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Stiffness and Damping Identification
for Asymmetric Building Frame With
In-plane Flexible Floors

Kenichirou Shintani, Shinta Yoshitomi?, Kohei Fujita’ and Izuru Takewaki ™

" Department of Architecture and Architectural Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan,
2 Department of Architecture and Urban Design, Ritsumeikan University, Kusatsu, Japan

In- most building structures, floors with sufficient in-plane stiffness exist and an
assumption of rigid in-plane stiffness is valid. However, in some building structures, an
assumption of rigid in-plane stiffness does not hold. A method of system identification
(SI) for physical parameters (stiffness, damping) is proposed for three-dimensional (3D)
building structures with in-plane flexible floors. The stiffness and damping parameters of
each vertical structural frame in the 3D building structure are identified from the measured
floor horizontal accelerations together with the stiffness and damping parameters of each
floor. It is shown that a batch processing least-squares estimation method for many
discrete time-domain measured data enables the direct identification of both the stiffness
and damping parameters of each vertical structural frame and the stiffness and damping
parameters of each floor. The proposed method possesses an advantage that all stiffness
and damping parameters of vertical frames and horizontal frames (floors) can be identified
simultaneously without search iteration. The accuracy and reliability of the proposed
method are made clear by numerical simulations for measured data without noise and
measured data with noise. A method of noise elimination is proposed to enhance the
identification accuracy. Finally, experiments using a shaking table are conducted for the
accuracy investigation of the proposed identification method. It is confirmed that the
proposed identification method possesses a reliable ability to identify the stiffness and
damping parameters for 3D building structures with in-plane flexible floors.

Keywords: system identification, torsional response, in-plane flexible floor, batch processing least-squares
method, physical parameter identification

INTRODUCTION

A new method of physical-parameter system identification is proposed in this paper for three-
dimensional (3D) building structures with in-plane flexible floors. The 3D building structure
consists of multiple vertical frames and multiple horizontal frames representing floors. The stiffness
and damping parameters of vertical frames and horizontal frames are identified from the measured
floor horizontal accelerations. The plane frame-wise identification (vertical and horizontal) of
stiffness and damping is the most outstanding point in its novelty.

There exists a very limited number of researches on physical-parameter system identification
of 3D building structures with eccentricity (for example Omrani et al., 2012; Nabeshima and
Takewaki, 2017; Shintani et al., 2017; Fujita and Takewaki, 2018). The existence of many parameters
to be identified in 3D building structures may be one reason for difficulty. Omrani et al. (2012)
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developed a method based on the statistical analysis for known
stiffness eccentricity. Since the eccentricity cannot be defined in
this paper, a completely different formulation will be proposed.

Structural health monitoring (SHM) was started many years
ago in aerospace, mechanical and civil engineering (Doebling
et al,, 1996; Boller et al., 2009; Takewaki et al., 2011). The system
identification (SI) methodologies are at the center of SHM. The
physical-parameter (PP) SI and modal-parameter (MP) SI are
two principal approaches in the field of SI. Much attention has
been paid historically to the MP SI (Hart and Yao, 1977; Agbabian
et al., 1991; Nagarajaiah and Basu, 2009) because it can provide
the overall mechanical properties of a structural system and has
a stable characteristic. The determination of modal damping is
an important issue (Sivandi-Pour et al., 2014, 2015, 2016). On
the contrary, the PP SI has another merit from a different point
of view. The direct identification of physical parameters is quite
effective for the damage detection. In spite of the fact that the
PP SI is preferred in SHM, its advancement is slow because of
the strict condition of multiple measurements or the requirement
of complicated procedures (Hart and Yao, 1977; Udwadia et al.,
1978; Shinozuka and Ghanem, 1995; Takewaki and Nakamura,
2000, 2005; Brownjohn, 2003; Nagarajaiah and Basu, 2009;
Takewaki et al., 2011; Zhang and Johnson, 2013a,b; Johnson and
Wojtkiewicz, 2014; Wojtkiewicz and Johnson, 2014).

In PP SI, Nakamura and Yasui (1999) introduced a direct
method with the least-squares concept. Since their approach
needs too many points of measurement, it can be applied only
for simple 1D shear-type building models. On the other hand,
Takewaki and Nakamura (2000, 2005) developed a unique SI
concept which is originally from the work by Udwadia et al.
(1978) for a shear building model (S model). Although the SI
method by Takewaki and Nakamura (2000, 2005) was innovative,
an additional effort should be provided in applying to actual
data represented by micro-tremors (Ikeda et al,, 2014; Fujita
et al,, 2015; Koyama et al., 2015). This may result from the small
signal/noise (SN) ratio especially in the low frequency range. In
addition, a S model is not necessarily an appropriate model of
high-rise buildings with large height-width (aspect) ratios. To
respond to the former noise problem, the ARX (Auto-Regressive
with eXogenous) model with constraints on the ARX parameters
was introduced by Maeda et al. (2011), Kuwabara et al. (2013),
Minami et al. (2013) and Ikeda et al. (2015). On the other
hand, the latter problem has been tackled by extending the SI
algorithm to the shear-bending model (SB model) (Fujita et al.,
2013; Minami et al., 2013).

To develop a hybrid method of the MP and PP SIs, some
researchers proposed a reliable SI method. The physical
parameters are recovered from the pre-identified modal
parameters (Hjelmstad et al., 1995; Song et al., 2018) in this
hybrid method, in which, the relation between the physical
and modal parameters has to be made clear together with the
need of detailed theoretical investigations on inverse problem
formulation (Hjelmstad, 1996).

The SI method using Kalman filter or extended Kalman filter
was developed many years ago as another effective approach

Abbreviations: ARX, auto-regressive with exogenous; MP, modal-parameter; PP,
physical-parameter; SB model, shear-bending model; S model, shear model; SN,
signal/noise; S, system identification; 3D, three-dimensional.

(Hoshiya and Saito, 1984). While its approach is general and can
consider noise issues, a complicated mathematical treatment has
to be conducted and a simple use seems difficult. In recent years,
a Bayesian updating approach to the SI is developing very fast
(Boller et al., 2009).

Recently a new method of PP SI was developed in the
frequency domain by Nabeshima and Takewaki (2017) for 3D
building structures with stiffness eccentricity and rigid in-plane
stiffness of floors. Shintani et al. (2017) developed another
method of PP SI for 3D building structures with stiffness
eccentricity and rigid in-plane stiffness of floors. Although
the paper by Shintani et al. (2017) for rigid floor models is
a preliminary version of the present paper, the extension is
not simple.

In most building structures, floors with sufficient in-plane
stiffness exist and an assumption of rigid in-plane stiffness is
acceptable. However, in some building structures, e.g., with
stairs opening or without in-plane stiffness component (brace),
an assumption of rigid in-plane stiffness does not hold. A
method of PP SI is proposed for 3D building structures with
in-plane flexible floors. The stiffness and damping parameters
of each vertical structural frame in the 3D building structure
are identified from the measured floor horizontal accelerations
together with the stiffness and damping parameters of each
floor. It is shown that a batch processing least-squares estimation
method for many discrete time-domain measured data enables
the direct identification of both the stiffness and damping
parameters of each vertical structural frame and the stiffness
and damping parameters of each floor. An advantageous
feature of the proposed SI method is that the identification
of all stiffness and damping parameters of each vertical
structural frame and each floor can be performed simultaneously
without search iteration. The accuracy and reliability of the
proposed method are demonstrated by numerical simulations
for measured data without noise and measured data with noise.
A method of noise elimination is proposed to enhance the
identification accuracy. Finally, experiments using a shaking
table are conducted for the accuracy investigation of the
proposed SI method. It is confirmed that the proposed SI
method possesses a reliable ability to identify the stiffness and
damping parameters for 3D building structures with in-plane
flexible floors.

MODELING OF BUILDING WITH IN-PLANE
FLEXIBLE FLOORS

It is assumed that the in-plane stiffness of floors is finite.
The relative stiffness of a floor element which connects two
consecutive vertical frames at the same floor level is expressed
by a shear spring and the relative damping of the floor element
between two consecutive vertical frames is represented by
a dashpot.

We consider an N-story 3D shear building model, as
shown in Figure 1A, with in-plane flexible horizontal floors
(Figures 1B,C). This model is subjected to the horizontal ground
acceleration yg which has an inclination angle ¢ with respect to
the x direction. Each story of this model has n vertical plane
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(A) Overview, (B) Plan, (C) In-plane floor deformation.

FIGURE 1 | 3D shear building model composed of vertical plane frames and connected by in-plane flexible floors subjected to inclined horizontal ground motion.

frames parallel to the x axis and m vertical plane frames parallel to
the y axis. Let xj(j = 1,...,m)and yl(I = 1,...,n) denote the
j-th vertical frame parallel to the y axis and the [-th vertical frame
kzl], k)[,’;] I and c)[f;l], c)[,f] }
denote the horizontal stiffness and damping coefficients of the y!
and xj vertical plane frames in the i-th story. If xj(j = 1,...,m—
1) and yI(I = 1,...,n — 1) are used for span (between two
consecutive vertical frames), these indicate the quantities related
to span. L)[(xj](j =1,...m—1) andLE’l](l = 1,...,n—1) denote
the span length in the x direction and that in the y direction,

parallel to the x axis, respectively. Let

respectively. Let G,[f’y ! and chj’y I denote the in-plane shear
stiffness and damping coefficient of floor per unit length in the
[xj, ¥I] span of the i-th story. mgx]’y !} denotes the floor masses
located at the point of intersection of x and y direction frames.

MODELING OF STRUCTURAL BEHAVIOR

Degrees of Freedom

The total number of degrees of freedom in the present model
is (m + n)N. Let ul[yl](l = 1,...,n) and vl[x]](j = 1,...,m)
denote the horizontal displacements of the i-th story in the I-th
vertical frame parallel to the x axis and in the j-th vertical frame
parallel to the y axis, respectively. When ul”) and v/ are defined

as displacement vectors which contain N elements ul[y T and vl[xj !
(i = 1,...,N), respectively, the total displacement vector y can
be expressed by.
y = {u v} M
u = {ublT . gbIT b7} @)
vV = {V[xl]T e v[xj]T N V[xm]T}T (3)

Equations of Motion
When the mass, damping and stiffness matrices are expressed by
M, C, K and total velocity and acceleration vectors are expressed

by ¥, ¥, (m + n)N equations of motion can be arranged as follows
(see Appendix 1):

M§ + G + Ky = —Mrj, @)
where
r = {cos¢ -+ cos¢p sing - sin¢}T (5)
M, 0
Y
K = Ky + Kr (7)

In Equation (6), M, and M,, are diagonal matrices which consist
of the sum of masses in the same frame in x and y directions,
respectively. In Equation (7), Ky indicates the stiffness matrix of
vertical wall elements. Ky consists of block matrices K[v)‘/,l)]c(l =
1,---,n)and nggy] (j = 1,--- ,m) along diagonal. K%]C and K[v)g)]»
are the N x N tri-diagonal matrices which are expressed as the
sum of the following 2 x 2submatrices in the i-th and (i+1)-th
rows and columns, respectively.

1 1 .
Ky = KJT (= 1,0+, N) (®)
K = KT (= 1,---,N) )

1 —1
o[ ] w

In Equation (7), Kr indicates the stiffness matrix of horizontal
floor elements. Kr is expressed as the sum of the following
4 x 4 submatrices of floor element at j-th x-span and I-th y-
span in the rows and columns corresponding to the degrees of

freedom ut[yl]) ul[y(l+1)]) 1}l[le’ Vl[x(j-&-l)]:
kgj))'l] _ G}[();j,yl]T[ij,yl] an
LLX]]
[xj,y1] Izl
= |7 Lbn (12)
y
Tt
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The damping matrix C can be defined in the same way as the
stiffness matrix K by replacing the character k and K for stiffness
with ¢ and C for damping coefficients in Equations (7)-(9), (11).

FORMULATION OF IDENTIFICATION OF
STIFFNESS AND DAMPING COEFFICIENT
IN VERTICAL FRAME AND HORIZONTAL
FRAME (FLOOR)

A new formulation of system identification of frames with in-
plane flexible floors is presented here.

Assume that y,(t) and {§(t)+ryg(t)} are measured
simultaneously. For example, it may be sufficient to measure the
x and y-direction absolute accelerations at all floors in all vertical
frames in Figure 1A in addition to the x and y-direction absolute
accelerations at the base. The velocities y(f) and displacements
y(t) can then be integrated from (t) numerically.

The unknown parameter vector @ is defined by

T
o — (kg K G o o Gz) (13)

k. and k; represent the vectors of the vertical frame stiffness
which consist of n x N stiffness kzl] in x direction and m x N
stiffness k}[,’;l] in y-direction, respectively. Gy represents a vector
of (n — 1)(m — 1)N in-plane floor stiffness G,[f’yl]. Cx» €y, and G¢
represent the vectors of damping coefficients of the vertical frame
in x-direction and y-direction and in-plane floor.

The third term of the left hand side of the equation of motion,
Equation (4), can be transformed into the sum of products of
known matrices Hy (¢), Hp(t), and unknown parameters ki, ky,
Gy.. Hy(t) and Hg(t) can then be estimated from the measured
displacement y(¢).

— [Hw(®) He(0)] (14)

DrFEF

A similar form can be obtained for the second term of Equation
(4) by replacing the character k with ¢ for damping coeflicient and
replacing H with H for velocity. Finally, the equation of motion,
Equation (4), can be transformed into the following relations
(see Appendix 2).

H(t)® = Z(t), (15)

where
Z(t) = —M{§(t) + rjg(n)} (16)
H(t) = [Hw(t) Hp(t) Hy(t) He(1)] (17)

Equation (15) is the equation that should be satisfied at every
time. However, the number of unknown parameters is larger

TABLE 1 | Model parameters.

Number of stories Floor stiffness (kN/(rad*m))

Gh = 230

Xy1] _
Gps”! =230

5 story G = 250

GhYY = 200

Xy1] _
Gyy” ' =210

Frame stiffness (kN/m)

x2]

K11 — 3500 k2 — 2000 kY = 2000 K2 = 3000

K1 — 3000 K2 — 2500 K5 = 3000 k2! = 2000

K — 2500 k2l — 2000 ki) = 2500 K2 = 3000

K11 = 2300 K2 — 2500 Kl = 2000 K2 = 2500
bl _ b2l _ il _ bel _

K1 = 2500 K2 = 2000 K = 2500 KiZ = 2000

Plan size (m) Nodal mass (kg) )

Ky(t) = Kwy(t) + Kry(t) = Hw (2) (lﬁ’;) + HE (1) Gy Lx =107 Ly =150 16.5 x 103
A B 1}
14F 15
15 121
101
10]. 8f
oF
Sils Ar
o
0
of 107
2 0 2 4 6 8§ 10 12
FIGURE 2 | Five-story model of single span. (A) Overview, (B) Plan.
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than the number of equations in Equation (15). For this reason,
the least-squares estimation method incorporating the batch
processing (Takewaki and Nakamura, 2010) is used here. The
errors in Equation (15) can be expressed by

e(t) = H(HO — Z(1) (18)

The sum of squared errors e(t) from #; to t; can be expressed by

)
E =) ¢'(t) e
t=t
)
3 [@THT(t)H(t)G —20THT()Z(t) + ZT(t)Z(t)](19)

t=t

The differential of E in Equation (19) for ® provides

9E Z 2
6 =2 LXI;H (t)H(t)i| 3) —2211 OZ®) = 0 (20)

The method of least-squares estimation with the batch processing
(Takewaki and Nakamura, 2010) provides the parameters ® for
which the error E is minimized.

t -1 )
e = |:ZHT(t)H(t):| |:ZHT(t)Z(t)i| (21)

t=t; t=t;

Equation (21) indicates that all stiffness and damping parameters
can be identified without iteration.

NUMERICAL EXAMPLE
Example of Model With Only Outer Frame

In order to verify the validity and accuracy of the proposed
method, a 5-story model as shown in Figure 2 is used. The model
parameters are shown in Table 1. In this example, proportional
damping is assumed and the damping matrix C is estimated as
C = (Zh(l)/a)(l))K where A is the lowest-mode damping ratio
and " is the undamped fundamental natural circular frequency
of the model. h(Vis assumed to be 0.02. As an input ground
motion, the first ten second of Hachinohe NS, 1968 is used and
input in the direction angle ¢ = /4. The time-history response
of this model is simulated numerically using the Newmark-beta
method. The time increment for numerical integration is 0.02 s.

Figure 3A shows the correspondence between the given
stiffness parameters, (i) vertical frame, (ii) horizontal frame (floor
in-plane stiffness), and the identified values in the 5-story model.
On the other hand, Figure 3B presents the correspondence
between the given damping coefficient parameters, (i) vertical
frame, (ii) horizontal frame (floor in-plane damping), and
the identified values in the 5-story model. A fairly good
correspondence can be observed.

Example of Model With Inner and Outer

Frames

Examples Without Noise

Consider another 2-story frame model with three spans in
both horizontal directions, as shown in Figure 4. The model
parameters are shown in Table 2. Three levels of in-plane stiffness
parameters of floors are considered [Tables 2(b-d)]. Table 2(c) is
the basic case, Table 2(b) is the case of rather flexible floors and
Table 2(d) is the case of rather stiff floors. The results of the basic
case will be presented in this paper. It should be noted that the
difference of the stiffness of floors does not influence the accuracy
so much in the identification of vertical frames and horizontal
frames (floors).

Figure 5A show the correspondence between the given
stiffness parameters, (i) vertical frame, (ii) horizontal frame
(floor in-plane stiffness), and the identified values in the 2-story
model. On the other hand, Figure 5B present the correspondence
between the given damping coefficient parameters, (i) vertical
frame, (ii) horizontal frame (floor in-plane damping), and the
identified values in the 2-story model.

Examples With Noise

In order to investigate the influence of noise on the accuracy
of identification, the input and response values are colored by
noise. A band-limited white noise produced in the frequency
range 0.075-150 (rad/s) is used as a noise. To guarantee the
probabilistic independence, different independent noises are
added to the original input and response data (acceleration,
velocity and displacement). RMS (root-mean-squares) values are
employed to evaluate and quantify the noise level and the first
10 s data from the beginning are used for identification.

Figure 6 shows the influence of story stiffness and damping
coefficient on the noise level in the 2-story model. It can be
observed from Figure 6 that, while the accuracy of stiffness
decreases gradually as the noise level increases, the order of
accuracy degradation in damping is larger. This fact corresponds
well to the well-recognized knowledge in SI (Takewaki and
Nakamura, 2005; Boller et al., 2009; Takewaki et al., 2011).
Furthermore, while most stiffness become smaller as the noise
level increases, damping coefficients become smaller or larger.

In addition, it can be confirmed that the influence of noise
in the horizontal frames is greater in both the stiffness and
the damping coeflicient in comparison with the vertical frames.
This is because the stiffness and damping coeflicients, which are
unknowns of the vertical frame in the yl frame of the i story,
are influenced by the two equations of motion in the yl frame
of the i and (i+1) stories. On the other hand, the shear stiffness
and damping coefficient, which are unknowns of the floor in the
yl frame of the i story, are influenced by the four equations of
motion in the yl, y(I41), xj, and x(j+1) frame of the i story. The
accumulation of identification errors in floors in Equation (15)
increases compared to the vertical frames and the identification
accuracy in floor stiffness and damping decreases.

Denoising Procedure
To eliminate the noise bias, a method is introduced.
Measurement data at floors and base are divided into g
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FIGURE 3 | Stiffness and damping coefficient parameters of 5-story model. (A) Stiffness parameter, (B) Damping parameter.
where
6.
5 B=[b1b2bsz], W:[lezwlwq](z:)))

FIGURE 4 | Two-story frame model of three spans in both directions.

intervals. Each interval of measurement data consists of p data.
Construct the following p x g matrix A.

b = [ bix biz -+ bip]T» wi = [ wi wip Wiq]T 24)
D= [%l gi|, D, = diag (01 03 --- og) (R:order of
singular value) (25)

In Equation (25), the singular-value decomposition is conducted.
Let s(r) denote the Frobenius norm ratio. Determine the effective
order r of the singular value satisfying the limit condition.

s(r)y= \/Z;laiz/\/Zf:loiz > 0.98

Using the singular values and singular-value vectors, set the
following matrix as a new response data after noise processing.

(26)

R r
T T T
A=BDW" = Zaibiwi > (22) Adenoise = Zaibiwi (27)
i=1 i=1
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TABLE 2 | Parameters of 2-story model of three spans in both directions.

(a) Vertical frame stiffness yi y2 y3 y4 T x1 x2 x3 x4
kx (KN/m) 1F 3,500 2,000 2,000 3,000 2F 2,500 2,000 2,500 3,000
Ky (KN/m) 3,000 2,500 3,000 2,000 2,300 2,500 2,000 2,500
Floor stiffness Floor type x1 x2 x3 x1 X2 x3
(b) Gy kN/(rad*m) Flexible type 1F y1 100 110 120 oF y1 100 110 120
y2 210 220 230 y2 210 220 230
y3 310 320 330 y3 310 320 330
(c) Gk kN/(rad*m) Basic type 1F y1 2,000 2,500 2,000 2F y1 2,000 2,500 2,000
y2 2,500 2,500 2,500 y2 2,500 2,500 2,500
y3 3,000 2,500 3,000 y3 3,000 2,500 3,000
(d)| Gy kN/rad*m) Stiff type 1F v 6,000 6,500 6,000 oF v 6,000 6,500 6,000
y2 5,500 5,000 5,500 y2 5,500 5,000 5,500
y3 4,000 4,500 4,000 y3 4,000 4,500 4,000
\ Number of stories Plan size (m) Nodal mass (kg)
BT x2] [x3]
Ly ' =50L;7=30L;" =40
(e) 2 story b b2 bal 5.0 x 103
V=380 L1y =40 )7 =20
A
4000 1 350 ™I & T
1 ) © ) @
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Z 2500 @® ® @& ®— =z ® Ol ® ®
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The effectiveness
investigated next.

As an input wave motion, El Centro NS, 1940 (first 10s)
is used here. The parameters p and g defined above are set

of this noise

processing  will

be

as p = 200, g = 5. Figure 7 shows the identification accuracy
for increasing the noise level before and after denoising. The
accuracy on only stiffness is investigated. Figures 7A,B present
the identification accuracies for the increasing noise level before
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and after denoising for x-direction vertical frame stiffness, y-
direction vertical frame stiffness, floor in-plane stiffness (first
story) and floor in-plane stiffness (second story), respectively.
It can be observed that the identification accuracy is enhanced
by the proposed noise elimination procedure. However, the
enhancement degree is low in the horizontal frame (floor in-
plane stiffness). This may result from the small differences
of measurement data between the neighboring vertical frames
(these indicate the shear deformation of floors) and the difference
in error accumulation.

EXPERIMENTAL VERIFICATION

Tests Description

In order to demonstrate the validity of the proposed method
through physical experiment, a 2-story model, as shown in
Figure 8A, has been used. The floors are composed of steel
plates and steel blocks. The columns are constructed by steel
bars with different size to introduce stiffness eccentricities.
On the other hand, the center of mass is at the center of
floors. Four accelerometers are set at every floor and two
accelerometers are set at the base. The model parameters
are shown in Table3. The damping ratio in the lowest
mode is assumed to be 0.002 judging from the preliminary
experiment. As an input ground motion, an amplitude adjusted
El Centro NS, 1940 (Figure 8B) has been used and input in
the direction angle ¢ = n/6. Due to the accuracy of re-
production of input wave on the shaking table, a slightly
modified ground motion from the original El Centro NS, 1940

was input. As shown in Figure 8A, accelerometers are put in
four places on each floor. The measurement data used for
identification are acquired during a forced-vibration stage or
a free-vibration stage. The time duration is 10s and the time
increment is 0.01 s.

Reference Static Test

The reference stiffness is estimated from the static loading
(one-way monotonic) test as shown in Figures 9A,B. Due to
the limitation of the measurement, the load test is conducted
by restraining the horizontal frame with an acrylic plate for
lateral stiffness. Figures 9C-E show the static loading (one-way
monotonic) test results for the Y1-side frame stiffness, Y2-side
frame stiffness and the horizontal frame (floor).

As another method, the reference stiffness of the vertical frame
is estimated by using the natural frequency ratio between the
transfer function derived from the experiment and that from the
assumed model.

Shaking Table Test and Identification of
Vertical Frame Stiffness and Floor In-plane
Stiffness

The left figure in Figure 10A shows the comparison of stiffness
of vertical frames among the reference-dynamic, the reference-
static (Figure 9), the identified-flexible floor (without denoising)
and the identified-flexible floor (denoise: after denoising) (i):
forced-vibration data, (ii): free-vibration data. The reference-
dynamic was derived from the natural frequency ratio between

Frontiers in Built Environment | www.frontiersin.org 8

September 2019 | Volume 5 | Article 103


https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Shintani et al.

Building Identification With Flexible Floor

A
400
4000 E——re—
350 4
3500 — -Gl (x1y2
300 n\ N . [ES Gk2(x2y2)
~3000 = ‘-\‘\ \ Gk2(x3y2)
§250 kY N\ —
poa
Z 2500 o é LY \\ e
@ 2000 @200 >
141 o
£ 1500 £ 150
@ 1000 100
x| (1F)  wonm X3(1F) e y1(1F) = 2%+ y3(1F)
500 == x1(2F) X3(2F) == y1(2F) y3(2F)
== X2(1F) -=8= x4(1F) = y2(1F) ~-8= y4(1F) 50
=aammQ(F) =+ X4(2F) =mtmmD(2F) e y4(2F)
0 0 0 0
0 1 2 4 0 1 2 4

Noise level (%) Noise level (%)

7 3 4 2 3 4
Noise level (%) Noise level (%)

(i) vertical frame stiffness  (ii) vertical frame stiffness (iii) floor stiffness (iv) floor stiffness
(x-direction) (y-direction) (first-story) (second-story)
B
4000 4000 400 i G1 (x1y 1)
== Gk1(x2y1)
3500 3500 e
~3000 ~3000 = a1
=y £ | | | T E 8= GK1(x1y3)
Z 2500 - Z 2500 =1 2250 --m—Gk1(x2y3)
___________ e e e e e ] & —— GKI (k33
@ 2000 ARSSASTIT g 2000 9200 -
£ 1500 £ 1500 Zis0 7
bS] 1 (1F) =% 4= «x3(1F) = e y1(1F) ==+ =y3(1F) =
% 1000 i x12F) x| @ 1000 = y1(2F) ven| @ b
o= x2(1F) === x4(1F) b= y2(1F) ==®= y4(1F) .
500 meimux2(2F) ool x4(2F) 500 medkmny2(2F) wele y4(2F) e,
i i i i )
o5 1 3 4 % 1 3 4 DS 2 3 ; % 2 3 > 4
Noise level (%) Noise level (%) Noise level (%) Noise level (%)
(i) vertical frame stiffness  (ii) vertical frame stiffness (iii) floor stiffness (iv) floor stiffness
(x-direction) (y-direction) (first-story) (second-story)
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the transfer function derived from the experiment and that from
the assumed model. The parameters p and g defined above for
denoising are set as p = 200, ¢ = 5. The identified values are
the means of 500 identifications. These 500 identifications have
been obtained by shifting the data windows of 5s sequentially
by 0.01s. The right one in Figure 10A indicates the statistical
plots (median, maximum, minimum, 25% exceedance, and
75% exceedance, outlier) of these 500 identified values without
denoising. This figure was drawn via Matlab (boxplot) and the
maximum and minimum values are evaluated by disregarding
the outliers (red marks). On the other hand, Figure 10B
shows the comparison of the stiffness of horizontal frames
(floors) without denoising (i): forced-vibration data, (ii): free-
vibration data.

It can be observed that the proposed identification method
has a reliable accuracy after the application of noise elimination
procedure. It can also be found that the free-vibration data
lead to more reliable and accurate results compared to the
forced-vibration results and the identification of vertical frames
is more accurate than floors (horizontal frames) as seen in the
numerical examples.

CONCLUSIONS

A method of PP SI (physical-parameter system identification) has
been proposed for 3D building structures with in-plane flexible
floors. In this method, the stiffness and damping parameters
of each vertical structural frame and the stiffness and damping
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TABLE 3 | Parameters of two-story model used in experiment.

2F_model Height Width Length Diameter (Y1-side) Diameter (Y2-side) Mass
1F 200mm 400mm 450mm ¢ 3mm ¢ 4mm 5.2 kg
2F 200mm 400mm 450mm ¢ 3mm ¢ 4mm 5.2 kg
i o Center of Mass
r K- dlSp]a-oeIﬁ:rel: 2F e Center of Stiffness
Load cell | ] ﬂ |; ﬁ& Y2-side
] frame
Q ;
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FIGURE 9 | Static loading test and its result. (A) Stiffness for vertical frame, (B) Stiffness for horizontal frame, (C) Y1-side frame stiffness, (D) Y2-side frame stiffness,

Displacement (mm)

coeflicients of each floor are identified from the measured
floor horizontal accelerations. The following conclusions have
been derived.

(I) A method of batch processing least-squares estimation
using many discrete measured data has been proposed for

used as a new model for PP SI. The proposed method
possesses the advantage that all stiffness and damping
parameters of each vertical structural frame and those
of each floor can be performed simultaneously without
search iteration.

the identification of the stiffness and damping parameters ~ (2) Numerical simulations demonstrated that the proposed
of each vertical structural frame and those of each method is accurate and reliable for noise-free models. On the
floor. A model with in-plane flexible floors has been other hand, the identification accuracy decreases gradually
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FIGURE 10 | Identification of stiffness. (A) Stiffness of vertical frame, (B) Floor in-plane stiffness.

3)

as the noise level increases. As the noise level increases,
the accuracy of identification in the stiffness and damping
parameters of horizontal frames (floor) is relatively low.
This is because the accumulation of identification errors in
floors increases compared to the vertical frames. However, a
certain accuracy level can be maintained by limiting the level
of noise.

To eliminate the noise bias, a method has been
introduced. It has been observed that the identification

(4)

accuracy can be enhanced by the proposed noise
elimination  procedure. the
degree is low horizontal
in-plane stiffness).

Physical experiments have been conducted to investigate
the reliability and accuracy of the proposed PP SI It has
been observed that the proposed identification method has
a reliable accuracy for stiffness after the application of
the noise elimination procedure. It has also been found

enhancement
frame (floor

However,
the

in
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that the free-vibration data lead to more reliable and
accurate results compared to the forced-vibration results.
The identification of vertical frames is more accurate
than that of floors (horizontal frames) as seen in the
numerical examples.

When the inner vertical frames exist in addition to the outer
vertical frames, the corresponding accelerometers on the inner
vertical frames have to be placed.
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SYMBOLS

n, m: number of vertical plane frames parallel to x and y axis
N: number of stories of building structure

i, j, I: index of story number, x frame in y-direction and y frame in x-direction

())(): first and second derivatives
(.)i: subscript referring to story

(.)x> (.)y: subscript referring to direction

(k> (.)¢: subscript referring to parameter type (stiffness or damping coefficient)
(w> (.)F: subscript to referring to element type (vertical or horizontal frame)

()l (D superscript to express frame

L: span length

©: unknown parameter vector

m, M: scalar and matrix of floor mass

k, K, K: scalar, vector and matrix of vertical frame stiffness

¢, ¢, C: scalar, vector and matrix of vertical frame damping coefficient
Gy, Gi: scalar and vector of in-plane floor stiftness

Gg, Ge: scalar and vector of in-plane floor damping coefficient

Jg: horizontal ground acceleration

Y, ¥, ¥: vector of displacement, velocity and acceleration

u, U: horizontal displacement in x-direction

Q: shear force in vertical and horizontal frame

r: effectiveness vector of input ground motion

¢: inclination angle of input ground motion with respect to x direction.
A, D, D,, B, b, b, W, w, w: scalar, vector and matrix used in denoising
R: order of singular value

s(r): Frobenius norm ratio

APPENDIX 1 Qi —

Dynamic Equilibrium for Equation of

Motion )
The restoring shear forces Q[y Q[X] ,

Wi Quyi and damping shear forces

Q%{,llxi, Q[;gc]yi in the yl and xj vertical plane frames in the i-th story

can be expressed by

()Y superscript to express point or span
T: transformation matrix
H: known matrix

v, V: horizontal displacement in y-direction
y: in-plane shear strain of floor

r: effective order

.’ I . ») i ») 1
G][(’;JJ’]LJ[CXJ] (y[m] i yy[ixfyl)

(]
_ G[xj g | Ly (u[y(l+l)] _ ul[yl]) " (Vl[x(jJrl)] _ V[xj])
L[yl] !

(A7)

. . [xj.yl] [xJ LW (Xl [xj.y1]
%) [yl] b _ [yl] Lol gl (ol _ L] Qpei = Gii7 Ly (y + )
Qi = ki ( ) Quiyi = kyi (Vi Vie 1) Fyi 7 o
b2
(A1, A2) il ) (D] DI Ly (oGl )
= Gki (ui —u; ) + == L[x]] (V -V )
(A8)
52 LB (o0 _ [yl] byl Iyl (LIl L[] . .
Qveri = i (”i ) Quei = i ("i "i*1> Similarly, the in-plane damping shear force Ql[:%l], Q%ly-”—

(A3,A4)  velocity relations can be expressed by

Let y[XJ 5

x and y direction relative deformation, respectively, as shown in
Figure 1C.

ipn 1 DO+D] D) beil) 1 xG+D] [
yxz L[yl] (1/[ i )’yyz L[XJ] (vi _vi )

A5, A6) »
( Ql[_f% ]

The in-plane shear forces QEZ;?;”’ ngy): 1 due to the stiffness can

be expressed by

> y[x] M denote the shear strain of floor related to the QL
Fexi

iyl i (14+1) I ji+1) j
— GE{_‘]'}’] X (u[}’ +1)] _ u[)’]) + (V[X(H— ] _ V[XJ])
L[yl] i i i i
y

(A9)

ot [ (o) _pny L B genn

Xj,y . [y . [y y - [x . [x]

= G {(”f - i)+ g (= )}
X

(A10)
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FIGURE A1 | Schematic diagram of dynamic equilibrium at the intersection of
vertical frame and horizontal frame (floor).

Figure A1 shows the schematic diagram of dynamic equilibrium
at the intersection of the vertical frame and the horizontal frame.
The equation of motions in the x direction for the i-th floor in the
yl vertical frame and in the y direction for the i-th floor in the xj
vertical frame can be expressed by

m—1
[yl] [yl] [xj,y(I-1)] [yl [xj,y(I=1)] [yl
my; Uj + Z {(QFkxi QFkx1 > + <Qchi - Qchz' )}
j=1
il i il iz
+ (Qkai B Qka(i+1)) + (Qchz Qch(z+1))
= [y”yg cos ¢ (A11)
[][] “ [x(j—1),y1] 1] [x(i—1),yl] [xjyi]
xj] .. [x] x(j—1),yi [xj,y x(j—1),y xj,y!
myz i + Z {(QFkyi QFkyz > + <QFcyi - QFcyi )}
=1
[xj [xj [xj [xf]
+ <Qka1 kay(z+1)) (QWCyl Qch(i+1)>
= []]yg sin ¢, (A12)
where m[y | and m[xj] are defined as the sum of masses of the

corresponding frames in the i-th floor.

Zm Lol ]
Xy X
mi ,myi

j=1

(vl
Myi

n
= > m (A13,A19)
I=1

APPENDIX 2

Transformation Matrix for Physical

Parameter System Identification

Hy(¢) defined in Equations (14) and (17) is a known {(n +
m)N} x {(n + m)N} coeflicient matrix related to vertical frame
stiffness. Hyy (£) consists of N x N matrices H[)/le]c(t) (I=1,...,n
and Hy) (1) i = 1,...,m) along diagonal. (1) and h["f] ()
are sub vectors in the (i-1, i)-th rows and the i-th column of

H{y5(1) and Hyy (1), Wi}y, (1) and hig) (1) are related to k)", k1"
and can be expressed by
(1) )
b (D) 1] 1(8)
thz(t) - T( Eyl]( )> hWyz( ) = < [x1] (t)
(A15, A16)

Hpr(t) defined in Equations (14) and (17) is a known {(n+m)N} x
{(n — 1)(m — 1)N} coeflicient matrix related to the in-plane floor

stiffness. Hp(t) consists of sub vectors h ] k4 ](t) existing at the
four rows N(I — 1) + i, NI+ i, N(m + j — 1) +i,N(m+j)+iin

{(n—1)(m—1)(j— 1)+ (m—1)(—1) + jith column. hgj’yl](t)
is related to G,[;] M and can be expressed by

[)’l](t)
1
_poon | 62
— *F [x7]
Vi (1)
V[X(H_l)](t)

i

he? ) (A17)
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