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Parameter Estimation of
Autoregressive-Exogenous and
Autoregressive Models Subject to
Missing Data Using Expectation
Maximization
Matthew Horner, Shamim N. Pakzad* and Nur Sila Gulgec

Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, PA, United States

Missing observations may present several problems for statistical analyses on datasets

if they are not accounted for. This paper concerns a model-based missing data analysis

procedure to estimate the parameters of regression models fit to datasets with missing

observations. Both autoregressive-exogenous (ARX) and autoregressive (AR) models are

considered. These models are both used to simulate datasets, and are fit to existing

structural vibration data, after which observations are removed. A missing data analysis

is performed using maximum-likelihood estimation, the expectation maximization (EM)

algorithm, and the Kalman filter to fill in missing observations and regression parameters,

and compare them to estimates for the complete datasets. Regression parameters

from these fits to structural vibration data can thereby be used as damage-sensitive

features. Favorable conditions for accurate parameter estimation are found to include

lower percentages of missing data, parameters of similar magnitude with one another,

and selected model orders similar to those true to the dataset. Favorable conditions for

dataset reconstruction are found to include random and periodic missing data patterns,

lower percentages of missing data, and proper model order selection. The algorithm is

particularly robust to varied noise levels.

Keywords: regression analysis, vibration, damage assessment, probability, estimation, structural dynamics, data

analysis

INTRODUCTION

A fundamental task in a variety of fields is extracting useful statistical information from time series
data. Working with complete datasets, there are different tools toward this end. However, in certain
applications, the datasets are faced with the possibility of missing measurements. For example,
these may result from network communication disruptions, malfunctioning sensing equipment,
improper sampling protocol, or observation patterns inherent to the data collection schemes (Little
and Rubin, 2002; Matarazzo and Pakzad, 2015).

Missing datamay present several problems for statistical analyses conducted and decisionsmade
as a result of those analyses. If missing value indicators are not present in a data analysis package,
inferences about the system being sampled can be biased. Similar biased inferences may result
if missing observations are ignored, particularly if an observation’s missingness is a function of
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its value, for example when observations are uncharacteristically
orders-of-magnitude atypical. Additionally, simply from a cost
perspective, it is not desirable to spend time and resources
collecting data that eventually goes unused.

It follows then that researchers should seek out data
analysis methods that maximize the utility of their entire
dataset, incorporating the fact that it may contain missing
observations. In Little and Rubin (2002), missing data methods
are grouped into four non-mutually exclusive categories.
Procedures based on completely recorded units encompass
strategies like those described above, which essentially ignore
incomplete observations, and may result in serious biases,
particularly with large quantities of missing data. Weighting
procedures modify response design weights in an attempt to
account for missing data as if it were part of the sample design.
Imputation-based procedures fill in missing values, and then
analyze the complete estimated sample with standard methods.
Finally, model-based procedures define a model for the observed
data on which to base statistical inferences. The work presented
in this paper represents a particular model-based procedure
where regression models are fit to observed datasets.

Regressions represent a broad class of models that may be fit
to time series data, and in our case lead to statistical inferences
about that data. Model-based missing data procedures are used
in conjunction with these fits to estimate their parameters.
These parameters may then further be used to predict future
system responses, or as indicators of changes to the system over
time. In either case, accurate parameter estimation is paramount
for correct system behavior prediction and assurance that any
changes in regression parameters are due to system changes, as
opposed to biased estimation.

This paper concerns parameter estimation of two particular
types of regression models. The autoregressive-exogenous, or
ARX(n, m) model assumes that current system output is a
function of the previous n system outputs and previous m
system inputs. The autoregressive, or AR(n) model assumes
that current system output is only a function of the n
previous system outputs. Both models considered in this study
are used to generate simulated datasets; such datasets with
missing samples are then used in this study. The algorithm
presented in Section Parameter Estimation Algorithm is used
for regression parameter estimation and dataset reconstruction,
and the estimated parameters and measurements are compared
with references. In all cases, we do not explore loss of the entire
dataset, as the algorithm requires at least a portion to be run.
This algorithm joins a relatively minor list of those dedicated to
regression models, and more specifically ARX models, subject to
missing observations. Important modifications to the state vector
considered in the presented state-space model are presented.

In this paper, a specific real-world example relating to
structural health monitoring (SHM) is presented, an application
which has not been previously explored with the modified
algorithm outside of preliminary work by the authors in Horner
and Pakzad (2016a,b).

Structural vibration data has popularly been used in the field
for system identification (Juang and Pappa, 1985; James III et al.,
1993; Andersen, 1997; Huang, 2001; Pakzad et al., 2011; Dorvash
and Pakzad, 2012; Chang and Pakzad, 2013, 2014; Dorvash et al.,

2013; Cara et al., 2014;Matarazzo and Pakzad, 2016c; Nagarajaiah
and Chen, 2016), finite element model updating (Shahidi
and Pakzad, 2014a,b; Yousefianmoghadam et al., 2016; Nozari
et al., 2017; Song et al., 2017), and damage-sensitive feature
extraction (Sohn et al., 2001; Gul and Catbas, 2009; Kullaa, 2009;
Dorvash et al., 2015; Shahidi et al., 2015), with the ultimate
goal of inferring information about the current condition of
the monitored structure. Regarding regression models, He and
De Roeck (1997) shows their utility for describing structural
vibration responses, and Shahidi et al. (2015) and Yao and Pakzad
(2012) provide structural damage-sensitive features created using
the parameters of regression models.

In this paper, acceleration time series data is collected from
a two-bay structural steel frame. Parameters are estimated for
ARX models using only portions of these datasets. This work
extends and generalizes that introduced in Horner and Pakzad
(2016b), which included a specific missing data pattern and
alternative parameter estimation algorithm, and Horner and
Pakzad (2016a), which used the same algorithm, but was specific
to randomly missing data.

This paper is organized as follows. Section Model and
Method Review provides a literature review on the relevant
regression models and estimation of their parameters in the
presence of missing data, as well as general likelihood model-
based missing data procedures. Section Parameter Estimation
Algorithm presents the proposed algorithm and highlights its
differences from previous work. Section Experimental setup
and simulation outlines the data collection and simulation
schemes, with Section Results and Discussion presenting the
validation results of regressionmodel estimation with incomplete
experimental datasets. Finally, Section Conclusions outlines the
current conclusions of this work and suggestions on future
research directions.

MODEL AND METHOD REVIEW

Regression Parameter Estimation
The ARX(n,m) model is defined:

y (k)= a1y (k−1 ) + a2y (k−2) + · · · + any (k − n) (1)

+ b1u (k−1) + b2u (k−2) + · · · + bmu (k −m) + v(k)

where y is the model output; u is the model input; ai
is the ith autoregressive (AR) parameter; bi is the ith
exogenous (X) parameter; and v is the noise. In solving
the problem of parameter identification, a model is also
assumed for the ARX input u. In this paper, an AR(p) model
is used:

u (k) = c1u (k− 1)+ c2u (k− 2) + · · · + cpu
(

k− p
)

+ w(k)

(2)

where ci is the ith assumed input AR parameter and w the noise.

In this paper, both noise terms are assumed as Gaussian white

noise, with E[v2(k)] = λ1 and E[w2(k)] = λ2, uncorrelated with

one another.

Existing literature concerning parameter identification of ARX

models includes Isaksson (1993), which presents an algorithm
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similar to that in this paper, using both the expectationmaximization

(EM) algorithm and Kalman filter for parameter identification

with simulated datasets. Wallin and Isaksson (2000) present an

iterative algorithm using least squares and a bias correction for

parameter identification that does not require an assumed input

model. Wallin and Isaksson (2002) investigate periodic missing

data patterns and multiple optima that may result when input

data is missing. Wallin and Hansson (2014) proposes an algorithm

separate from EM for a wide class of models, including ARX.

Ding et al. (2011) use gradient-based parameter identification

methods with structural vibration data. Finally, Naranjo (2007)

discusses general state space models with exogenous variables and

missing data.

The algorithm proposed in this paper can also identify the

parameters of AR models alone, of the form in Equation (2).

The literature is more extensive on parameter estimation of these

models. Papers with a similar approach that utilize maximum

likelihood (ML) and EM-based approaches include McGiffin

and Murthy (1980, 1981), which provide simulation results for

a variety of parameter estimation methods. Kolenikov (2003)

and Little and Rubin (2002) investigate parameter estimation

for AR(1) models. Sargan and Drettakis (1974) present a

ML approach that treats missing observations as additional

parameters with respect to which the likelihood is maximized.

Broersen and Box (2006) perform ML parameter estimation

on AR, MA, and ARMA models. Zgheib et al. (2006) present a

pseudo-linear recursive least squares algorithm in conjunction

with the Kalman filter for reconstruction and AR parameter

identification. Finally, Shumway and Stoffer (2000) present an

overview of state space models and modifications with missing

data. There are several important distinctions between the proposed

algorithm and those presented in previous works; these will be

presented as they arise in Section Parameter Estimation Algorithm.

Additionally, this paper includes both real and simulated datasets

for ARX models.

In each case presented in this paper’s results, the model

order must be selected prior to parameter estimation and dataset

reconstruction. While the paper does explore the effects of

selecting a different model order than that used to generate

the dataset (see Section Improper Model Order Selection—

Simulated), evaluation of strategies for selecting the correct or

most-likely model order are beyond the scope of this work.

To this end, there are several studies, including Grossmann

et al. (2009) and Matarazzo and Pakzad (2016b), which discuss

that the model order decreases significantly with an increase in

missing data. Additionally, Sadeghi Eshkevari and Pakzad (2019)

emphasize that randomness in missing data results in lower model

order selection.

Maximum Likelihood, Expectation
Maximization, and Kalman Filter
A review of maximum likelihood estimation (MLE) and the

expectation maximization (EM) algorithm is provided in Little

and Rubin (2002). The idea behind the former is to find the

values of some statistical parameters that maximize a likelihood

function associated with the sampled data. This likelihood function

is proportional to the probability density function of the data

(often the logarithm of the probability density function, or “log-

likelihood”). EM is an iterative strategy for MLE in incomplete

data problems. It formalizes the procedure to handle missingness

of estimating data values, estimating parameters, re-estimating

data values assuming the parameters are correct, and iterating

until convergence.

The idea of MLE is used extensively in the literature. Specifically

for regression models, MLE without EM is discussed in Wallin and

Hansson (2014) for several regression model classes, McGiffin and

Murthy (1980, 1981) and Sargan andDrettakis (1974) for ARmodels,

Dunsmuir and Robinson (1981) and Jones (1980) for autoregressive-

moving-average (ARMA) models, and ARX models in Wallin and

Isaksson (2002).

The EM algorithm was first formally defined in Dempster et al.

(1977), which outlines several important characteristics, namely,

that it is applicable to a wide array of topics, that successive

iterations always increase the likelihood, and that convergence

implies a stationary point of the likelihood. Shumway and

Stoffer (1982) and Digalakis et al. (1993) describe the algorithm’s

utility with stochastic state-space models in conjunction with

the Kalman filter. Mader et al. (2014) introduce a numerically

efficient implementation of EM. The algorithm similar to that

of this paper presented in Isaksson (1993) utilizes EM for

ARX parameter identification. In the context of structural

vibrations with missing data, EM is used in mobile sensing for

system identification in Matarazzo and Pakzad (2014, 2015,

2016a,b).

Recall that the idea behind EM involves estimating missing

values, or more generally, sufficient statistics of the missing

observations so as to determine the model parameters (i.e., the

“E” step). With the exception of Dempster et al. (1977), the

EM papers above all utilize the Kalman filter (Kalman, 1960)

to this end, as do Shi and Fang (2010) for randomly missing

data. This recursive algorithm produces state variable estimates

by prediction at each time step, then updating the estimates as a

new measurement is taken. The estimates are then more “precise”

than the measurements, which are naturally corrupted with noise.

ARMA model parameters are identified with the Kalman filter

and EM by Harvey and Phillips (1979), Jones (1980), Harvey

and Pierse (1984). AR models are considered using a Kalman

filter formulation in McGiffin and Murthy (1981), Zgheib et al.

(2006), and Wallin and Isaksson (2002) identify multiple optima

in ARX models with Kalman parameter identification. In Section

Parameter Estimation Algorithm, the algorithm introduced in

this paper is presented, incorporating the Kalman filter in the

expectation step of the EM algorithm for MLE of ARX and

AR parameters.

PARAMETER ESTIMATION ALGORITHM

Underlying State-Space Model
The algorithm proposed in this paper can be used for parameter

estimation of either ARX or AR models. We introduce the

algorithm here for general ARX(n, m) models and provide

guidance for its adaption to AR(n) models. Two important

differences from the formulation in Isaksson (1993) are presented

here. In Section Experimental Setup and Simulation, the real

data considered for testing the proposed algorithm constitutes

structural vibrations. In this context, y and u in Equations 1,

2 represent structural responses at two distinct locations. Note

here that u does not constitute an “input” to the system;
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nevertheless, we will use the term “input” when referring to

the u data in this paper. Using alternative terminology, such an

ARX model represents a transmissibility function from different

system responses.

For the remainder of this paper, m = n is assumed

for the ARX model orders (this is not required, but it

eases notation clarity). Define z(k), Ai, and e(k) for ARX

models, as:

z (k)=
[

y(k)

u(k)

]

Ai =
[

ai bi
0 ci

]

e (k)=
[

v(k)

w(k)

]

E
[

e(k)eT(k)
]

= 3 =
[

λ1 0

0 λ2

]

assuming the two noise variance terms are uncorrelated. For

AR models:

z (k) = y (k) Ai = ai E
[

e (k) eT(k)
]

= 3 = λ1

Equations (1, 2) may be rewritten as:

z (k) = A1z (k− 1) + A2z (k− 2) + · · ·
+ Alz (k− l) + e(k) (3)

where l is the largest of n (orm) and p.

The Kalman filter (Section Kalman Filter) is employed for

reconstruction of missing observations; models for use with this

filter may be in state-space form. The choice of a state vector for

this model is not trivial as is shown in the EM algorithm parameter

estimates of Section EM Algorithm. The state vector x(k) is

given below:

x (k)=
[

zT(k) zT(k− 1) · · · zT(k− n)
]T

and the state-space equations may then be written as:

x (k) = Fx (k− 1)+ e(k) (4)

z (k) = Hx(k) (5)

with the following state matrix F and output matrix H (note

that all matrix entries shown below are 2 x 2 in size for

ARX models):

F =



















A1 A2 · · · An−1 An 0

I 0 · · · 0 0 0

0 I · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · I 0 0

0 0 · · · 0 I 0



















H =
[

I 0 · · · 0 0 0
]

In Isaksson (1993), the H matrix is [A1 A2 . . . An−1

An] where it is composed of unknown model parameters.

The choice of state vector here, which differs by a lag of

one time step, simplifies the H matrix by fixing it to the

above. This removes the uncertainty in H and reduces the

complexity of the system identification computations for

the case where the kth measurement is included in the kth

state vector.

The last pieces required to use the Kalman filter are the

covariance matrices of the process and measurement noise.

Since the kth measurement is included in the kth state vector,

the measurement equation noise term is not included [see

Equation (5)], and its covariance matrix R = [0]. Due to

the identity elements along a lower diagonal of F, only the

first (AR) or first two (ARX) terms along the diagonal of

the process covariance matrix Q are nonzero, and are equal

to 3.

Kalman Filter
For complete datasets, the matrices of Equation (5) and the

noise covariances are fed to the Kalman filter directly with

the data to find filtered state estimates, and the parameter

estimation algorithm continues with EM (see Section EM

Algorithm). The Kalman filter “predictive” equations are

presented below:

x̂− (k) = Fx̂(k− 1) (6)

P− (k) = FP (k− 1) FT+ Q (7)

where ∧ denotes an estimate; − denotes that the value is a priori;

x and P quantities without a − are a posteriori; and P(k) is the error

covariance at time k. The Kalman filter “corrective” equations update

the a priori estimates and are given in Equations (8–10):

K (k) = P− (k)HT
(

HP− (k)HT+ R
)−1

(8)

x̂ (k) = x̂− (k)+ K(k)
(

z (k)−Hx̂−(k)
)

(9)

P (k) = (I − K (k)H)P−(k) (10)

where K(k) is the Kalman gain at time k. In addition to the state

and output matrices, the Kalman filter requires initial state and

error covariance estimates, selection of which is discussed in Section

Results and Discussion.

To produce state estimates at time steps with missing

measurements, the filter must also be made aware not to “trust”

measurements indicating a time step with missing observations, be

they zero values, NaN indicators, or values orders of magnitude-

atypical. The output matrix H and measurement noise covariance R

are thus indexed to each time step k. Only values in these matrices

pertaining to non-missing observations are sent to the filter. For

example, in the case of a missing input at time step k, a matrix D(k)

is defined to indicate the output observation as the only trusted

measurement. In the case of Equation (5) for an ARX model, the

measurement vector z(k) would then be length two, and D(k) then

would be the first row of a 2× 2 identity matrix. For any D(k), H(k),

and R(k) are then defined:

H (k) = D (k)H (11)

R (k) = D (k)RDT(k) (12)

Recall, however, that the covariance matrix R = [0], thus always

evaluating Equation (12) to [0] as well.
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EM Algorithm
The EM algorithm is used to produce MLEs of the unknown

parameters for the system, including the error variance terms

λ1 and λ2, and all regression parameters. The basis for this

algorithm lies in definition of the log-likelihood equation of

the reconstructed dataset; formerly-missing observations are

contained in the states estimated using the Kalman filter.

First, the ARX model presented in Equations (1–3) is given

new notation:

y (k) = φT
1 (k) θ1 + v(k) (13)

u (k) = φT
2 (k) θ2 + w(k) (14)

where:

φ1 (k)=















y(k− 1)

u(k− 1)
...

y(k− n)

u(k− n)















θ1 =















a1
b1
...

an
bn















φ2 (k)=







u(k− 1)
...

u(k− p)






θ2 =







c1
...

cp







The response is uncorrelated to the excitation for positive

time lags. In other words, the response at one time is

uncorrelated to the excitation at any time after that.

Therefore, model output and input can be considered as

independent Gaussian processes. Using the notation above,

the joint density of all N observations, denoted f, may be

written as:

f =
N
∏

k=1

















1√
2πλ1

exp







−
(

y (k)− φT
1 (k)θ1

)2

2λ1



























1√
2πλ2

exp







−
(

u (k)−φT
2 (k)θ2

)2

2λ2






















(15)

Taking the natural logarithm of this equation yields the log-

likelihood criterion:

L (θ ,3) = C−N

2
log (λ1)−

N

2
log (λ2)

− 1

2λ1

∑N

k=1

(

y (k)− φT
1 (k) θ1

)2

− 1

2λ2

N
∑

k=1

(

u (k)−φT
2 (k) θ2

)2
(16)

Equation (16) contains the constant term C which does not affect

maximization. Differentiation of this equation with respect to each

of the noise variances and setting the results equal to zero gives the

MLEs for the noise variance terms:

λ1 = 1

N

N
∑

k=1

EN

[

(

y (k)−φT
1 (k) θ1

)2
]

= 1

N





∑N

k=1
EN

[

y2(k)
]

−2

N
∑

k=1

EN

[

φT
1 (k) y (k)

]

θ1

+
∑N

k=1
θT1 EN

[

φ1(k)φ
T
1 (k)

]

θ1

)

(17)

and:

λ2 = 1

N

N
∑

k=1

EN

[

(

u (k)−φT
2 (k) θ2

)2
]

= 1

N

(

∑N

k=1
EN

[

u2(k)
]

−2
∑N

k=1
EN

[

φT
2 (k) u (k)

]

θ2

+
∑N

k=1
θT2 EN

[

φ2(k)φ
T
2 (k)

]

θ2

)

(18)

where EN denotes the conditional expectation based on observations

until sample N, not the entire dataset. Substituting Equations

(17, 18) into Equation (16) yields a different form of the

log-likelihood:

L (θ ,3) = C−N

2
log

(

1

N

∑N

k=1
EN

[

(

y (k)−φT
1 (k) θ1

)2
])

−N

2
log





1

N

N
∑

k=1

EN

[

(

u (k)−φT
2 (k) θ2

)2
]



 (19)

Maximizing this log-likelihood is equivalent to minimizing the

quantities in the log terms, so these parts of the equation are

differentiated with respect to the θ parameter vectors and set to zero

to yield their MLEs:

θ
(i+1)
1 =

(

∑N

k=1
EN

[

φ1(k)φ
T
1 (k)

]

)−1

×

∑N

k=1
EN

[

φ1(k)y(k)
]

(20)

θ
(i+1)
2 =

(

∑N

k=1
EN

[

φ2(k)φ
T
2 (k)

]

)−1

×

∑N

k=1
EN

[

φ2(k)u(k)
]

(21)

Thus, the EM algorithm is defined, with the expectation step

encompassing the dataset completion (Kalman filtering) and

Equations (16–18), and the maximization step Equations (20,

21). The algorithm iterates until some convergence criterion is

reached (for the purposes of examples presented later in this

paper, that criterion is achieved when the change in either variance
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FIGURE 1 | Proposed parameter and missing data-estimation algorithm.

parameter becomes <1 × 10−11 from one iteration to the next;

this threshold was selected to be within the computer’s machine

epsilon threshold, as well as practicality from a speed perspective.

A flowchart of the proposed algorithm’s key steps is defined in

Figure 1.

One iteration of the EM algorithm requires calculation of

each expectation contained in Equations (17, 18, 20, 21). As

the Kalman filter provides the state estimates (which in turn

correspond to the y and u values contained in the ϕ vectors) as

well as the error covariance matrices, the appropriate quantities

must simply be selected for the applicable summations. The key

is to notice that the kth state vector x(k) (of length (2l + 2),

for ARX) contains the kth y measurement as its first term, the

kth u measurement as its second, the kth ϕ1 vector as terms

3 through (2n + 2), and the kth ϕ2 vector as even terms 4

through (2p + 2). The relevant covariance terms are in the

corresponding rows and columns within the P(k) matrix. The

required expectations are now defined in Equations (22–27), with

subscripts denoting the relevant parts of the state vector and error

covariance matrices:

EN

[

y2(k)
]

= x̂21 (k)+ P1, 1(k) (22)

EN

[

u2(k)
]

= x̂22 (k)+ P2, 2(k) (23)

EN
[

φ1(k)y(k)
]

= x̂3:(2n+2) (k) x̂1(k) + P 3 :(2n+2), 1(k) (24)

EN
[

φ2(k)u(k)
]

= x̂4:2:(2n+2) (k) x̂2(k) + P4:2:(2n+2), 2(k)

(25)

EN

[

φ1(k)φ
T
1 (k)

]

= x̂3:(2n+2) (k) x̂T3:(2n+2)(k)

+ P3:(2n+2), 3:(2n+2)(k) (26)

EN

[

φ2(k)φ
T
2 (k)

]

= x̂4:2:(2n+2) (k) x̂T4:2:(2n+2)(k)

+ P4:2:(2n+2), 4:2:(2n+2)(k) (27)

It is in these expectation definitions that the choice of state vector

becomes critical, and where the first distinction is made between

this work and that of Isaksson (1993). Without including y(k) and

ϕ1(k), and u(k) and ϕ2(k) in the same state vectors, all required

error covariance terms for evaluation of Equations (22–27) would

not be obtained within the Kalman filter portion of the algorithm.

Isaksson (1993) appears to only include all terms in the k + 1

state vector.

For AR models, there are modifications to the EM algorithm.

Vectors with subscript 2, and thereby Equations (14, 18, 21,

23, 25, and 27) are no longer needed. ϕ1(k) and θ1 are

redefined as:

φ1 (k)=











y(k− 1)

y(k− 2)
...

y(k− n)











θ1=











a1
a2
...

an











and Equations (15, 19, 24, 26) are rewritten as Equations (28–31),

respectively, below:

f =
N
∏

k=1











1√
2πλ1

exp







−
(

y (k)− φT
1 (k)θ1

)2

2λ1

















(28)

L (θ ,3) = C−N

2
log

(

1

N

N
∑

k=1

EN

[

(

y (k)−φT
1 (k) θ1

)2
]

)

(29)

EN

[

φT
1 (k)y(k)

]

= x̂2:(n+1) (k) x̂1(k)+ P1, 2:(n+1)(k) (30)

EN

[

φ1(k)φ
T
1 (k)

]

= x̂2:(n+1) (k) x̂T2:(n+1)(k)

+ P2:(n+1), 2:(n+1)(k) (31)

The second key difference between the proposed algorithm and

that presented in Isaksson (1993) is simply that it stops here;

we have not employed the Rauch-Tung-Striebel (RTS) smoother

in this paper, as simulations conducted with it did not show

a difference in model utility. However, the formulation is kept
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consistent for the case where smoother operations can be applicable.

Please note that the proposed filtering can be implemented in

real-time, while the suggested smoothing operations need offline

computations. In some applications, the advantage of real-time

filtering might be more desirable than the accuracy of the results;

implementation of the proposed algorithm for online EM is thus

the subject of future work. The ability of this algorithm to identify

the correct parameters of incomplete datasets is evaluated in the

following sections.

EXPERIMENTAL SETUP AND SIMULATION

The proposed algorithm is tested on both experimentally-collected,

and simulated datasets. When practical, the experimental datasets

are used. There are a variety of variables that may affect the

convergence behavior of the algorithm. We investigate the effects

of varying percentage of missing data; pattern of missing data;

improper model order selection; variable AR, X, and input

AR model order; noise level; and model type (ARX vs. AR)

on the speed of convergence and accuracy of both parameter

and completed dataset estimates. In all instances, some portion

of the data set was left intact to allow the algorithm to

be run—at most, we considered up to 80% missingness in a

packet-loss scenario. The majority of investigation results are

presented in Section Results and Discussion as box plots. Each

box represents the results of 200 simulations according to the

prescribed conditions. In the case of randomly missing data, indices

of missingness were selected with MATLAB’s random number

generation scheme.

Missing data indices were kept the same across sets of 200

iterations. This would ensure that the variability in a given

box plot was associated only with the initial parameter guesses.

These were always randomly generated, but so as to ensure

a stationary model. For example, all ARX parameters were

limited within (−1/max(n, m), 1/max(n, m)). Initial noise

variance estimates were set at 0.01, as this seemed to obtain

good results across the board in all simulations. The initial

state vector was simply the first (2l + 2) measurements,

and the initial Kalman error covariance matrix was the

identity matrix.

The quantity typically selected for evaluation of parameter

estimate accuracy is the root mean square of the normalized error

(RMSNE). The RMSE (note the lack of normalization) is described

in Chai and Draxler (2014); we elect to include normalization as

we look at both parameter convergence, and adequacy of dataset

reconstruction. Equation (32) defines the RMSNE:

RMSNE =

√

√

√

√

1

M

∑M

j=1

(

pm − pf

pf

)2

(32)

where pm is the estimated point (be it a parameter or a data point)

from the missing data analysis; pf is the corresponding full data

estimate (or true value); and M is the number of values in a given

estimate vector. In calculating RMSNE values when pf is near-zero,

large values may result; for this reason, we have elected not to include

points in RMSNE calculations when the actual values are below a

tolerance, in this case 0.001.

Structural Vibration Data
The real dataset used in this paper consists of the responses from

two of the sensors in one of 39 tests outlined in Nigro and Pakzad

(2014) on a two-bay, structural steel frame. The collected data

represents structural acceleration responses to an impulse load.

Figure 2A shows the (highlighted) frame within the laboratory,

with Figure 2B presenting an elevation drawing with the sensors of

concern and impulse loading location. The responses from sensor

L5 were considered as the “output” or y values of the ARX model,

with L4 constituting the “input” u values. These sensor designations

are used so as to ease the cross-referencing of this work with

that in Nigro and Pakzad (2014) and Shahidi et al. (2015). The

test lasted 2 s and each wireless sensor had 500Hz sampling rates,

yielding 1,000 total measurements apiece. The amplitude-limited

impulse excitation was selected due to the assumption of linear

behavior for the frame. The impulse also does not impose a specific

frequency onto the frame. This represents an advantageous similarity

to ambient vibration (Shahidi et al., 2015), the most likely condition

during which monitoring of a real structure would occur.

TABLE 1 | ARX parameters for generation of simulated datasets.

i ai bi ci

1 3.231 −0.06141 2.800

2 −4.536 0.1007 −3.803

3 3.195 −0.01888 2.600

4 −0.9756 −0.01750 −0.8607

FIGURE 2 | (A) Two-bay structural steel frame. (B) Sensor locations and frame dimensions.
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FIGURE 3 | (A) Parameter estimate convergence for different percentages of randomly missing data. (B) Measurement estimate convergence. (C) Iterations to

convergence.

Simulated Data
The simulated dataset used in this paper was selected to be similar

to that obtained from the experimental setup above, but more easily

controlled. We began by fitting an ARX(4, 4) with input AR(4)

model to the experimental datasets [this model order was selected

due to its good results in Shahidi et al. (2015)]. Then, the MLE

parameters were simply used as the “true” parameters with which

to generate entirely new “output” (and input, for ARX) datasets.

Normally-distributed randomly-generated noise could also be added

with controllable mean and variance. In all cases, the initial output

and input values for the generated datasets were set to unity. With

the exception of the noise variances, the same parameters were used

for generation of simulated datasets at all times. These (rounded) are

provided in Table 1.

RESULTS AND DISCUSSION

Variable Missing Data
Pattern—Experimental
Three missing data patterns were investigated for experimental

data with ARX models. Figure 3 displays the results of variable

random missing data percentages. Missing data indices were

randomly generated in MATLAB. This may represent intermittent,

random sensor network communication disruptions in the real

world. Figure 4 displays the results of variable block missing data

percentages. This represents the case of a packet-loss scenario in the

real world. The location within the dataset of the block of missing

data was confined to the middle of each dataset. Figure 5 displays

the results of variable repetitive patterns of missing data. This
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FIGURE 4 | (A) Parameter estimate convergence for different percentages of block missing data. (B) Measurement estimate convergence. (C) Iterations to

convergence.

represents a more predictable sensor communication disruption

pattern. In each case, missing data was simulated for both output and

input data.

In each of Figures 3–5, the horizontal axes labels indicate the

pattern (or percentage) of missing indices along the length of

the dataset. In all cases, an ARX(4, 4)with input AR(4) model

was considered. For each missing data pattern or percentage,

200 simulations were run. The (A) portions of each figure

represent box plots of the parameter RMSNE values for these ten

simulations, and the (B) portions the same for the data RMSNE

values. In each parameter figure, the lightest box plots indicate

AR parameters, the medium-hued X parameters, and the darkest

input AR parameters. In each data figure, the lighter box plots

indicate output data, and the darker input data. The theoretically

“correct” parameters are not known for the experimental dataset;

for comparison in RMSNE calculations, we use the results

of EM parameter estimation on the complete dataset (without

Kalman filtering).

The results of the above simulations are as expected. We are

primarily concerned with parameter estimation, so the fact that there

does not appear to be a great difference in accuracy of the parameter

estimates across different missing data patterns is as intended for

a robust parameter estimation algorithm. It is worth noting that

the X parameters tend to have significantly higher RMSNE values

across all missing data percentages than the AR or input AR

parameters. This is likely largely in part due to the X parameters

being significantly smaller in magnitude than the AR or input

AR parameters.

Of some concern is the drastic increase in data reconstructive

error for block missingness compared to random or patterned
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FIGURE 5 | (A) Parameter estimate convergence for different percentages of repeating pattern missing data. (B) Measurement estimate convergence. (C) Iterations

to convergence.

missingness, and particularly the variability in this error at high

missingness percentages. This phenomenon occurs due to the MLE

model causing the Kalman estimates to go to zero at a swifter

rate than the actual system. This implies that the algorithm,

in its current state, works adequately for parameter estimation

with a variety of missing data patterns, but is not particularly

appropriate for dataset reconstruction in the case of packet loss, or

prediction. This effect additionally begins to affect the parameter

estimate reliability and convergence rate as well-beyond 60 percent

missingness. However, this is not the only factor at play, since there

may be other regression models (or different orders) that simply fit

the dataset better.

It may appear that cases of patterned missingness, as

opposed to block or random, have less variability in the

accuracy of the estimated parameters and reconstructed

datasets, as well as number of iterations to convergence.

However, if missing every fifth observation is thought of as

missing 20 percent of observations (and furthermore, every

fourth as 25 percent), we appear to see similar variation

as at these percentages for random and block missingness.

Finally, note the termination percentages for the Figures 3,

4 horizontal axes. In this section, and beyond, the criterion

for these termination procedures was that the algorithm

became impractically slow to converge. This suggests that

packet loss scenarios, with their caveat on reconstruction, may

still be handled with the algorithm for parameter estimation,

and at higher percentages of missing data than random

or patterned-missingness.
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FIGURE 6 | (A) Convergence behavior of ARX parameter estimates with varying model order fits for simulated dataset. (B) AR parameters.

Improper Model Order
Selection—Simulated
The purpose of this section is to evaluate the effectiveness of the
algorithm for parameter identification and dataset completion when
a model is generated with a different series of model orders than that
used for the fit in the algorithm. In each simulation, the procedure
described in Section Simulated Data was used for model generation
[i.e., it was ARX(4, 4) with AR(4)], all with 20% missing data. Cases

of overparameterization were explored in these simulations, and

would invalidate typical RMSNE calculations for the parameters.

Therefore, a different means of presenting parameter convergence

is shown in Figure 6. The horizontal axis of this plot shows the

number of iterations required for converged parameter estimates;

thus, each vertical column of parameter estimates corresponds

to the results of the same simulation. From left to right in the

figure, the vertical columns represent 2nd, 6th, 3rd, 5th, and

4th order ARX model parameters. The vertical axis shows the

signed logarithm of the parameter magnitude (SLPM), defined in

Equation (33):

SLPM = sgn(pi) × log
(
∣

∣pi
∣

∣

)

(33)

where pi represents a particular parameter value. The logarithm

of this quantity is selected to properly display parameters of very

different magnitudes on the same plot, and the sign function

is selected to include both positive and negative values on the

plot. In Figure 6, the large symbols at the right end of the

horizontal lines represent the true parameter values of the ARX(4,

4) and input AR(4) models used for dataset generation (note

then that these are NOT representative of convergence behavior

in the axis-limit-number of iterations). Symbols within the figure
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correspond to those of the fits. Symbols occurring within the plots,

but without corresponding border symbols (and indicated), were

thus determined from higher-than-fourth-order models. Figure 7,

alternatively, uses the same conventions as above for data value

RMSNE calculations.

From Figure 6 it is clear that parameter estimates are very

accurate when correct model order is selected, and less accurate

when lower model orders are selected. Larger model orders

(converging in 35 and 40 iterations) have non-zero parameter

estimates at all time lags, and fail to identify the proper parameter

estimates. In Figure 7, however, the results of data RMSNE

calculations are presented in a similar format to Figures 3B,

4B, 5B. For input data, it can be seen that there does

not appear to be an appreciable difference in measurement

estimates for higher order models compared to lower, despite

different parameter estimates. However, output data is more

accurately reconstructed in over-parameterized systems. In real

systems, a “correct” model order is not accessible. Together,

these observations regarding parameter and dataset estimates

highlight the importance of consistent, as opposed to necessarily

“correct” model order selection as a system is monitored over

time. This is particularly important if regression parameters are

FIGURE 7 | (A) Measurement estimate convergence for varying model order fits for simulated dataset. (B) Iterations to convergence.

FIGURE 8 | Convergence behavior of output data estimates with varying model orders for simulated dataset.
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FIGURE 9 | Convergence behavior of input data estimates with varying model orders for simulated dataset.

being monitored as indicators of system change. However, these

observations also suggest that dataset reconstruction may occur

with safe (i.e., large) estimates of system model orders when they

are unknown.

Variable Model Order—Experimental
The aim of this section is to investigate the convergence behavior

of the algorithm with variable model orders. Here, we have only

considered one simulation for each model order grouping (each

which corresponds to a data point on Figures 8, 9). In Figures 8

(output data) and 9 (input data), the size of a plotted point is

inversely proportional to the RMSNE of the converged Kalman

estimated data values. The shade distribution of the plotted points

can be likened to a histogram of the iterations to convergence when

compared with other points, with four distinct shades corresponding

to “bins” of size 60. So, for example, the (2, 2, 2) point has

the lightest shade, and corresponds to a set of model orders

that converged in the algorithm in 60 iterations or less. Finally,

the numbers above and/or below select points on the figures

correspond to the maximum, minimum, and quartile iteration

or RMSNE values obtained in the analysis. For example, the (4,

2, 4) point converged in 210 iterations, tied for the most of

any model order grouping. As another example, point (2, 6, 4)

resulted in one of the lowest RMSNE values of any model order

considered. In all cases, 20% of data was randomly missing from the

experimental dataset.

In many ways, aspects of this figure correspond well with

previous observations. We noted in Section Variable Missing

Data Pattern—Experimental that the X parameters were lower

in magnitude than the AR or input AR. This implies that the

ARX model may in fact be dominated by the AR portion for

these particular datasets; sure enough, in Figures 8, 9, we tend

to see the largest accuracy with high-order AR and input AR

model orders, respectively. Furthermore, while convergence is

relatively quick, lower accuracy at lower model orders is observed

across the board, which likely confirms the earlier notion that

structural vibrations may be described specifically with high-order

AR processes.

Variable Noise—Simulated
The aim of this section is to investigate the effect of the

signal-to-noise ratios in parameter identification. Datasets were

simulated corresponding to the procedure in Section Simulated

Data, and noise levels in Figure 10 were normally distributed with

variances the indicated percentages of the initial signal values.

In all cases, 20% data was randomly missing, and box plot

shade conventions are the same as in Section Variable Missing

Data Pattern—Experimental.

It can be seen from Figure 10 that with the exception of very low

noise increasing percentages of noise do not seem to significantly

affect parameter estimates. This is due to the characteristics of

the Kalman filter mentioned in Section Maximum Likelihood,

Expectation Maximization, and Kalman Filter. Furthermore, the

number of iterations do not typically significantly increase as noise

levels do, though their variability does to some extent. Finally,

it may be noted that data estimates errors increase exponentially

with the noise from low levels, then stabilize at higher noise

variance. This effect is expectedly more drastic for the output

data, as it is affected by both its own noise, as well as that in

the input.

Model Type: ARX vs. AR—Simulated
Finally, the performance of the algorithm for parameter

identification of ARX models is compared to that of AR

models. Datasets are simulated according to the procedure

of Section Simulated Data, which in the case of AR

does not require X or input AR parameters (third and

fourth columns of Table 1). Also of note is the increasing

percentages of missing data across the horizontal axes

of Figures 11, 12. In all cases, no noise was included in

the simulation.

In addition to that shown in the figure, the algorithm was

also performed for the simulated case where no observations were
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FIGURE 10 | (A) Parameter estimate convergence for different noise levels in simulated datasets with 20% missingness. (B) Measurement estimate convergence. (C)

Iterations to convergence.

missing. Both mean and standard deviation of RMSNE values

for input AR parameters and output data is zero (it is for

this reason that the results are not included in Figure 11). This

result is reached in an average of 18 iterations with a standard

deviation of 0.483.

Similarly, for the zero missingness ARX model input data, mean

and standard deviation of RMSNE values are 7.57e–16 and 8.23e–

16, respectively. For output data, mean and standard deviation are

1e–16 and 1e–15, respectively. Mean and standard deviation of X

parameter RMSNE values are 1.29e–11 and 1.46e–11, respectively;

for input AR parameter RMSNE values, 6.81e–15 and 6.8e–14,

respectively; and for AR parameter RMSNE values, 1.76e–13 and

2.11e–13, respectively.

If the AR parameters are compared between Figures 11, 12,

it can be seen that they are estimated more accurately for the

purely AR model, as opposed to ARX. This may be a function

of the model type selected for this particular system. Similar to

experimental datasets, the X parameters are again evaluated with

generally a lower degree of accuracy. It is worth noting that if

ARX identification in Figure 12 is compared to that in Figure 3

(random missingness), simulated datasets’ parameters are generally

estimated at a higher degree of accuracy when compared to real

datasets, at similar percentages of missingness. However, in the case

of simulated datasets, the algorithm becomes impractically slow at

higher percentages of missing data, and there is generally more

variability in the estimates.
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FIGURE 11 | (A) Parameter estimate convergence for simulated AR models with varying percentages of missing data. (B) Measurement estimate convergence.

(C) Iterations to convergence.

CONCLUSIONS

In this paper, an algorithm was proposed to identify parameters of
both ARX and AR models fit to datasets with missing observations.
This algorithm joins a relatively minor list of those dedicated
to regression models, and more specifically ARX models, subject
to missing observations, and presents important modifications to
the state vector considered in the presented state-space model.
The EM algorithm in conjunction with the Kalman filter is
used for MLE of parameters and reconstruction. The effects
of varying percentage of missing data; pattern of missing data;
improper model order selection; variable AR, X, and input AR

model order; noise level; and model type (ARX vs. AR) on

the speed of convergence and accuracy of both parameter and

completed dataset estimates was investigated. Favorable conditions

for accurate parameter estimation include lower percentages of

missing data, parameters of similar magnitude with one another,

and selected model orders similar to those true to the dataset.

Favorable conditions for dataset reconstruction include random and

periodic missing data patterns, lower percentages of missing data,

and proper model order selection. The algorithm is particularly

robust to varied noise levels, an effect of the use of the

Kalman filter.
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FIGURE 12 | (A) Parameter estimate convergence for simulated ARX models with varying percentages of missing data. (B) Measurement estimate convergence.

(C) Iterations to convergence.

Future research in relation to this work should further formalize

the relationships that are apparent in this work. Boxplots in

this work were concerned with evaluating the effect of changing

initial parameter guesses; future work should explore the effects

of consistent initial guesses, but variable missingness data indices.

Additionally, the effect of the parameter values themselves on

estimation accuracy should be further explored. An investigation

should also be conducted into features of the converged ML

statistical parameters that may be extracted to further evaluate the

effectiveness of the algorithm, and different convergence criteria

should be explored. Finally, alternative missing data patterns may be

explored, including removing data from only one of the output or

input at a time.
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