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The consideration of wireless acceleration sensors is highly promising for cost-effective

output-only system identification in the context of operational modal analysis (OMA)

of large-scale civil structures as they alleviate the need for wiring. However, practical

monitoring implementations for OMA using wireless units suffer a number of drawbacks

related to wireless transmission of densely sampled acceleration time-series including

the energy self-sustainability of the sensing nodes. In this work, two recently proposed

approaches for output-only modal identification addressing the above issues through

balancing monitoring accuracy with data transmission costs are comparatively studied

and numerically assessed using field recorded acceleration datasets from two different

structures: (i) an operating on-shore wind turbine, (ii) an open to traffic highway

bridge. One approach utilizes non-uniform-in-time deterministic multi-coset sampling

at sub-Nyquist rates to capture structural response acceleration time-series under

ambient excitation assuming stationary signal conditions. In this approach, a power

spectrum blind sampling technique is used to estimate the response acceleration

power spectral density matrix from the low-rate sampled measurements and is

coupled with the Frequency Domain Decomposition method of OMA. The other is a

spectro-temporal compressive sensing approach which recovers response acceleration

signals through time-series reconstruction in the time domain from sub-Nyquist

non-uniform-in-time randomly sampled measurements. Prior knowledge of signal

structure in the spectral domain is exploited through smart on-sensor operations and

sensor/server communication. The benefits and limitations of the considered approaches

are discussed and demonstrated by processing the field recorded datasets for different

levels of signal compression and by estimating battery lifetime gains at a single sensor

achieved by reduced data transmission. It is concluded that the two approaches are

readily applicable in OMA of large-scale structures and can be used complementarily

depending on the requirements of any particular acceleration monitoring campaign:

time-series extraction for further interrogation vs. solely modal properties estimation.

Keywords: vibration-based modal identification, multi-coset sampling, spectro-temporal compressive sensing,

blind power spectrum sampling, operational modal analysis, wireless sensors
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INTRODUCTION

In recent years, monitoring schemes have roved their worth in
terms of the potential for smart operation and maintenance
of civil structures (Farrar and Worden, 2012). When further
coupled with the concept of the Value of Information, monitoring
of structures serves as a direct tool for informing decision
support on the life cycle management of structural assets. In this
context, operational modal analysis (OMA) involves an efficient
monitoring modality in large scale structural systems, as it is
typically enabled by low cost acceleration sensors, allowing for
a long-term or permanent system supervision (Limongelli et al.,
2016). Due to the difficulty involved in the measurement of
operating loads, OMA relies on output-only information for
extraction of dynamic properties of systems that are typically
subjected to low-amplitude operational loads (e.g., due to wind
traffic, etc.) (Brincker and Ventura, 2015). For the common
case of linear systems, such properties include the modal
characteristics of the structure (e.g., natural frequencies, damping
and mode shapes). Since no explicit loading information is
assumed available, output-only techniques commonly assume
ambient conditions corresponding to a flat spectrum over a wide
range of frequencies (i.e., a white noise excitation assumption).
Such techniques are shown to perform well, even under the
challenge of varying environmental and operational conditions
(Reynders et al., 2013; Shi et al., 2016; Avendaño-Valencia
et al., 2017) while the extracted modal structural properties may
be then exploited for a variety of tasks including condition
assessment, design verification, structural health monitoring
(SHM) and, ultimately, residual life prediction of civil structures
(Straub et al., 2017). Still, OMA has been mostly demonstrated
for use with tethered sensing configurations.

Wireless sensor networks (WSNs) offer a low-cost and easily
deployable alternative to tethered (wired) acceleration sensors
that is particularly attractive for large structures featuring
locations of reduced accessibility (Lynch, 2007). The “smart”
feature of most such wireless platforms, allowing for local
processing at the wireless senor (node) level, has been exploited
for decentralized autonomous monitoring solutions (Nagayama
et al., 2009). Nonetheless, WSNs have so far not enjoyed
widespread adoption into practice, largely owing to their limited
wireless transmission bandwidth and the maintenance costs
related to frequent battery replacement (Klis and Chatzi, 2016a;
Gkoktsi and Giaralis, 2019).

In order to extend the self-sustainability of the nodes, and

to reduce the power allocated for transmission, compressive

sensing (CS) techniques have been explored, with Bao et al.
(2010) and O’Connor et al. (2013), leading developments
in this field, with applications on actual road bridges. CS
samples at random non-uniform in time rates, resulting in
equivalent sampling below the Nyquist rate. In a nutshell, CS
asserts that a discrete-time finite length signal (e.g., an analog
response acceleration signal uniformly sampled in time) can
be recovered, with high probability, from a relatively small
number of randomly acquired samples/measurements in time, by
solving an underdetermined system of linear equations (Candès
and Tao, 2006; Donoho, 2006). Importantly, the number of

random (compressed) measurements required for a faithful
signal recovery depends on the “sparsity” of the acquired signal
with respect to some pre-specified vector basis, such as the
discrete Fourier transform (DFT) basis used for representation
of vectors in the Fourier/frequency domain. Specifically, a K-
sparse/compressible signal features K expansion coefficients on
a given basis with values larger than a relatively low threshold;
the smaller K is, the sparser the signal is, and thus the fewer
random measurements are required for its sparse recovery (i.e.,
estimation of the K significant expansion coefficients) within the
CS framework. In this regard, all algorithms for sparse signal
recovery necessitate an assumption of signal sparsity (Vaswani
and Zhan, 2016), which is a priori unknown and is adversely
affected by signal noise. Further, much research work has been
devoted in constructing sparsifying bases or, more generally,
sparsifying dictionaries tailored for different applications, such as
image denoising (Razaviyayn et al., 2014), video sensing (Eslani
et al., 2014), and ultrasonic non-destructive damage detection
(Fuentes et al., 2019).

In this setting, O’Connor et al. (2014) were the first to
deploy customized CS-based wireless sensors in a long-term
monitoring field application for an overpass in MI, USA. By
randomly triggering in time conventional ADC units, non-
uniform in time compressed acceleration response signals were
acquired. Sparse recovery assuming a DFT expansion basis, as
well as an empirically specified level of sparsity was applied
to the compressed data to estimate the response acceleration
power spectral density (PSD) matrix. The latter matrix was
used in conjunction with the standard frequency domain
decomposition (FDD) algorithm to extract mode shapes and
natural frequencies within OMA. Yang and Nagarajaiah (2015)
and Park et al. (2014) contributed two significantly different
approaches for mode shape estimation from CS-based non-
uniform in time random sampling of structural vibration time-
histories at sub-Nyquist rates. In Yang and Nagarajaiah (2015)
mode shape estimation relies on modal structural responses
obtained by application of blind source separation directly to the
compressed measurements of structural response signals. Sparse
signal recovery (reconstruction) in the time-domain is next
applied to each compressed modal response vector to retrieve
the underlying structural natural frequencies andmodal damping
ratios. In Park et al. (2014) mode shapes are obtained by means of
a singular value decomposition-based algorithm applied directly
to response acceleration compressed measurements, without
taking any reconstruction step, under the assumption of noiseless
undamped free vibration structural response signals (i.e., multi-
tone signal model).

The standard approach to CS-based signal recovery relies
on l1-norm minimization and solution of the so-called Basis
Pursuit De-Noising problem (BPDN). This approach is typically
adopted in CS implementations in OMA applications using
wireless sensors (O’Connor et al., 2014; Zou et al., 2015). In
enhancing the BPDN approach, Klis and Chatzi (2016b) utilize
its re-weighted variant, known as the re-weighted Basis Pursuit
De-Noising problem (rwBPDN), also known as the l1-analysis
problem (Becker et al., 2011). The resulting Spectro-temporal CS
(STCS) scheme leads to improved time-domain signal recovery
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with respect to the standard BPDN approach. Furthermore, in
order to alleviate the heuristic a priori assumption on sparsity Klis
and Chatzi (2016a) initially exploit the concept of a leading node,
i.e., a (typically) tethered node which is permanently logging
at higher sampling rates, and forms part of a Hybrid Sensor
Network (HSN). The latter forms a compilation of primarily
wireless and a minimal number of tethered sensors. In this
way the signal support, on the basis of which the recovery is
performed, is narrowed, which results in reduced transmission
costs. In later work (Klis and Chatzi, 2016b) the leading node
requirement is removed, with wireless sensors transmitting
partial temporal information and a selected part of the spectral
information in a two way communication with the server (central
node). Sparse signal recovery is again enabled via solution of
the rwBPDN problem. The recovered signals may then serve
as input for any standard output-only modal identification
algorithm for OMA. As signal reconstruction is a main target
of this approach, it is particularly attractive for use with time
domain-based identification methods, such as approaches based
on Auto-regressive models, subspace identification algorithms,
or real-time tracking using Kalman filters. The proposed scheme
has been validated on synthetic simulations generated for a
benchmark four-story frame structure of the American Society
of Civil Engineers, as well as data from operating structures.

Aiming to circumvent the signal sparsity requirement for the
identification of modal characteristics (natural frequencies and
modal shapes) from sub-Nyquist sampled response acceleration
data, Gkoktsi and Giaralis (2017), Gkoktsi and Giaralis (2019)
developed an alternative to the former CS-based approaches. The
latter approach couples the sub-Nyquist non-uniform-in-time
deterministic multi-coset sampling strategy (Venkataramani and
Bresler, 2001), with a Power Spectrum Blind Sampling (PSBS)
technique (Ariananda and Leus, 2012; Tausiesakul and González-
Prelcic, 2013) extended to the multi-channel case by Gkoktsi
et al. (2015) to estimate the response acceleration PSD matrix
(second order statistics) from correlation sequences of the
sub-Nyquist measurements. Ultimately, the considered PSBS
approach derives structural modal properties by application of
the FDD algorithm to the estimated PSDmatrix without response
acceleration signal recovery in the time domain and without
making an a priori assumption on signal sparsity in the DFT or
in any other domain (Gkoktsi and Giaralis, 2017). In doing so,
measured response signals are assumed as stationary correlated
stochastic processes in alignment with OMA theory (Brincker
and Ventura, 2015). In this respect, the PSBS approach does not
return the time-histories of acceleration response signals but, on
the positive side, it is purely signal agnostic in terms of signal
structure in the frequency domain and, therefore, indifferent
to signal sparsity attributes and/or to additive noise. In this
regard, it was shown that the PSBS approach achieves quality
mode shape extraction and robust modal strain-based damage
detection from response acceleration measurements corrupted
by additive noise (Gkoktsi et al., 2016) at rates as low as 80%
below Nyquist leading to significant energy consumption gains
in wireless sensors (Gkoktsi and Giaralis, 2019).

Previously, the PSBS approach has been compared to
standard BPDN CS-based approach in terms of quality mode

shape extraction (Gkoktsi and Giaralis, 2017). Herein, we
comparatively assess the PSBS-based scheme (Gkoktsi and
Giaralis, 2017, 2019) and the STCS approach (Klis and Chatzi,
2016a,b) in an effort to demonstrate their readiness levels
for output-only modal identification supported by low-power
wireless sensors which is the first step toward cost-effective SHM.
The strengths and limitations of each approach are elaborated
upon, with a comparison in terms of data compression, potential
for modal identification, and, for the case of STCS, on time-
domain signal recovery. In order to validate the presented
tools, field data from large scale structures are utilized, namely
acceleration response time-histories from an operating on-shore
wind turbine as well as from a highway overpass open to traffic.
For the second structure, estimated battery lifetime gains at the
sensor node level are provided achieved by power consumption
savings from reduced wireless data transmission.

METHODOLOGICAL FRAMEWORK

Spectro-Temporal Compressive Sensing
(STCS) Approach via rwBPDN
Spectro-Temporal Compressive Sensing (STCS) relies on the
formulation of the missing data estimation problem (Candès and
Romberg, 2007; Becker et al., 2011; Candès and Plan, 2011). Let
us assume a signal recorded by sensor i, comprising N samples.
Themissing data estimation problem is formulated as:

yi = Sxi (1)

where yi = [y1i, y2i, ..., yMi]
T ∈ R

Mis the measured signal of
partial (incomplete) observations, comprising a dimension M <

N, and S ∈ R
M×N is a zero-one selection matrix, known a-priori.

The goal of the missing data estimation problem is to recover the
original full signal xi given the incomplete observations yiand the
selection matrix S.

As demonstrated in Klis and Chatzi (2016b) structural
response signals admit a sparse representation via a Discrete
Fourier Transform (DFT) orthonormal basis, A ∈ C

N×N ,
according to the following equation:

xi = Aci, where Ai,l =
1√
N
e−j2π i l

N (2)

where ci = [c1i, c2i, ..., cNi]
T ∈ R

Ncomprises the coefficient
vector. Via substitution of equation (2) into equation the
observations vector yi may be recovered on the basis of a finite
number of cisparse coefficients, as follows:

yi = SAci (3)

When the vector of observations yiis incomplete, as is the
case for missing data, equation (3) comprises an ill-conditioned
problem with multiple solutions for the coefficients vector
ci. Within the compressive sensing context however, we are
interested in the solution rendering the most sparse vector
ci, for which equation (1) is fulfilled. This is recovered via
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solution of a non-deterministic polynomial time-Hard (NP-
Hard) combinatorial problem:

argmin
ci

‖ci‖0 subject to yi = SAci (4)

As the formulation of equation (4) is non-trivial to solve,
Candès and Romberg (2007) concluded that solving a relaxed
‖ · ‖1 convex optimization problem, known as a basis pursuit
problem, is equivalent to solving the original ‖ · ‖0NP-Hard
combinatorial problem, given that an appropriate condition—
the so-called Restricted Isometry Property (RIP)—holds. The basis
pursuit problem is expressed as:

argmin
ci

‖ci‖1 subject to yi = SAci (5)

The formulation of equation offers a significant reduction in
terms of computational toll, while guaranteeing that the original
response signal xi may be fully recovered, provided that the K-
RIP condition is satisfied by matrix SA. For each positive integer
K, we may define the isometry constant δK of matrix SA as
the smallest integer ensuring that the following K-RIP condition
holds for all K-sparse vectors:

(1− δK) ‖ci‖22 ≤ ‖SAci‖22 ≤ (1+ δK) ‖ci‖22 (6)

According to Candès et al. (2006) if δ2K <
√
2−1 then a solution

to (5) will also satisfy the original problem (4) with a good quality
of approximation.

However, observations stemming from acquisition via sensor
nodes, as is typical for SHM measurements, will be corrupted
with noise. In this case, the original problem becomes

yi = SAci + zi, zi ∝ N (0, σ 2) (7)

The solution to this modified problem is obtained via a convex
optimization problem, known as the Basis Pursuit De-Noising
problem (BPDN):

argmin
ci

‖c‖1 subject to
∥

∥yi − SAci
∥

∥

2
≤ ǫ (8)

Solution of the BPDN problem has been the main approach
utilized so far in the context of CS for SHM implementations
(O’Connor et al., 2014; Wang and Hong, 2015; Wang et al.,
2015). Klis and Chatzi (2016b) have advanced this framework
by utilizing in lace of the classical BPDN formulation, its
re-weighted variant, known as the re-weighted Basis Pursuit
De-Noising problem (rwBPDN) (Becker et al., 2011):

argmin
ci

‖Wci‖1 subject to
∥

∥yi − SAci
∥

∥

2
≤ ǫ (9)

Key to this formulation is the weighting matrix W =
diag([w1,w2, ...,wN]) which ensures a desired structure of the
coefficient vector ci.

The Spectro-Temporal Compressive Sensing (STCS)
framework relies on solution of the rw-BPDN problem. Figure 1

illustrates the steps of STCS framework, with the actions
performs locally on the node level aggregated on the left, and
actions performed globally at the base station (server) level
assembled on the right. As a first step, the support is determined
at each node. The support of a vector is defined as the subset
of non-zero components supp(Yi) = {ω ∈ � : Yi(ω) 6= 0}.
For practical implementations, this is eventually defined
in terms of exceedance of a user-specified threshold ǫ :
supp(Yi, ǫ) = {ω ∈ � : |Yi(ω)| > ǫ}. The selection of the
support is executed for windowed frames xij, extracted from
the original signal xi. The formulated support Uij, as well as its
complementary set Uc

ij allow the decomposition of the spectral

representation of the signal, as expressed via the coefficient vector
ci, into a “noisy” and “clean” component cij = Uijcij+Uc

ijcij. The

locally defined support components are eventually transmitted
to the server, where the weighting matrix Wij is formulated and
the K-sparsity of the signal is determined as Kij =

∑

(Uij).
In a next step, the number of time-domain samples Mij

required for signal recovery is defined, on the basis of which the
server randomly selects and transmits yij sub-vectors, from the
j-th data frame of the i-th sensor, using a uniform distribution.
For more details on this process the interested reader is referred
to (Klis and Chatzi, 2016b). Upon transmission of the necessary
time domain samples, along with the corresponding Wij

weighting matrix, to the server the coefficient vector is recovered
as ĉij = argmin

cij

∥

∥Wijcij
∥

∥

1
subject to

∥

∥yij − SijAcij
∥

∥

2
≤ σu,ij. As a

last step, the coefficient vector of the j-th data frame is projected
back to the time domain:

x̂ij = Aĉij (10)

Once this process has been executed for each data frame, the
estimate of the full time domain signal is attained as x̂i =
[

x̂i1, x̂i2, ..., x̂iD
]T

from all D sensors in the network. The solver
adopted for solution of the involved rwBPDN problem is the
NESTA algorithm (Nesterov, 2005; Becker et al., 2011).

The Multi-Channel Power Spectrum Blind
Sampling (PSBS) Approach
Themulti-channel PSBS approach for operational modal analysis
developed by Gkoktsi and Giaralis (2017), Gkoktsi and Giaralis
(2019) comprises the three stages delineated in Figure 2. The
first stage involves low-rate (sub-Nyquist) deterministic periodic
non-uniform-in-time multi-coset sampling at all D acceleration
sensing nodes. In the next stage, the low-rate (compressed)
measurements from all sensors are wirelessly transmitted to a
server (base station) and centrally processed to obtain their
cross-correlation vectors. These vectors are used to estimate
(recover) the response acceleration PSD matrix by solving an
overdetermined system of linear equations without invoking
any signal sparsity assumption. Lastly, in stage III, the FDD
algorithm is applied to the recovered PSD matrix to obtain
natural frequencies and mode shapes. Notably, this centralized 3-
stage forward-only approach minimizes processing and memory
requirements at the node (local) level as well as wireless
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FIGURE 1 | Flowchart of spectro-temporal compressive sensing framework (Klis and Chatzi, 2016b).

data communication payload within the WSN leading to low-
complexity and low-energy consumption sensor nodes.

Elaborating on the mathematical details of PSBS approach,
let x(t) be a continuous in time t real-valued wide-sense-
stationary random signal (or stochastic process) represented by
the PSD function Px(ω) band-limited to 2π/T in the frequency

domain ω. The multi-coset sampling strategy is adopted (e.g.,
Venkataramani and Bresler, 2001) in stage I of the approach to
sample x(t) at a rate lower than the Nyquist sampling rate 1/T (in
Hz) as follows. Firstly, the uniform grid of Nyquist samples x(nT),
n = 0,1,2, . . . is divided into consecutive non-overlapping blocks
of N samples each. Then, from each such block, only M (<N)
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FIGURE 2 | Flowchart of multi-channel power spectrum blind sampling approach for frequency domain OMA (see also Gkoktsi and Giaralis, 2019).

samples are acquired whose position is specified by the sampling
pattern sequence with elements in ascending order

n = [n0 n1 · · · nM−1] (11)

taken as time independent. The resulting sampling is periodic
with period N; non-uniform in time (excluding the special case
in which n contains all possible even or odd numbers and N is
even; deterministic since the position of the M cosets is defined
a priori through the sequence n applied to all N-length blocks;
and sub-Nyquist with average sampling rate M/(NT) (in Hz)
(always below the Nyquist rate 1/T since M < N). Notably,
the multi-coset sampling rate is associated with the compression
ratio (CR)M/N (0≤M/N ≤ 1), attaining lower values for higher
signal compression levels. For illustration, Figure 3 demonstrates
multi-coset sampling with pattern n = [0, 2, 5] to a discrete-
time signal partitioned into blocks of N = 8 length. This
particular sampling acquires M = 3 cosets of samples by taking
the 1st (red), the 3rd (cyan), and the 6th (green) Nyquist sample
from every block achieving CR of M/N = 3/8 = 37.5%, that is,
average sampling rate of 62.5% below Nyquist.

Mathematically, the samples of the m-th coset can be written
as the output of the filtering operation

ym[k] =
∑0

s=1−N
gm[s] x[kN − s] k = 0, 1, ..., P − 1 (12)

where P is the total number of the N-length blocks and the filter
coefficients are given as

gm [s] =
{

1, s = nm
0, s 6= nm

(13)

FIGURE 3 | Illustrative example of multi-coset sampling.

in which s= [1–N, 2–N, . . . , 0] is arranged in descending order.
Consider, next, an array of D sensors and M cosets as

shown in Figure 2. The cross-correlation sequences of response
acceleration signals sampled at Nyquist rate, xi[v], from all i= 1,
2, . . . , D sensors are theoretically defined as

rxixj [ℓ] = Ex
{

xi[v] xj[v− ℓ]
}

i, j = 1, 2, ...,D ; ℓ ∈ Z (14)

where E is the mathematical expectation operator. It is herein
assumed that the sequences in Equation (14) take on negligible
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values outside the range −L ≤ ℓ ≤ L. Further, the cross-
correlation sequences of the compressed measurements ymi [k]
from all m = 0, 1, . . . , M − 1 cosets and i = 1, 2, . . . , D sensors,
are written as

ryai ,y
b
j
[ℓ] = E

{

yai [k] y
b
j [k− ℓ]

}

i, j = 1, 2, ...,D ; a, b = 0, 1, ...,M − 1 ; −L ≤ ℓ ≤ L (15)

It can be shown (Gkoktsi andGiaralis, 2019) that the sequences in
Equations (14) and (15) are related by the following key equation

ryiyj = Rgrxixj (16)

where rxixj ∈ R
N(2L+1)×D is a matrix collecting all cross-

correlation sequences of response acceleration signals rxixj [ℓ],

ryiyj ∈ R
M

2
(2L+1)×D is a matrix collecting all cross-correlation

sequences of the compressed measurements ryai ,y
b
j
[ℓ], and

Rg ∈ R
M

2
(2L+1)×N(2L+1) is a sparse pattern correlation matrix

populated by the multi-coset sampling pattern cross-correlations

rga ,gb [τ ] =
∑0

s=1−N
ga[s]gb[s− τ ] = δ[τ − (na − nb)] (17)

where δ[u] = 1 for u = 0 and δ[u] = 0 for u 6= 0. Note
that Equation (16) defines an overdetermined system of linear
equations which can be solved for rxixj without any sparsity
assumptions, provided that Rc is full column rank. The latter is
satisfied forM2 ≥ N (Ariananda and Leus, 2012).

From the practical/computational viewpoint, the
unbiased estimator

r̂yai ,y
b
j
[ℓ] = 1

P − |ℓ|

P−1+min{0,ℓ}
∑

l=max{0,ℓ}
yai [l]y

b
j [l− ℓ] (18)

can be readily employed to approximate the sequences in
Equation (15) using all compressed measurements wirelessly
transmitted to a central unit (server) from all D sensors as
indicated in Figure 2. These estimates are collected in the

matrix r̂yiyj ∈ R
M

2
(2L+1)×D. Next, an estimate of the response

acceleration PSD matrix at discrete frequencies with frequency
discretization step (resolution)

1ω = 2π

(2L+ 1)N
(19)

is computed at the server through the formula (Gkoktsi et al.,
2015; Gkoktsi and Giaralis, 2019)

Ĝxixj = F(2L+1)N

(

RT
gW

−1
Rg

)−1
RT
gW

−1
r̂yiyj , (20)

where F(2L+1)N ∈ C
N(2L+1)×N(2L+1) is the standard DFT matrix.

In the last equation,W is a weighting matrix, and the superscript
“−1” denotes matrix inversion. Ultimately, in stage III, the PSD
matrix in Equation is treated by the standard FDD algorithm to

estimate R structural mode shapes, φ̂r , and natural frequencies,
fr , r = 1, 2, . . . , R.

The critical parameters of the herein briefly reviewed PSBS
approach regulating CR are the number of cosets, M, and the
lengthNof the blocks in Figure 3, subject to the two constraints

M < Nand M
2 ≥ N. Once the values of M and N are

fixed, the weighting matrix W in Equation and the sampling
pattern n is determined by solving a constrained least-squares
optimization problem as detailed in Tausiesakul and González-
Prelcic (2013) relying on the criterion r̂xixj = argminrxixj ||r̂yiyj −
Rgrxixj ||2W, where ||a||2

W
= aTWa is the weighted version of the

Euclidean norm.

ASSESSMENT FOR SIGNAL RECOVERY IN
TIME AND IN FREQUENCY DOMAIN

The effectiveness and applicability of both considered approaches
for vibration-based modal identification relies on the accuracy
of their respective information recovery operations from
compressed measurements. That is, time-domain signal
reconstruction/recovery in the STCS-rwPBDN approach, and
frequency domain PSD estimation/recovery in the PSBS-based
approach. In this section, the performance of the above recovery
operations is numerically assessed using field-recorded response
acceleration data from an operational Wind Turbine (WT) in
Lübbenau, Germany (Klis and Chatzi, 2016a). The considered
structure was instrumented with wired high-accuracy MEMs
accelerometer sensors located at the cross-section of the WT
tower at 80 and 100m height. The instrumentation layout of the
WT is shown in Figure 4. Acceleration data were conventionally
acquired at a uniform-in-time sampling rate of 200Hz measured
for ∼10min every half an hour over a period of 29 days. For
the purposes of this work, a small, arbitrarily chosen, sub-set
of the recorded acceleration signals is compressed at different
compression levels and processed via STCS-rwPBDN and PSBS
approaches. PSD estimates and reconstructed signals in time
domain are recovered from the compressed data by application
of STCS-rwPBDN and PSBS approaches, respectively, while
time-histories and non-compressed PSDs of the as-recorded data
serve as a basis of comparison. It is expected that the assessment
of PSBS information recovery in frequency domain will be
most critical given that the level of signal stationarity of the
considered data-set is relatively low while PSBS approach relies,
theoretically, on signal stationary assumption.

The numerical assessment of both methods is performed
using an acceleration time-series recorded on the 29/12/2013 (at
15:44 p.m.) along the North direction (i.e., y-axis in Figure 4)
from the middle sensor in Figure 4 located at 80m height. The
considered acceleration recording was uniformly acquired in
time and it consists of N = 172,420 samples. Firstly, baseline
adjustment is applied to the raw time-series to remove the
mean value and other spurious low-frequency trends. Then, the
time-series is band-limited within the frequency range of [0.10,
25.00Hz] through filtering using a fourth-order Butterworth
band-pass filter.

Frontiers in Built Environment | www.frontiersin.org 7 September 2019 | Volume 5 | Article 111

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Gkoktsi et al. Monitoring Using Sub-Nyquist/Compressive Sensing

FIGURE 4 | Wind turbine tower and sensor instrumentation set-up (Chatzia

and Spiridonakos, 2015).

STCS-rwBPDN Approach for Time Domain
Signal Recovery
The time-domain reconstruction performance of the STCS-
rwBPDN approach is assessed for two compression ratios at
CR = {30, 45%}. For a given WT acceleration response, the
underlying signal support U is first computed to define the
signal’s sparsity level, K (i.e., number of components in the
spectral domain), as well as the variance of the noisy component,
i.e., the complementary set of the support (remaining part of the
spectral representation). As elaborated upon in the work of Klis
and Chatzi (2016a,b), this is used to prescribe error bounds on the
reconstructed signal. For the two considered CRs, the obtained
signal reconstruction estimates are illustrated in Figure 5 for
an acceleration time-window of 400 samples. Comparing the
two panels Figure 5, it becomes evident that the increase in
the number of transmitted samples results in narrowing the
estimated maximal error bounds. Figure 5 also demonstrates
the potential of the STCS-rwBPDN approach, when applied in
windows of non-stationary response signals, albeit necessitating
higher compression rates than the conventional stationary case.
The delivered error bounds allow for attributing some level of
confidence on the undertaken signal reconstruction operation,
which offers a benefit over the alternative (plain) BPDN approach
adopted by O’Connor et al. (2014).

PSBS Approach for Frequency Domain
PSD Signal Recovery
The efficacy of the PSBS approach is numerically evaluated herein
in terms of recovering quality PSD estimates from computer-
simulated compressed acceleration data. These compressed data
are derived through the application of the multi-coset sampling
pattern [section The Multi-Channel Power Spectrum Blind

Sampling (PSBS) Approach] to the corrected (i.e., baseline-
adjusted and band-pass filtered), full-length (N = 172,420
samples) acceleration time-series shown in Figure 6A. The
Welch periodogram (i.e., conventional PSD estimator) of the full-
length time-series before and after band-pass filtering is further
plotted in Figure 6B. The two PSDs are normalized to their
peak value to facilitate a comparison and have been computed
using 4,096 (=212) points in frequency domain, 8 overlapping
segments with 50% overlap, and windowing with a Hanning
envelop function. It is observed that peak PSD amplitude occurs
at ∼1.4Hz which is the dominant resonant frequency of the
monitored WT. Further, it is seen that most important signal
information lies in frequencies below 5Hz, as PSD values above
5Hz are negligible.

Given that the PSBS approach anticipates signal stationarity,
it is deemed essential to undertake data qualification test
to appraise the stationarity level of the recorded time-series
considered. To this end, the corrected data Figure 6A is divided
in seven time-frames of 2min duration and the standard non-
parametric reverse arrangement method (RAM) is used to
test statistically the stationarity hypothesis (Bendat and Piersol,
2010). The outcome of RAM application to a representative
2min long segment of the considered time-series is presented
in Figure 6C demonstrating that the stationarity hypothesis is
confirmed within a 95% confidence interval. Positive stationarity
hypothesis is confirmed at similar confidence level for the rest
of the 2 min-long segments of the data in Figure 6A. Therefore,
this WT recorded data can be treated as wide-sense stationary
at a high confidence level rendering the application of PSBS
meaningful and appropriate.

Next, the WT time-series in Figure 6A is multi-coset sampled
at three different CRs, 11, 21, and 31%, using the settings

listed in Table 1 and PSBS is applied to the compressed/sub-

Nyquist multi-coset samples to obtain single-channel PSD

function estimates using the PSD recovery formula in Equation.
Specifically, for the case of CR= 31%, the full-length acceleration
data-series (N = 172,420 samples) is divided into P = 10,776
(= N/N) blocks of lengthN = 16 each, and from each blockM=
5 samples are selected according to the sampling pattern n = [0,
1, 2, 5, 8]. These selected samples are collected in the compressed
measurement sequences ym[k] (m = 0, 1, 2, 3, 4; k = 1, 2, . . . , P)
in Equation resulting in the acquisition and transmission ofM =
53,880 compressed samples (i.e., 69% fewer samples compared
to the original signal). The estimator r̂yai ,y

b
j
[ℓ] in Equation is

then computed for i = j = 1 (i.e., single-sensor trivial case)
and ℓ ∈ [−40, 40] assuming support correlation parameter L
= 40. The latter consideration enables PSD function recovery

Ĝxx ∈ C
1296×1

in Equation with frequency discretization
step (resolution) 1ω = 4.85 · 10−3 rad/sin Equation. Similar
computational steps are taken for the cases of CR = 21 and 11%,
based on the relevant parameters in Table 1 which involve the
acquisition of 79% (i.e.,M = 35,368) and 89% (i.e.,M = 18,858)
fewer samples compared to the uniformly-sampled full-length
signal, respectively.

Figure 7 plots PSD functions recovered from CR = {11,
31%} (solid red curves) in logarithmic and in linear scale. These
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FIGURE 5 | Effect of the increase of transmission level CR on the estimated error bounds: CR = 30% (Left), CR = 45% (Right).

FIGURE 6 | (A) Base-line adjusted and filtered WT response acceleration data-series; (B) normalized Welch periodogram of raw and filtered WT response

acceleration data-series in log (db-like) scale; (C) representative reverse arrangement output results for a 2-min long filtered data-series segment.

TABLE 1 | Adopted multi-coset sampling and PSBS settings.

Compression ratio (CR) 11% 21% 31%

Number of cosets (M) 14 8 5

Length of data blocks (N) 128 39 16

Sampling pattern

sequence (n)

[0, 1, 2, 6, 8, 20,

29, 39, 47, 50,

53, 60, 63, 64]

[0, 1, 3, 7, 9, 14,

18, 19]

[0, 1, 2, 5, 8]

Correlation function

support (N (2L+1))

1,152 1,287 1,296

PSD discretization step

(1ω) in [rad/s]

5.45 × 10−3 4.88 × 10−3 4.85 × 10−3

functions are normalized to their peak attained value to facilitate
comparison against the standard Welch periodogram of the
filtered full-length recorded time-series superposed on Figure 7

(dotted blue curves) and normalized in the same manner. It
is qualitatively observed that the PSBS-based recovered PSDs
lie close to the PSD of the WT data for frequencies up to

5Hz which take on non-negligible values, and therefore, contain
dependable information for modal identification purposes under
ambient/operational excitation, for the low CR value (high data
compression level). Better quality point-wise matching between
the PSBS-based PSDs and the “exact” (non-compressed) PSD of
theWT data is achieved even beyond the 0–5Hz frequency range
for the highest CR value considered (i.e., lower data compression
level) as expected.

To discuss further the level of accuracy of the proposed PSBS
approach for modal properties identification Table 2 reports the
location of the three largest PSD ordinates obtained by simple

peak-picking from the recovered functions via PSBS, f̂r,PSBS, as
well as from the standardWelch periodogram applied to the non-
compressedWT acceleration data (CR= 100%), fr,Welch. Further,
the percentage difference error

dfr

fr
=

∣

∣

∣
f̂r,PSBS − fr,Welch

∣

∣

∣

fr,Welch
; r = 1, 2, 3, 4 (21)
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FIGURE 7 | Recovered PSDs using the PSBS approach for different CRs normalized to the peak values: (A) and (B) logarithmic (db-style) scale; (C,D) linear scale.

TABLE 2 | Frequency locations of peak PSD ordinates through peak-picking and

percentage difference errors for the PSBS approach at various CRs and for Welch

periodogram applied on the full-length signal (non-compressed) data-series.

CR 100% (Non-compressive/exact) 31% 21% 11%

f1 [Hz] 0.635 0.635 0.624 0.570

(df1/f1) – (0.0%) (1.7%) (10.2%)

f2 [Hz] 1.416 1.429 1.404 1.425

(df2/f2 [%]) – (0.9%) (0.8%) (0.6%)

f3 [Hz] 4.102 4.127 4.056 4.131

(df3/f3 [%]) – (0.6%) (1.1%) (0.7%)

is also reported as a measure of the quality of the recovered
PSDs via the PSBS method. It is seen that the location of the
two most prominent PSD peaks (r = 2, 3) is retrieved with
<1% error by the PSBS approach for signal compression level as
low as 89% below the sampling rate of the original data series.
However, the accuracy drops as CR reduces (compression level
increases) for the least prominent peak, r = 1, corresponding
to an inadequately excited vibration mode whose detection is
inherently a challenging task.

ASSESSMENT FOR MODE SHAPE
EXTRACTION UNDER OPERATIONAL
LOADING CONDITIONS

In this section, the effectiveness of STCS-rwPBDN and PSBS
approaches for extracting modes of vibration and natural
frequencies is numerically assessed within the OMA context. To
this aim, response acceleration time-histories field recorded in a
typical highway overpass open to traffic are used. The considered
bridge is the Bärenbohlstrasse overpass in Zürich, Switzerland.
The structure is 30.90m long and fairly symmetric along its
longitudinal direction. It consists of a solid prestressed-slab with
two equal-length spans of 14.75m each. The deck is supported
in all directions at mid-span and in one of the two abutments,
while it is only supported in the vertical and transverse directions
at the second abutment. The deck was instrumented with a
network of 18 conventional wired accelerometers recording
vertical acceleration time-histories at 200Hz sampling rate for
∼10min per hour from 12th July 2013 to 26th July 2014. The
layout of the sensor network deployment is shown in Figure 8;
more details about the bridge and the monitoring campaign can
be found in Klis et al. (2016).
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FIGURE 8 | Sensor network layout at the deck of the Bärenbohlstrasse overpass (Klis et al., 2016).

Herein, the first 2 min-long recordings of a dataset of
18 vertical acceleration time-series simultaneously recorded on
19/06/2014 between 15:08:54 and 15:17:51 from each of the 18
sensors of the network are used. The dataset is pre-processed
in the same way as the WT data-series case-study in section
STCS-rwBPDN Approach for Time Domain Signal Recovery.
That is, they are baseline adjusted and band-limited within
[0.15, 50Hz] frequency range using a band-pass 4th-order
Butterworth filter. For illustration, Figure 9 plots the band-
pass filtered acceleration response signal recorded at sensor
#13, together with its magnitude Fourier spectrum. Further,
representative results from RAM application to a 1min long
segment of this record is provided demonstrating a very high
level of data stationarity (i.e., much higher than the WT data-set;
see Figure 6C for comparison).

Next, the first 2min of the 18 time-series are downsampled at
100Hz and treated by the STCS-rwPBDN and PSBS approaches.
Starting from the STCS-rwPBDN approach, the considered
dataset is first partitioned into R = 29 windows (frames) of NR=
400 samples, and each window is projected into the spectral
(Fourier) domain as indicatively shown in Figure 10A for an
arbitrarily chosen data-frame of sensor #1 time-series. Following
the STCS-rwPBDN methodology in section Spectro-Temporal
Compressive Sensing (STCS) Approach via rwBPDN, the spectral
(Fourier) coefficients per data frame are then thresholded with a
value ǫij = ǫl‖cij‖1/NR, j = 1 . . .R, which pertains to ǫl = 1.5,
yielding the spectral domain elements illustrated in Figure 10A.
The selected support elements are further used to form a
weighting matrix Wij per data frame. Considering next two
different CRs at {36%,11%}, the compressed samples yi (denoted
with a cross in Figure 10B) are selected and used to retrieve the
reconstructed time-domain sequence plotted in Figure 10B by a
broken line. The standard Natural eXcitation Technique (NeXT)
combined with the EigensystemRealization Algorithm (ERA) are
then used to extract estimates of the bridge deck mode shapes,

φ̂r (r = 1, 2, . . . ), and natural frequencies, f̂r (r = 1, 2, . . . ), within
an OMA context (Brincker and Ventura, 2015).

Moreover, the same dataset is treated by the PSBS approach
using the same procedure and settings as in the WT case-study

in Table 1 to recover the PSD matrices Ĝxixj ∈ C
N(2L+1)×18 in

Equation for CR = {31, 21, 11%}. The standard FDD algorithm
ofOMA (Brincker andVentura, 2015) is applied to thesematrices
to find estimates of estimates ofmode shapes, φ̂r(r= 1, 2, . . . ), and

natural frequencies, f̂r (r = 1, 2, . . . ), of the monitored bridge.
Indicatively, the first row of panels of Figure 11 plots the first
four estimated mode shapes of the bridge for CR = 11% using
the PSBS with FDD approach.

The quality/accuracy of modal properties extracted through
the STCS-rwPBDN and PSBS approaches is assessed by
comparison to natural frequencies, fr (r = 1, 2, . . . ), and mode
shapes, φr (r = 1, 2, . . . ), obtained by application of the standard
FDD to the full-length (non-compressive) dataset of recorded
acceleration time-histories which are treated as the “exact” ones.
The second row of panels of Figure 11 plots the first four
exact mode shapes and further reports the corresponding natural
frequencies. Table 3 reports percentage difference errors of the
first four natural frequencies of the bridge deck obtained through
coupling the STCS-rwPBDN with NeXT-ERA as well as the PSBS
with FDD for different CRs with respect to the exact (non-
compressive) ones as per Equation (21). It further collects the
corresponding Modal Assurance Criterion (MAC) values defined
by (Brincker and Ventura, 2015)

MAC =

∣

∣

∣
φT
r φ̂r

∣

∣

∣

2

‖φr‖22
∥

∥

∥
φ̂r

∥

∥

∥

2

2

r = 1, 2, 3, 4 (22)

to quantitatively compare the mode shapes extracted through
the two compressive/sub-Nyquist approaches considered for
different CRs with the exact mode shapes. As a commonly used
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FIGURE 9 | (A) Base-line adjusted and filtered bridge acceleration data-series from sensor #13 in Figure 8; (B) normalized Fourier amplitude spectrum of the

data-series in (A); (C) representative reverse arrangement output results for a 2-min long filtered data-series segment.

FIGURE 10 | Spectral domain projection (left) and time-domain recovery (right) of data-frame #4, channel #1 at CR = 36%. Crosses indicate transmitted samples

used in the recovery process.

criterion, estimated mode shapes withMAC > 0.90 are regarded
to be acceptably close to the exact ones.

By examining the numerical data in Table 3, it is seen that
both STCS-rwPBDN and PSBS approaches are quite accurate in
identifying natural frequencies as the error df/f is well below
1% even for the lowest CR = 11% value corresponding to
average sampling rate of 89% below the Nyquist rate which
equals to 100Hz for the dataset considered. Further, the PSBS
approach yields accurate mode shapes across the board for CR
as low as 21%. For the lowest CR (=11%), PSBS is still capable
of extracting the 1st and 3rd modes with acceptable accuracy,
as can be visually appreciated by comparing the mode shapes
in Figures 11A,C with Figures 11E,G, respectively. However,
PSBS fails to pass the MAC > 0.90 criterion for 2nd and
4th modes for CR = 11% as highlighted in boldface font in
Table 3 (compare also Figures 11B,D with Figures 11F,H). This
is readily attributed to the fact that 2nd and 4th modes are
significantly less excited than 1st and 3rd modes as evidenced by
the amplitude of the respective Fourier coefficients in Figure 9B.
Higher than 11% CR (i.e., larger number of measurements) is
required for the PSBS approach to accurately probe into the least
excited 2nd and 4th modes. On the antipode, the STCS-rwPBDN

approach provides good estimates for all four modes even at
CR= 11%.

To highlight the practical merit of considering reduced
CR values, estimates of daily energy consumption and battery
lifetime savings for a single wireless sensor node of the WSN
in Figure 8 are further reported in Table 4. The data account
for only data transmission power requirement as this is by
far the most energy demanding sensor operation (e.g., Lynch,
2007). The reported estimates are based on the assumption
that each sensor acquires 2min long acceleration signals at
Nyquist rate (CR = 100%) with Fs = 100Hz (Ts = 0.01 s)
under operational conditions every 1 h (i.e., a dataset of Q = 24
signals are collected daily per sensor with each signal comprising
12,000 measurements for CR = 100%). Power consumption
during transmission of Pt = 103.8 mW is taken based on the
specification of a typical wireless sensor used for SHM: the
WiseNode v4 developed by Novakovic et al. (2009). Table 4
reports transmission time, energy consumption, and battery
lifetime for three different CRs previously considered in Table 3.
For illustration, computations pertaining to the case of CR= 11%
are presented in detail for which only 12,000 × 0.11 = 1,320
compressed measurements per hour are wirelessly transmitted.

Frontiers in Built Environment | www.frontiersin.org 12 September 2019 | Volume 5 | Article 111

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Gkoktsi et al. Monitoring Using Sub-Nyquist/Compressive Sensing

FIGURE 11 | Mode shapes of Bärenbohlstrasse overpass: (A–D): estimated using the PSBS approach for CR = 11%; (E–H): “exact” (non-compressive) by

application of FDD to the full-length recorded data.

TABLE 3 | Quantitative assessment of the accuracy of natural frequencies and mode shapes for the bridge case-study obtained by the PSBS with FDD and by the

STCS-rwPBDN with NeXT-ERA approaches for different CRs vis-à-vis standard non-compressive FDD approach.

Non-compressive FDD STCS-rwPBDN plus NeXT-ERA PSBS plus FDD

CR = 100% CR = 36% CR = 11% CR = 31% CR = 21% CR = 11%

Mode f [Hz] df/f [%] MAC df/f [%] MAC df/f [%] MAC df/f [%] MAC df/f [%] MAC

1 7.62 0.63 1.00 0.52 0.98 0.57 1.00 0.20 0.99 0.68 0.99

2 10.35 0.18 0.98 0.32 0.98 0.04 0.98 0.32 0.91 0.04 0.89

3 11.72 0.19 0.99 0.14 0.99 0.24 0.99 0.35 0.98 0.57 0.94

4 12.50 1.22 0.96 0.78 0.94 0.15 0.98 0.31 0.93 0.17 0.64

Assuming that ADC units with 16 bits (i.e., 2 bytes) resolution
are used, IFWD = 2,640 bytes of data package information are
generated per compressed sequence taking t = (IFWD/It1) × t1
= 7.54 s to be wirelessly transmitted to the server, where It1 = 7
bytes is the information carried within one data package and t1 =
0.02 s is the time required for package transmission (Novakovic
et al., 2009). Thus, ttot =Q× 7.54= 181 s (or 0.05 h) are required
for the daily transmission of all compressed acceleration response
data, consuming Etot= Pt×ttot = 18.79 J of energy per day. It is
further assumed that sensor energy supply of 3V comes from
two AA-sized batteries with nominal voltage Vn = 1.5V and
capacity Cn = 3,000 mAh, providing energy Eb= 64,800 J. A
continuous discharge current is taken to occur in the batteries
resulting in ξ = 1% annual energy loss. Then, sensor battery

lifetime, given by

Tb =
Eb

Etot + Eb × ξ/365
, (23)

is estimated as Tb= 104.8 months.
Similar calculations are performed to estimate Etot and Tb

for CR = 21, 31% as well as CR = 100% (non-compressive
transmission) shown in Table 4. The latter case is the one most
widely considered in the literature in comparative studies on
energy savings quantification in wireless sensors (e.g., O’Connor
et al., 2013, 2014; Klis and Chatzi, 2016b). In this respect, Table 4
reports energy reduction and battery gain ratio for all CR< 100%
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TABLE 4 | Daily sensor energy consumption and battery lifetime gains due to

wireless data transmission for various CRs.

Compression

ratio (CR)

100% (non-compressive) 31% 21% 11%

Transmission

time (ttot) [h]

0.46 0.14 0.10 0.05

Energy spent

(Etot ) [J]

170.83 52.96 35.87 18.79

Energy reduction

(ER)

– 69% 79% 89%

Battery life (Tb)

[months]

12.5 39.4 57.3 104.8

Battery gain

Ratio (BR)

– 3.15 4.58 8.38

examined with respect to CR= 100% given as

ER = Etot|CR = 100 − Etot|CR
Etot|CR = 100

× 100 % and

Tb = Tb|CR
Tb|CR = 100

, (24)

respectively. Evidently, battery life expectancy increases
dramatically as CR reduces: it more than triples for CR = 31%
compared to non-compressive sampling/transmission, while
it increases more than 8 times for CR = 11%. In this respect,
through collective consideration of the data in Tables 3, 4, it
can be concluded that the considered approaches effectively
support more sustainable wireless monitoring systems having
reduced maintenance costs and environmental impact associated
with sensors battery replacement which can be scheduled at
much longer intervals without significant deterioration to the
accuracy of the estimated modal properties compared to Nyquist
data sampling.

Note, however, that in a practical setting, the choice of
CR (and corresponding battery lifetime gains) is normally
dictated by the sought level of accuracy in extracting modal
properties according to the monitoring purpose and objectives.
If accurate modal properties estimation in the absolute sense
is desired (e.g., for updating computational models of as-
built structures, or for designing/assessing the performance of
vibration control devices, such as tuned mass dampers, to reduce
dynamic response of structures) higher CR values should be
adopted (e.g., CR > 31%). In such cases, battery lifetime gains
may be relatively low but, at the same time, these gains may
be a less important practical consideration. On the antipode,
lower CR values (e.g., CR = 21% or lower) may be adopted
in monitoring campaigns for which extending sensor battery
lifetime becomes a priority over modal extraction accuracy. One
such example is in long-term/permanent structural monitoring
deployments aiming to detect structural damage (e.g., due to
natural deterioration or after an extreme event), in which case
reducing battery replacement frequency, and thus maintenance
costs, becomes important and may be a main criterion for
installing a monitoring system in the first place (e.g., O’Connor
et al., 2014), while accuracy of modal properties in the absolute

sense is less important since changes to modal properties (as a
function of environmental conditions) are of interest.

In every case, the data furnished in Tables 3, 4 are
only indicative and should be used/interpreted comparatively
rather than in an absolute. Indeed, recorded measurements
considered to derive modal properties have been obtained
by a wired sensor network and, therefore, do not account
for the influence of errors that may be encountered in
WSNs, such as loss of synchronization. Moreover, power
consumption (and thus battery lifetime gains) varies from sensor
to sensor in a WSN and is dependent on several factors
including environmental conditions, distance from sensors to
base station, data communication protocols, etc. In this regard,
field deployment of WSNs operating on PSBS and STCS-
rwPBDN is required to appraise the quality of modal properties
and battery gains in an absolute application-specific sense; such
consideration falls outside the scope of this work.

CONCLUDING REMARKS

The applicability and performance of two recently proposed
approaches for output-only modal identification supporting low
energy consumption wireless sensors has been comparatively
demonstrated through numerical assessment using field recorded
acceleration data. Both the approaches aim to reduce wireless
data transmission payloads by considering compressed structural
acceleration responses acquired non-uniformly in time at sub-
Nyquist average sampling rates. The first, STCS-rwBPDN,
approach aims to recover acceleration time-histories in time-
domain from low-rate randomly acquired measurements using
the rwBPDN algorithm of compressing sensing. The accuracy
and efficiency of this operation requires knowledge of the signal
support in the frequency domain prior to transmission of
compressed measurements from sensor nodes to a central server
where time-domain reconstruction takes place. This knowledge
is gained through sampling and interrogation of full-length
acceleration data at the sensing nodes as well as sensors/server
exchange of pertinent information. In this regard, STCS-
rwBPDN can recover the time trace of response acceleration
signals in a deterministic setting and, therefore, can be coupled at
the post-processing back-end with any standard OMA technique
for modal properties extraction. Nevertheless, this flexibility
comes at the cost of a relatively sophisticated wireless data
communication strategy as well the necessity to sample signals
at Nyquist frequency or above at sensors front-end. The second,
PSBS, approach is effectively a spectral estimation technique
aiming to recover second-order statistics (i.e., correlation or PSD
functions) of response acceleration signals treated as stationary
random processes and acquired through low-rate deterministic
non-uniform-in-time multi-coset sampling. Compared to STCS-
rwBPDN, the main practical advantage of the PSBS-based
approach is its simplicity of wireless communication within
WSNs as well as minimal on-sensor data interrogation. Low-rate
multi-coset samples can be acquired using some pre-specified
sampling pattern at each sensor and communicated as-recorded
directly to a server. This high level of data transmission simplicity

Frontiers in Built Environment | www.frontiersin.org 14 September 2019 | Volume 5 | Article 111

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Gkoktsi et al. Monitoring Using Sub-Nyquist/Compressive Sensing

is made possible by the inherent signal agnostic attribute of PSBS
which does not require any prior knowledge about signal spectral
support. However, PSBS approach cannot retrieve time traces
of the acquired signals and this limits the system identification
methodologies that can be applied at the back end of the
approach to those relying on only second-order signal statistics
for modal properties extraction. One such method is the FDD
which was herein coupled with PSBS to deliver mode shapes
and natural frequencies directly from the low-rate multi-coset
sampled response accelerations.

The validation of the two approaches was carried out
by considering field-recorded acceleration data obtained from
conventional wired sensor deployments in an operating on-
shore wind turbine and in a highway overpass (bridge) open
to traffic. The recorded data have been compressed to different
levels (CRs) and processed by both approaches. PSBS captured
successfully salient frequency domain information for the dataset
of the wind turbine for CR as low as 11% (i.e., using 89%
less measurements from the conventionally sampled dataset).
This demonstrates the potential of the method to treat real-life
data that may deviate from perfect stationary signal conditions.
Similarly, STCS-rwBPDN was shown to recover faithfully time
traces of the wind turbine data set at same low CR levels (11%). In
view of these results, it is concluded that bothmethods are equally
promising for SHM of wind turbines using low-rate acceleration
measurements. Moreover, STCS-rwBPDN coupled with standard
NeXT-ERA was able to retrieve quality estimates of mode shapes
and natural frequencies of the bridge case-study again at CR =
11%. PSBS was also able to capture with high accuracy the same
mode shapes for CR = 21% while only the two most significant
ones were retrieved at CR= 11% satisfactorily.

In view of the herein reported numerical results, it is
concluded that both the considered approaches are capable for
accurate output-only system identification of large-scale civil
infrastructure while being, to a good extend, complementary.
Moreover, it is noted that both approaches can be used to
acquire alternative types of signals to acceleration data, such as
tilt measurements and dynamic strains considered in SHM. It
is thus envisioned that smart sensing nodes may incorporate
both these approaches for reducing data transmission payloads
in WSNs which will allow operators to switch between the two
depending on their monitoring needs at any given time: time-
series recovery at, perhaps, some increased data transmission
requirements and more intense on-sensor processing or modal
properties recovery at minimum wireless data exchange and with
minimum on-sensor data interrogation.

Still, note that all datasets considered in this work pertain to
wired sensors and, therefore, are free from errors that are more

common in WSNs, such as missing data or gaps in data due to
data loss in wireless transmission, loss of synchronization among
sensors, etc. The extent of such errors and its potential impact
to the quality of monitoring (e.g., accuracy of extracted mode
shapes and natural frequencies) is application-specific depending
on factors, such as the technology and quality of the sensor nodes
used, the topology ofWSN, the nature and scale of the monitored
structure, the environmental conditions etc. Moreover, the same
factors influence sensor energy consumption and ultimately
battery lifetime. In this regard, consideration of long-term real-
life field deployments of WSNs operating on the examined
approaches is further warranted to verify the accuracy and battery
life prolongation of the approaches for full-fledged monitoring of
large-scale civil engineering structures. This consideration is left
for future work.
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