of the typological class for these buildings,

following the classes defined in the Risk-UE project (Table 1),
has a high certainty as the error in class attribution reduces with
increasing amount of information.

To enable the successive validation phase, typological
correlations between attributes have been performed on a subset
of the learning set. This training set is composed of randomly
selected 30% of the buildings composing the learning set (710∗0.3
= 213 buildings) while the remaining 70% is considered as the
validation set (710∗0.7 = 497 buildings). As an example, Table 3
shows a possible ARL matrix obtained from the combination
of three attributes (number of stories, construction period and
roof shape).

Wide-Spreading the Typological
Association to the Entire City of Basel
(STEP 3)
The distribution matrix is the starting point to attribute
typological classes using the ARL methodology. For the
association of a specific typological class to each building, the
Pmax and the Prandom methods are considered. For example,
when considering the Pmax method attribution, all buildings built
in 1929 with six floors and a sloped roof are classified as M5
buildings (see tenth row of Table 3). In the case of the Prandom
attribution, a building built in 1929 with six floors and a sloped
roof with a random instance equal to 0.93 will be classified as
M6 (Figure 2). In the case when a specific typological class is
not associated to a single building, the Pdistribution method is
considered. In this case, for example, a building built in 1929 with
six floors and a sloped roof will have the probability distribution
reported in Table 3 (tenth row) to belong to one of the classes M3
(11%), M4 (2%), M5 (76%), or M6 (11%).

The distribution matrix (Table 3) is applied to the entire city
of Basel (almost 21,000 buildings). Figure 3 shows that the three
typological-class distributions (following the three attribution
methods Pmax, Prandom and Pdistribution) yield similar predictions
when the whole building stock of Basel is considered. Using the
Pmax method, classes with low probabilities are ignored unlike for
the Prandom and Pdistribution methods. Thus, classesM4, RC1, RC3,
and S are not attributed to any building when the Pmax method
is used. Prandom and Pdistribution distributions are highly similar,
which is expected for large sets of buildings, such as an entire city.

Seismic-Vulnerability Assessment for the
Entire City of Basel (STEP 4)
With the typology distribution being defined in the previous
section, the damage distribution for the entire city of Basel can
be estimated for any seismic intensity. The damage distribution
is achieved by the aggregation of the probability distribution
multiplied by the number of related buildings according to the
typology distribution (Diana et al., 2018).

Damage distributions for the city of Basel can be obtained
for each ARL attribution method (Pmax, Prandom, Pdistribution).
The three damage distributions derived from the three ARL
attribution methods are similar. As the city of Basel has almost
21,000 buildings, the damage distribution for the Prandom and
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FIGURE 2 | Example of the determination of the building class according to Prandom method for buildings built between 1900 and 1944, with 6 floors and a sloped

roof. For random instances between 0 and 0.11, a building type M3 is attributed, for random instances between 0.11 and 0.13 type M4, between 0.13 and 0.89 M5

and over 0.89 type M6.

FIGURE 3 | Representation of the distribution of typological classes for the entire city of Basel (A. with Pmax; B. with Prandom; C. with Pdistribution). Class attribution is

based on three attributes (construction period, number of stories and roof shape) learned from the learning set in St. Alban [see section The learning phase (STEP 2)].

Pdistribution are identical. Moreover, only slight differences can be
observed for damage distribution obtained using the Pmax-ARL.

Damage distribution, based on a probabilistic approach, for
the city of Basel is shown in Figure 4 for an earthquake of
intensity I = IX. In the case of Figure 4, where buildings

are assigned based on three attributes (construction period,
number of stories and roof shape), no difference in the damage
distribution is observed.

The distribution of damage can be calculated for each zip
code (ZIP) of the city, in this way the vulnerability of districts
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FIGURE 4 | Damage distribution based on probabilistic damage for the city of Basel with an earthquake of intensity I = IX. The three ARL method are considered (A.

Pmax; B. Prandom; C. Pdistribution ) with St. Alban as training set and considering three attributes (construction period, number of stories and roof shape).

of the city can be evaluated. The Pmax-ARL method considering
three attributes (construction period, number of stories and roof
shape) is used for the whole Basel building stock.

Figure 5 gives the distribution of damage for each region
delimited by a shared ZIP code of the city of Basel after an
earthquake of Intensity IX. This graph shows the vulnerability
of specific districts in Basel. The most vulnerable district
corresponds to ZIP 001, which is the historical city center. In the
historic center, 68% of buildings are expected to sustain heavy
damage or worse (DG3, DG4, and DG5) after an earthquake
of intensity IX. This statement confirms the findings after the
L’Aquila earthquake in 2009 about particular vulnerability of
city-centers by Guéguen (2013).

The least vulnerable district corresponds to the zip code 002:
the Universitätspital Basel (Basel university hospital). After an
earthquake of intensity IX, there will be 44.6% of buildings
with at least heavy damage (DG3, DG4, and DG5). If the Basel
university hospital is ignored, the least vulnerable district has ZIP
011, which represents the suburban area. Fifty-six percentage of
buildings in this area sustain or exceed heavy damage (DG3, DG4,
and DG5) after an earthquake of Intensity IX.

Evaluation of the Typological-Attribution
Accuracy on the Learning Set
As discussed in section Validation of Typology Attribution, an
important step is validation of the typological-class attribution
based on the ARL. In Table 4, the confusion matrix obtained
with the direct attribution of typological classes to each
building (in this specific case with Pmax) is displayed. The
confusion matrix is the mean for evaluate the accuracy
of the attribution of types provided by direct attribution
methods (Pmax and Prandom). In columns the “real” classes
attributed by visual inspection are displayed while in rows
the classes associated by ARL method. Therefore, on the
diagonal the number of buildings that are correctly assigned
are highlighted in bold while on the positions outside the
diagonal the errors in attribution are displayed. The buildings
on the last row (θ) of Table 4 correspond to buildings that
cannot attributed by the ARL method. For such buildings,
there exists no building with the same attribute combinations
within the buildings that form the training set. For Table 4,
accuracy, in accordance with Equation (2), is equal to:
524/710= 0.738.
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FIGURE 5 | Distribution of damage in each zip code (ZIP) of the districts of the city of Basel.

The confusion matrix also allows to assess the performance of
typological attribution of specific types. For instance, 74 buildings
are wrongly attributed to be class M5 and thus, are false positives
(precision of 261/(261+74)= 0.78). Also, 25 buildings of typeM5
are false negatives as they are not recognized by the ARL method
(recall of 261/(261+25) = 0.91). The general score of accuracy
combines both types of errors: false positives and false negatives.

In Table 5, the distribution obtained applying the ARL
method and the “real” distribution obtained considering
visual inspections are displayed. The distribution evaluation is
admissible for all the three attributionmethods considered (Pmax,
Prandom, and Pdistribution). It is an evaluation that is appropriate
for large-scale evaluations since it considers exclusively the
total number of items being part of a specific class, without
considering building-by-building misclassifications. For the
example of Table 5, accuracy, calculated using Equation (3),
is equal to: 1–115/710 = 0.838. It is worth noting that in
distribution evaluation, the accuracy is always higher since errors
in class attributions compensate each other.

One of the main goals of the paper is to evaluate the
accuracy of building-class attributions that is achieved
using several attribute combinations. As stated in section
Collection of Building Attributes (STEP 1), considered
attributes are: the period of construction; the number of
stories; the shape of the roof; and the surface footprint
of the building. These four attributes are combined in
multiple ways and possible improvements in the class-
attribution accuracy are evaluated. Combinations of two
attributes (period of construction and number of stories),
three attributes (adding either roof shape or surface
footprint) and all four attributes are evaluated and compared
in Table 6.

When using the confusion matrix as metric of accuracy,
maximum accuracy is obtained by combining three attributes
(construction period, number of stories and shape of the roof)
and using the Pmax-ARL attribution method. The achieved
accuracy is 73.9%. The Pmax method provides more accurate
results than the Prandom method as each building is assigned the
typological class of maximal probability. More often than not,
this assignment is correct.

As can be seen in Table 6 (first two rows), considering more
attributes can result in decreasing attribution accuracy. For
example, with three attributes (construction date, number of
stories and footprint surface), the accuracy of the Pmax-ARL
method drops to 68.9% (−2.1%) with respect to the accuracy that
is obtained by considering two attributes. When considering four
attributes, the accuracy is lower than the accuracy obtained with
three attributes (72.1% as opposed to 73.9%). This results from
overfitting the training set: the distribution matrix matches the
particular data of the training set too closely (with four attributes)
and thus, when wide spreading it to a larger set, the lower
general validity reduces attribution accuracy. Indeed, random
fluctuations in the training data is learned as a correlation
between attributes and types. These fluctuations do not apply to
new data (validation set) and thus, negatively impact the models
ability to generalize.

When assessing classification accuracy using typological
distribution (see Table 3), the best accuracy is obtained when
three attributes (construction periods, number of stories and
shape of the roof) are combined using the Pdistribution-ARL
method. The maximum accuracy is 97.2% (see Table 6, last
three rows). Unlike when accuracy is assessed using a confusion
matrix, the classification obtained based on the Pdistribution
(and the Prandom) methods are more accurate than Pmax. For
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TABLE 6 | Accuracy and change in accuracy for confusion matrix and distribution of classes.

Class attribution Method Attribute combination

2 Attributes (date and stories) 3 Attributes (+ roof) 3 Attributes (+ surface) 4 Attributes (all)

Confusion matrix Pmax 70.4% 73.9% (+5.0%) 68.9% (−2.1%) 72.1% (+2.4%)

Prandom 58.0% 63.5% (+9.5%) 61.1% (+5.3%) 63.7% (+9.8%)

Distribution Pmax 79.2% 81.0% (+2.3%) 91.3% (+15.3%) 86.8% (+9.6%)

Prandom 92.7% 96.8% (+4.4%) 96.9% (+4.5%) 93.5% (+0.9%)

Pdistribution 96.3% 97.2% (+0.9%) 96.1% (−0.2%) 95.4% (−0.9%)

Bold values are the most accurate results.

Pdistribution and Prandom attribution methods, the classification
follows probabilistic distributions, which explains why they
outperform Pmax for which only the class with maximum
likelihood is attributed. In general, the accuracy based on the
typology distribution is higher than that based on the confusion
matrix, since possible errors can be compensated by other errors
at larger scale. From Table 6 it can be seen that the shape of the
roof seems to be particularly influent, improving substantially the
distribution accuracy.

In Figure 6 the number of buildings that are wrongly classified
in the case of the two attributes approach (number of stories and
period of construction) are represented. On the left of Figure 6,
the “real” types for the misclassified buildings are shown, while
on the right the types given by the Pmax-ARL method are
represented. Thus, Figure 6 can help in understanding the
tendencies in mis-attribution of typological classes: as it is
possible to notice, errors occur mainly for buildings with four to
six floors. In this height interval, for the “before 1900” period,
the Pmax-ARL method does not assign any building into the M5-
class (bricks masonry with flexible floors), that is in the visually
surveyed distribution the most common class. Between 1900
and 1969, the Pmax-ARL method assigns buildings exclusively to
class M5 while in the “real” distribution M3- (stone masonry),
M4- (massive stone), M6- (brick masonry with rigid floors), and
RC2-classes (reinforced concrete wall building) are present.

As stated before, the accuracy of class attribution is improved
by introducing the shape of the roof. A limit of 5.7◦ has been
chosen as the inclination that separates flat roofs from sloped
roofs. Figure 7 shows the distribution of roof shapes for each
class that has been visually surveyed in St. Alban. This graph
shows that most M3, M4, and M5 buildings have a sloped roof
while most reinforced-concrete (RC) and steel buildings (S) have
flat roofs. For M6 buildings, 50% have a flat roof and the other
50% have a sloped roof. The shape of the roof seems to be closely
related with the typological class, as shown by the improvement
in terms of general accuracy in Table 6.

In order to improve the classification accuracy, addition of a
third interval for roof slopes, has also been tested. The limit of
this angle interval is set as an unknown variable first and the
optimal value is derived as the value that maximizes the accuracy.
The introduction of this limit angle on classification accuracy is
irrelevant. No improvement in accuracy (neither based on the
confusion matrix nor on the typological distribution) has been

found. Therefore, taking into account two inclination intervals,
either flat or sloped, is sufficient.

Evaluation of the Accuracy of
Damage Distributions
The accuracy of damage distributions are summarized inTable 7.
The best accuracy is obtained when three attributes (construction
periods, number of stories and roof shape) are combined and
the Prandom-ARL method is used for typological-class attribution
(98.4%). The Prandom-ARL method is not stable, as it involves
random numbers, but studied random instances provide better
results than the Pdistribution-ARL method. For larger amounts of
buildings, the accuracy of the Prandom-ARL method equals the
accuracy of the Pdistribution-ARL method. Without considering
the Prandom-ARL method, the best accuracy is obtained with
four attributes (construction periods, number of stories, shape of
the roof and footprint surface) with the Pmax-ARL method. The
accuracy is 96.3%, which also consists the highest improvement
compared with the two-attribute results (+ 7.5%).

Regarding the accuracy of probabilistic vulnerability
determination (obtained using Equation 5), the best accuracy is
obtained using three attributes (construction periods, number of
stories and roof shape) with the Prandom-ARL method (99.8%).
Again, this method does not provide stable results and for a
large amounts of buildings, accuracy of the Prandom-ARL and the
Pdistribution-ARL methods, will yield similar results.

When the Prandom-ARL method is ignored, the best accuracy
is obtained with three attributes (construction period, number of
stories and shape of the roof) and with the Pmax-ARL method.
The accuracy is 99.4%.

Evaluation of the Accuracy for
Another District
The accuracy of the ARLmethod in attributing typological classes
is also performed on 223 buildings that have been surveyed
in Iselin, another part of the city of Basel. Table 8 (first part)
summarizes the accuracy based on the confusion matrix with the
improvement of considering three and four attributes. The best
accuracy (based on the confusion matrix) is obtained with four
attributes (construction periods, number of stories, roof shape
and footprint surface) with the Pmax-ARL method. The accuracy
is 70.4%.
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FIGURE 6 | Number of misclassified buildings with Pmax-ARL method (two attributes) on St. Alban with 30% of the survey as training set.

Considering additional attributes does not always provide
better accuracy, as can be seen in Table 8 first row. For
instance, with three attributes (construction date, number
of stories and footprint surface), the accuracy of the Pmax-
ARL method is lower than with two attributes (−3.3%).
For the Pmax-ARL method, considering four attributes
(construction periods, number of stories, roof shape and
footprint surface), instead of two, improves the accuracy
by 5.4%.

Table 8 (row three to five) summarizes the accuracy in the
distribution of types with the improvement of considering
other attributes as the roof shape or the footprint surface. The
best accuracy (92%) of the typology distribution is achieved
using all four attributes with the Pdistribution-ARL method.
The Pdistribution-ARL method, considering four attributes
(construction periods, number of stories, roof shape and
footprint surface), instead of two attributes, improves accuracy
by 4.4%.

Table 8 (first three rows of the second part) summarizes the
accuracy for the damage distribution based on the mean damage
with the improvement of considering other attributes. The best
accuracy for the distribution of mean damage is obtained with
four attributes (construction periods, number of stories, roof
shape and footprint surface) with the Pmax-ARL method. The
accuracy is 96.1%. For the Pmax-ARL method, considering four

attributes (construction periods, number of stories, roof shape
and footprint surface), instead of only two improves the accuracy
for the distribution of mean damage of 9.1%.

The accuracy for the damage distribution based on the
probabilistic distribution is summarized in Table 8 (last three
rows). The accuracy of damage distribution (with probabilistic
damage) is the best for the Pdistribution-ARL method considering
all four attributes (construction periods, number of stories, roof
shape and footprint surface). The accuracy of the blind check is
98.8%. For the Pmax-ARL method, the accuracy of the damage
distribution is higher when only three attributes (construction
periods, number of stories and the roof shape) are considered.
This accuracy equals 98.6%. While considering three attributes
(construction periods, number of stories and roof shape) instead
of two improves the accuracy by almost 6%, considering all four
attributes instead of three increases accuracy by 5.4%.

SUMMARY AND CONCLUSIONS

Seismic vulnerability at large scale is time consuming and
thus, simplifications are needed. Although a taxonomy
should be initially defined to cover the typological classes
that compose the building stock, there is potential to
speed up the attribution of typological classes to each
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FIGURE 7 | Roof shape for each building in the St. Alban learning set. Roof shapes seem to be closely related with typological classes.

TABLE 7 | Accuracy and change in accuracy for the seismic vulnerability assessment based on the deterministic and probabilistic approach.

Vulnerability determination Method Attribute combination

2 Attributes (date and stories) 3 Attributes (+ roof) 3 Attributes (+ surface) 4 Attributes (all)

Deterministic Pmax 89.5% 92.6% (+3.5%) 91.4% (+2.1%) 96.3% (+7.6%)

Prandom 97.5% 98.4% (+0.9%) 95.9% (−1.6%) 95.5% (−2.1%)

Pdistribution 91.8% 95.5% (+4.0%) 96.0% (+4.6%) 93.6% (−2.0%)

Probabilistic Pmax 93.9% 99.4% (+5.9%) 98.4% (+4.8%) 97.1% (+3.4%)

Prandom 99.2% 99.8% (+0.6%) 99.5% (+0.3%) 98.8% (−0.4%)

Pdistribution 94.4% 98.1% (+3.9%) 96.1% (+4.2%) 97.9% (+3.7%)

Bold values are the most accurate results.

building using few attributes that are available in existing
data-bases, rather than performing visual surveys for each
building. In this paper, a typological class attribution
based on the association rule learning (ARL) is proposed,
based on various combinations of the following attributes:
construction periods, number of stories, shape of the roof and
footprint surface.

Through a case study, in which the seismic vulnerability

is assessed for the entire city of Basel, located in the region

with second-highest seismic hazard of Switzerland, the accuracy
of a large-scale ARL-based typological-class attribution using

attributes that are available in existing databases is assessed.
Typological classes of several hundreds of buildings have been

derived from visual surveys in a selected district and are used
as training set in order to derive correlations between attributes
and typological classes. Buildings of another district of the
city, for which typological classes have been visually derived,
are used as validation tests to evaluate the accuracy of the
attribution method.

The following conclusions are drawn:

• in general, for large scale assessments, the loss in accuracy in
ARL-based typology attribution is irrelevant when considering
seismic damage predictions. Therefore, after defining a rather
small learning set (around 5% of the entire building stock of
a town), building classes can be assigned to all buildings by
considering only three attributes that are readily available in
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TABLE 8 | Accuracy and change in accuracy results for the district of Iselin.

Class attribution Method Attribute combination

2 Attributes (date and stories) 3 Attributes (+ roof) 3 Attributes (+ surface) 4 Attributes (all)

Confusion matrix Pmax 66.8% 67.7% (+1.3%) 64.6% (−3.3%) 70.4% (+5.4%)

Prandom 48.0% 57.0% (+18.8%) 57.7% (+22.3%) 63.2% (+31.7%)

Distribution Pmax 68.2% 77.1% (+13.0%) 68.2% (+0.0%) 81.6% (+19.6%)

Prandom 90.6% 87.0% (−4.0%) 90.6% (+0.0%) 90.6% (+0.0%)

Pdistribution 88.1% 87.4% (−0.8%) 89.8% (+1.9%) 92.0% (+4.4%)

Vulnerability determination Method Attribute combination

2 Attributes (date and stories) 3 Attributes (+ roof) 3 Attributes (+ surface) 4 Attributes (all)

Deterministic Pmax 88.1% 89.8% (+1.9%) 88.1% (+0.0%) 96.1% (+9.1%)

Prandom 86.2% 85.3% (−1.0%) 94.3% (+9.4%) 90.7% (+5.2%)

Pdistribution 82.7% 85.9% (+3.9%) 89.2% (+7.9%) 91.4% (+10.5%)

Probabilistic Pmax 93.3% 98.6% (+5.7%) 95.2% (+2.0%) 98.3% (+5.4%)

Prandom 97.8% 97.0% (−0.8%) 99.2% (+1.4%) 97.5% (−0.3%)

Pdistribution 96.0% 97.9% (+2.0%) 98.3% (+2.4%) 98.8% (+2.9%)

Bold values are the most accurate results.

public databases (i.e., period of construction, number of floors,
shape of the roof). The reduction in terms of time demand
for the preparation of reliable seismic vulnerability scenarios at
city scale is particularly pronounced and only slightly reduces
accuracy (<5% of error).

• considering all four attributes (period of construction,
number of stories, shape of the roof and footprint surface)
provides the most accurate typological-class attribution, when
buildings from another district than the learning set are used
for validation.

• for seismic vulnerability predictions, the loss in accuracy
considering three attributes is less relevant than for typological
class attribution. In vulnerability evaluations, benefits in time
demand when considering only three attributes are therefore
strategic in the choice of the number of attributes to gather.

• when considering both, validation of typological class
attributions and vulnerability predictions on the learning set,
combining three attributes provides more accurate results if
compared to the four attributes ones.

• the shape of the roof is an important parameter to consider
toward reliable seismic vulnerability assessments and increases
accuracy noticeably. Introducing the shape of the roof as third
attribute is more useful than footprint surface, especially for
the learning set validation. However, introducing more than
two categories for the shape of the roof (flat and sloped) does
not increase accuracy.

• at the scale of the entire city of Basel, the historic city center

is found to be the most vulnerable part of the city while the
suburban area results to be the least vulnerable district.

• It should be noted that the work presented in this paper can
be further improved by considering several aspects that will be
subject for future works:

• starting from confusion matrixes, taking into account
false negatives and false positive for each typological
class, recall and the precision scores can be calculated.
This allows the understanding of error tendencies of the
proposed methodology.

• in this paper, the vulnerability indexes of typological classes
came from previous European studies. A crucial step consists
in verifying whether these indexes correlate well with the
vulnerability of buildings of the studied region, Basel. More
specifically, these indexes do not consider the interaction
between buildings in aggregates.

• in this paper the seismic vulnerability predictions are based
on the empirical approach. Mechanical approach will be
addressed in future work to check the obtained results.

• with development of 3D-databases, data concerning façade
details, such as the window surface, may play a fundamental
role in the typological-class attribution since the per-cent of
openings provides interesting information on the construction
techniques and material used.
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