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INTRODUCTION

Both the APANorth American Standard for Performance Rated CLT (PRG 320) and the 2018 NDS
specify dry service conditions (<16%MC) for CLT, unless otherwise specified by the manufacturer
(American Wood Council, 2018; ANSI/APA, 2018). The rate of moisture exchange between wood
and the ambient environment due to diffusion is very slow and surface moisture contents rarely
exceed 20% in covered outdoor conditions (Koch et al., 2016). Therefore, the concern lies primarily
with direct exposure to bulk liquid, as it may happen in unprotected conditions during construction
(Wang et al., 2018).

The lack of protocols for on-site protection of mass timber during construction is concerning,
especially when considering the limited data currently available for hygrothermal performance
analysis of CLT. In this regard,mass timber elements cannot be assumed as analogous to light-frame
construction in terms of wetting and drying performance. These products have the capacity to store
large volumes of water, and, due to the limits of bound water diffusion rates, exhibit much slower
wetting, and drying behavior through their thicknesses (Wang, 2016). The potential for CLT to
store moisture during construction exposure, and to retain that moisture for prolonged periods
after enclosure within a building assembly, is thus a major concern.

Changes in the moisture content in the hygroscopic range (typically between 0 and
28%) affect nearly every physical and mechanical property of the material, from strength
and stiffness to thermal conductivity, and physical dimensions (Glass and Zelinka, 2010).
Importantly, mechano-sorptive effects imply reduced stiffness and increased viscoelastic and
plastic deformation with higher moisture contents during loading (Holzer et al., 1989;
Pambou Nziengui et al., 2019). When applied at the global scale, these changes can impact
building tolerances and serviceability. The effect of these phenomena on the performance of
innovative timber systems, such as post-tensioned lateral load resisting system, is a research
area still in development (Nguyen et al., 2019). Checking, interfacial shearing/delamination,
and warpage observed on CLT exposed to environmental simulations within a laboratory
(Schmidt et al., 2019) are examples of moisture-induced damage that can occur as a
result of heavy environmental fluctuations, particularly when involving direct exposure to
liquid water.
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This data report addresses these concerns and provides a
unique set of hygrothermal data of mass timber elements exposed
to fluctuating environmental conditions for almost 1 year
during construction.

A large body of research exists in Europe on hygrothermal
monitoring of glue laminated timber structures. These studies
have tended primarily to focus on timber structures in covered
outdoor conditions (service class 2, according to ISO 21887)1.
The moisture monitoring studies at Brock Commons in
Vancouver, British Columbia (Mustapha et al., 2017, 2018),
and at Carbon12 in Portland, Oregon (Zelinka et al., 2018),
are among the few studies to date that have tracked the
moisture content of CLT (and other timber components) exposed
to rain throughout construction, and at a large scale (e.g.,
>40 MC locations). However, there is currently a lack of
open-access monitoring data on moisture response of mass-
timber components, especially during prolonged exposure to
environmental loading.

Peavy Hall is part of the Forest Science Complex at
Oregon State University, Corvallis (OR). The building,
under construction at the time of writing, showcases a
wide range of mass timber products and construction
systems, including cross-laminated (CLT) timber panels
produced in Oregon. A hygrothermal monitoring plan was
conducted during the construction of Peavy Hall with the
aim to:

• Collect first-hand original data on some unique and innovative
structural systems employing local materials, such as self-
centering rocking CLT shear walls;

• Develop benchmark data for further applications and cross-
reference with other projects.

Value and use of the data are listed below:

• Facilitate research advancement in the assessment of
hygrothermal performance of mass timber products and the
development of models (i.e., hygrothermal models, service
life prediction models, etc.) that account for different factors
(at the scale of the building, structural system and materials)
affecting variability of moisture data.

• Educate mass timber industry and the AEC (architecture,
engineering and construction) industry on the moisture
behavior of CLT structural elements exposed to precipitations
for a prolonged time during construction.

• Support development of refined moisture management
practices of mass timber buildings.

• Support development of future hygrothermal monitoring
projects of mass timber buildings.

• Provide a basis for development of models to reference
sensor reliability.

This data report aims at guiding interested parties to the
dataset and providing essential information for understanding
the data.

1ISO 21887:2007. Durability of Wood and Wood-Based Products–Use Classes. ISO

(the International Organization for Standardization) Geneva, C. H.

METHODS

The areas monitored during construction were in the zone
scheduled as the first to be erected (Zone 1 in Figure 1).
The CLT shear wall, with a N/S orientation, was erected on
November 29th 2017 and outfitted with sensors 2 days later.
The monitored floor connection is located on the first floor and
comprised of a CLT floor panel and a glued-laminated beam.
The monitored floor panel was installed on December 18th, 2017
and was outfitted with MC sensors on January 8th, 2018. The
shear wall and the floor panel were made of seven and five
lamellas (ply), respectively, of 5 × 20 cm (nominal), PRG320
V1 grade (ANSI/APA, 2018) Douglas Fir (Pseudotsuga menziesii)
lumber, bonded using melamine-formaldehyde (MF) resin
(non-edge-glued).

A total of six and seven moisture sensors were installed at the
upper and lower section of the shear wall, respectively. A total
of six moisture sensors were installed at the floor connection
(four in the floor panel and two in the beam). The monitoring
period includes: (a) completion of the timber framing; (b)
installation of the roof and façade water control membranes; (c)
interruption of the construction work after finding manufacture-
originated delamination in some CLT panels; (d) resumption
of the construction on August 2018; and (e) replacement of
defective CLT panels (which included the monitored shear
wall panel).

Monitoring locations were selected as representative
areas at risk of moisture ingress and/or stagnation during
construction. Considered factors for planning the monitoring
locations included: construction schedule, duration of zone
exposure, exposure to precipitation and wind-driven rain,
aspect, orientation in space, detail complexity, presence of
waterproofing elements, and weather sealants, presence of
connectors and cuttings, potential for wicking from wood end
grain panel ply depth.

Wood moisture content was measured using resistance
sensors comprised of an electrode and a pair of insulated pins
that record the ohmic resistance of wood at a specific depth.
Different pin lengths were used to read wood moisture content
at different depths in the member, approximately in the middle

of the target ply (Figure 1c). The southernmost ply in the wall
panel and the floor’s lowest ply are both denoted “Ply 1” in
the dataset.

For the installation of these sensors, the following procedure
was followed: (a) selection of an area clear of macroscopic wood
defects and devoid of discontinuities; (b) use of guides to keep
constant pin spacing, (c) drilling of holes the exact length of
the insulated housing using digital calipers, and drill-stops, (d)
ramming in of the pins into the wood. A silicone bead was applied
around the interface of the sensor with the shear wall panel, as
well as around the exposed sensor head, to avoid condensation
or moisture shorting due to direct water exposure, as well as to
minimize heat conduction through the pins to the wood substrate
on the south-exposed wall face.

Thermistors were embedded in the central area of the shear
wall at different depths, at the center of plies 1, 4, 6, and 7,
to monitor internal temperatures. Each one of these measured
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FIGURE 1 | Plan of Peavy Hall with location of monitored locations (a) shear wall; (b) floor; (c) schematic with pin depth of MC sensors.

depths was used as a representative datum for correcting MC
measurements taken at the same depths, but at other locations
in the same panel. The thermistors were inserted from the
North side of the panel into boreholes that were subsequently
sealed with silicone. Thermistors were installed on January
8th, 2018.

Moisture content data (resistance values) were calculated on
an hourly basis. Data were periodically transmitted (by hardwire)
to a data acquisition unit (DAQ)—a small weather-proofed box
with eight resistance-type sensor channels—where they were
stored and wirelessly transmitted to a dedicated computer with a
receiver, and finally synced with a cloud data base. The Building
Intelligence Gateway (BiG), served as the primary interface for
the sensors.

Ohmic values read from the sensors are converted to
MC values and then corrected using temperature data from
the closest approximate thermistor depths. Conversion is
performed through the BIG interface using the Garrahan
formula (Equation 1) (Garrahan, 1988), which is based on the
work of Pfaff and Garrahan (1986) extending the original work
by James (1963, 1968). Their correction factors for species and
temperature include a large number of wood species, in this case,
published data for Douglas Fir were used. The manufacturer’s
calibration was not verified by comparison against
oven-dry tests.

MC =

[

Rs +
(

0.567− 0.0260x+ 0.000051x2
)

0.881 (1.0056x)
− b

]

+ a (1)
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FIGURE 2 | Webcam images of the construction site.

Where:
MC= temperature and wood species corrected meter reading

(wood moisture content)
Rs = uncompensated moisture content =

e(4.095417−(0.14006×ln(R)))

R=meter reading
x= wood temperature (◦C)
a= 0,838
b= 0,693

Note that thermistor corrections weren’t available to apply to the
shear wall locations until January 6th, 2018.

Other data included in this report are weather (temperature,
relative humidity, and precipitation) during the monitored
period gathered from the Hyslop Weather Station2 close to the
building location (Weather station coordinates: 44◦ 38′ 03′′/123◦

11′ 24′′, Peavy Hall coordinates: 44◦ 56′ 39′′/123◦ 28′ 55′′-
Elevation: 230′).

DESCRIPTION OF DATASET

Hygrothermal monitoring data during construction of
the Forest Science Complex at Oregon State University
are permanently accessible from a publicly accessible

2Hyslop Weather Station Archives. Available online at: https://agsci.oregonstate.

edu/corvallis-farm-unit/weather/weather-data (accessed July 3, 2019).

Open Science Framework repository: https://osf.io/wymgt/
doi: 10.17605/OSF.IO/WYMGT.

The dataset contains data collected in four time frames:
December 1, 2017–November 21, 2018 (dataset name: Zone 1

east shearwall MC lower)
December 1, 2017–May, 17, 2018 (dataset name: Zone 1 east

shearwall MC upper)
January 5, 2018–September 28, 2018 (dataset name: Zone

1 floor)
January 8, 2018–November, 22, 2018 (dataset name: Zone 1

Thermistors shearwall center)
December 1, 2017–November 22, 2018: (dataset

name: OSU Weather Data (December 1 2017–November
22 2018).

This database is organized as a collection of CVS
files. Moisture content and temperature data are named
according to the location of the sensors and with
data grouped according to each local data acquisition
unit (DAQ).

Datasets include: (a) local wood MC data [%]; (b)
temperature data [◦C] at different depths in the panel; (c)
air temperature [◦C]; (d) RH data [%] in the proximity of
the DAQ, (e) weather data, consisting in (e1) latitude and
longitude of the weather station; (e2) air humidity [%]; (e3)
air temperature low [◦F]; (e4) air temperature high [◦F];
(e5) precipitation intensity [in/h]; (e6) max precipitation
intensity [in/h].
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ADDITIONAL REMARKS

The experimental conditions in this study include some
unplanned, uncontrolled factors, linked to the construction
events. The following events are reported in this article:

On March 20th, 2018, the monitored floor detail was enclosed
by a façade stud wall and water proof insulation, while a
large window opening was left open in proximity of this detail
(Figure 2A), resulting with water pooling at the connection
during rain and subsequent limited drying conditions.

The same day a CLT panel at the third floor of Zone 1 failed
as a consequence of manufacture-related defects (delamination).
The construction was interrupted after the accident.

On June 23th, 2018, the entire Zone 1, including the
monitored locations, was wrapped with waterproof sheets
(Figure 2B) which were removed starting on July 23th, 2018.

Starting from September 18th and until November 28th 2018
all the installed sensors were progressively removed to allow
replacement of the defective panels.

It is worth mentioning that:

1) Data of the first 6 months of construction, which are
considered more representative of a typical construction
schedule, are discussed in Schmidt and Riggio (Schmidt and
Riggio, 2019).

2) Removal of the sensors from the monitored locations was not
planned, but was due to the replacement of some CLT panels
(including the monitored ones) affected by manufacture-
originated delamination.

3) There were no sensors installed in the panel that collapsed
because of the above-mentioned delamination.

4) Installation of a total of 285 permanent sensors is in process
in the building at the time of writing, and is not described in
this Data Report. The new installation aims to collect in service
data to analyze thermal insulation properties of CLT wall
assemblies, long-term CLT floor creep, movement of the shear
walls, post-tension loss of shear wall self-centering steel rods,
global displacements due to ambient and seismic vibrations,
and environmental conditions to correlate with the preceding
phenomena (Baas et al., 2019).

POTENTIAL USES

Several tasks could be of interest to researchers using these
data. Planning of sensor locations and definition of error

sources (e.g., due to temporarily sensor shortening) are some

among the tasks that can be of interest to researchers in
regard to these datasets. These datasets can be used to test
and verify signal post-processing techniques. Data presented
in Schmidt (Schmidt and Riggio, 2019) were manually post-
processed, including moving averages (Niklewski et al., 2017)
and omission of readings, such as those outside the reliable
moisture content reading range of the sensors. However,
development of optimized, and automatic signal post-processing
techniques is critical, especially if real-time monitoring moisture
content data are made available to non-expert stakeholders.
In addition, this data can be used to support development
of models (i.e., hygrothermal models, service life prediction
models, etc.) that account for different factors (at the scale of the
building, structural system and materials) affecting variability of
moisture data.
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