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Numerical modeling of masonry structures is nowadays still an active research field, and

this is partly due to a number of open issues related to preservation and restoration

of historical constructions and the availability of computational tools that have become

more and more refined. This work focuses on the analysis of settlement-induced

failure patterns characterizing the in-plane response of two-dimensional dry-joints

masonry panels, which differ in terms of texture, geometry, and settlement configuration.

Brick-block masonry, interpreted as a jointed assembly of prismatic particles in dry

contact, can be modeled as a discrete system of rigid blocks interacting through

contact surfaces with no tensile strength and finite friction, modeled as zero thickness

elasto-plastic Mohr-Coulomb interfaces. Different approaches and numerical models

have been adopted herein: Limit Analysis (LA), a discrete model DEM, and a continuous

Finite Element Model (FEM). Limit Analysis is able to provide fast and reliable results in

terms of collapse multiplier and relative kinematics. In this work, a standard LA procedure

was coded through Linearized Mathematical Programming to take into account sliding

mechanisms through dilatant joints. Discrete models are particularly suitable to study

historical masonry materials, where rigid bodies interact between contact and friction.

Here, a combined Finite/Discrete Element approach (FEM/DEM) is adopted. Finally,

analyses are conducted through the Finite Element approach, resorting to a continuum

anisotropic elastic perfectly plastic constitutive model. Some selected case studies

have been investigated and found to have adopted the above mentioned models, and

numerical results have been interpreted to highlight the capability of the approaches to

predict failure patterns for various geometrical features of the structure and settlement

configurations.

Keywords: limit analysis, FEM/DEM, finite element, masonry structures, rigid blocks, settlements

1. INTRODUCTION

Masonry is one of the most ancient structural materials and constitutes a vast majority of the
World’s architectural heritage. It is a composite and heterogeneous medium, resulting from
the assemblage of natural or artificial blocks by means of mortar layers or dry joints. Being
characterized by an internal structure, which is reflected in a complex mechanical response,
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masonry and its constitutive behavior still represent a challenging
research field. Thanks to the availability of more and more
powerful computational resources, over the last decades, a
large number of numerical applications have been developed,
many of which have resorted to using different constitutive
assumptions and solution algorithms. Nonetheless, it is not
possible to argue that each of these models suit just any structural
problem their applicability needs to be evaluated case by case
on the basis of geometrical features, the extent of the structure,
and the boundary conditions. Among the available numerical
modeling techniques for masonry structures, a broad distinction
can be made between micromechanical, micromechanical, and
multiscale models defined as follows. A significant classification
can be found in D’Altri et al. (2019).

According to micromodeling strategy, the constituents,
namely, the units, mortar (if present), and unit/mortar interfaces,
are separately modeled, and each part is assigned a properly
calibrated constitutive law. This approach is particularly suitable
if the response of the assemblage needs to be accurately described
(Lotfi and Shing, 1994; Lourenço and Rots, 1997; Oliveira and
Lourenço, 2004; Alfano and Sacco, 2006; Serpieri et al., 2017), but
a major hindrance is still represented by its high computational
cost, a consequence of the large number of degrees of freedom
needed to describe the structural configuration (Clementi et al.,
2019, 2020). In addition, the adopted constitutive assumptions
often imply the calibration of a large set of parameters, which are
not always easily determined.

Following a macromechanical approach, the heterogeneous
medium is modeled as a continuum, and the constitutive
behavior is usually described through phenomenologically based
mathematical relations in which degrading phenomena are
the product of damage or friction variables. In this case,
macroscopic mechanical properties are more easily derived
from standard experimental tests on small masonry specimens.
These models are, if compared to micromechanical ones, more
efficient from a computational point of view (Del Piero, 1989;
Gambarotta and Lagomarsino, 1997; Roca et al., 2005; Sangirardi
et al., 2019a) and are widely used for real-scale applications
in which, depending on the complexity of the geometry of
the structure, different discretization strategies might result in
the adoption of monodimensional, bidimensional, or three-
dimensional finite elements.

Multiscale, i.e., micro-macro, continuum models represent a
very promising approach for the analysis of masonry structures
since they can accurately keep track of the mechanical and
geometrical properties of the material at the microstructure
with a reduced computational cost if compared to a fully
micromechanical model (Masiani and Trovalusci, 1996;
De Buhan and de Felice, 1997; de Felice et al., 2010; Trovalusci
et al., 2010; Leonetti et al., 2018; Reccia et al., 2018). These
models are often derived by considering two material scales: a
microscale where, having deduced the mechanical properties
of the components through experimental tests, a material
representative volume element (RVE) is defined and amacroscale
structural level, where a homogeneous continuum is obtained by
performing a homogenization procedure based on the solution
of boundary conditions problems for the RVE (Addessi et al.,

2016, 2018; Greco et al., 2016, 2017). Other multiscale strategies
make use of different homogenization techniques based on the
so-called Cauchy rule and its generalizations (Capecchi et al.,
2011), allowing the derivation of generalized continua, such as
micropolar continua able to properly represent scale effects, that,
in masonry materials, are significant (Masiani and Trovalusci,
1996; Trovalusci and Masiani, 2003; Pau and Trovalusci, 2012;
Fantuzzi et al., 2019; Leonetti et al., 2019).

Due to their characteristics, masonry constructions have
proven to be particularly vulnerable not only to earthquakes
but also to structural settlements. Cracking and damage, in
fact, often occur as a consequence of ground movements. In
urban areas, this phenomenon is related to the realization of
underground infrastructures or, more generally, to anthropic
triggering factors, while natural hazards (e.g., slow-moving
landslides, liquefaction, or consolidation processes) are more
likely to interfere with masonry constructions in rural areas.
In both cases, the understanding of the phenomenon and its
description are fundamental to identifying the causes as well
as preventing the effects with appropriate protection measures,
both for modern and historical constructions. Several approaches
to the prediction of settlement-induced damage that consider
masonry either as an assembly of discrete blocks (DeJong, 2016;
Portioli and Cascini, 2016) or as a continuum medium (Burd
et al., 2000; Amorosi et al., 2014) may be found in the literature.
The comparison between discrete and continuous models is also
a widespread topic (Casalegno et al., 2013; de Felice and Malena,
2019; Malena et al., 2019; Zampieri et al., 2019; Landolfo et al.,
2020).

In this work, three modeling techniques have been adopted
to describe settlement induced crack patterns in masonry
panels characterized by different geometrical configurations and
boundary conditions, reproducing the ground movement as a
downward moving rigid block. Equations governing systems
of rigid blocks interacting though no tension and frictional
interfaces formally correspond to those of perfect plastic systems
with non-associative flow rule (Fichera, 1964). Limit Analysis,
largely recognized as a very effective tool to estimate collapse
load and collapse mechanisms for masonry structures (Baggio
and Trovalusci, 2000; Milani, 2011; Portioli et al., 2014; Milani
and Taliercio, 2016; Pavlovic et al., 2016; Cascini et al., 2018; Pepe
et al., 2019b), is used to determine the failure configuration of
dry joints masonry panels subjected to settlements, modeling the
walls (according to the microscale approach) as an assemblage
of rigid blocks in contact through frictional interfaces. It is
important to underline that the Limit Analysis model presented
here is based on the perfect plasticity hypothesis, and information
about the ultimate displacement entities is thus not available.
Moreover, results have only been compared in terms of crack
patterns because the upper bound approach provides the collapse
mechanism of the structure without giving information about the
contact actions between the blocks and, in particular, about the
base reaction.

The results of the analyses, performed on panels, walls with
openings, and facades, are compared with the ones obtained
through an FEM/DEM approach (Baraldi et al., 2018) and
with those obtained by means of a continuum (macroscale)

Frontiers in Built Environment | www.frontiersin.org 2 April 2020 | Volume 6 | Article 43

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Pepe et al. Failure Analysis of Masonry Structures

Finite Element approach, adopting an elasto-plastic anisotropic
constitutive model (Lasciarrea et al., 2019; Sangirardi et al.,
2019b). The main features of the models are recalled in section
2, the selected case-studies and the results of the analyses are
then presented in section 3 and critically compared in order to
highlight the influence of walls aspect ratio, width of the settling
area, and presence of openings. Finally in section 4, some remarks
and future developments are reported.

2. ADOPTED MICROMODELS

2.1. Rigid Block Model for Limit Analysis
The first adopted model is framed within the Limit Analysis
(LA) theory, taking into account the presence of friction. The
model considers as a system of n rigid blocks directly interacting
through m contact surfaces that are unable to carry tension and
are resistant to sliding by friction. The blocks can translate and
rotate about the edges of the contact surfaces (hinging) as well as
sliding along the joints.
In order to provide the mechanical details of the model, consider
two simple blocks represented in Figure 1A, introducing ei =

{e1, e2, e3}T , the orthonormal basis in the three-dimensional
space. Loads are applied to the centroid of each rigid block i−th:

static “dead” loads are collected in vector f i0 =
{

f i01, f
i
02,m

i
03

}T
,

and live loads are collected in the vector f iL =
{

f iL1, f
i
L2,m

i
L3

}T
. For

the whole structure, f 0 = {f i0} and f L = {f iL}, with i = 1, . . . , n.
The vector of the load over the whole system is f = f 0 + αf L,
where live loads are proportional to the dead loads through a
non-negative coefficient, α, called the collapse multiplier. Let
ui = {ui1, u

i
2, θ

i
3} denote the vector of generalized displacement

of the centroid of each i−th block. The vector u = {ui}, with
i = 1, . . . , n, collects the displacement for the whole structure,
which correspond in a virtual work sense to loads f .
The static variables are the internal forces acting at each j−th
contact surface between blocks, that is, the normal force Nj, the
shear force Tj, and the moment Mj. For each joint, they are
collected in vector σ

j = {Nj,Tj,Mj}T . The vector σ = {σ j}, with
j = 1, . . . ,m, refers to the whole structure.
The kinematic variables, or generalized strain, are the relative
displacement rates at joints: normal displacement ξ j, tangential
displacement γ j, and rotation χ j. For each joint j = 1, . . . ,m,
they are collected in the vector ε

j = {ξ j, γ j,χ j}T . The vector
ε = {εj} refers to the whole structure and corresponds in a virtual
work sense to the vector of static variables σ .
The kinematic compatibility for the whole system is expressed by
equation

ε = B u , (1)

where B represents the compatibility matrix defined in Baggio
and Trovalusci (2000).
The equilibrium of the whole structure is defined by the equation

BT
σ + f = 0 . (2)

The generalized yield domain of the system can be written as

y = NT
σ ≤ 0 , (3)

FIGURE 1 | (A) Simple two-blocks structure (B) Displacement components

for a rigid block (C) Model for settlement: panel with fictitious block.

where N is the block-diagonal gradient matrix referred to the
adopted failure surface.
The flow rule expresses the vector ε as a linear combination of
non-negative coefficients λ, called inelastic multiplier, and it can
be written as

ε = M λ . (4)

The plastic behavior of contact surfaces is defined through the
complementarity condition

λ
Ty = 0 . (5)

Furthermore, the non-negative work of the live loads which cause
the collapse mechanism is defined by the following equation

f TLu = 1 . (6)

In Baggio and Trovalusci (2000) the authors presented a
homemade code, ALMA (Analisi Limite Murature Attritive)
based on a two-step procedure, to deal with the non-linear
and non-convex programming problem (NLNCP) related to
the presence of frictional interfaces (non-standard LA) of
bidimensional and three-dimensional block masonry structures.

As reported in Pepe et al. (2019a,b), following the approach in
Baggio and Trovalusci (2000), a new version of the code, ALMA
2.0, was implemented using MATLAB R© for linear optimization
and a PythonTM interface for pre and post processing operations.
In particular, this new version is based on the kinematic approach
of Limit Analysis and considers for sliding a linearized behavior
of joints. This aspect is significant because the computational
effort due to the solution of the NLNCP is avoided. Indeed,
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the advantage of a linear mathematical programming technique,
deriving by the presence of the dilatant behavior of the contact
surfaces, can provide a unique and quite fast solution of
the problem.

Here, the optimization problem presented in Pepe et al.
(2019b) has been modified to include the presence of settlements
into the model (Pepe, 2020). A preliminary modification of
the model has been the introduction of the possibility to
add kinematic constraints to the block of the structure. The
displacement components of every points of a generic ith block
have been expressed as function of the displacement components
of its center of gravity. Let consider a generic point A of the ith
block shown in Figure 1B. Equation of rigid motion, describing
its horizontal, vertical, and rotation movement are reported as
follows

ûA1 = uG1 − θG3 hv,i ,

ûA2 = uG2 + θG3 ho,i ,

θ̂A3 = θG3 ,

(7)

assumed in a compact form as

û = V u , (8)

where, for the whole structure, the matrix V contains the
geometrical information of the points where the kinematical
constraints are inserted. In particular, the components of
displacement û became identically null depending on the
typology of the external constraint considered. The modified
programming problem, considering the expression of u, written
as a function of the inelastic multiplier λ, is represented by,

min α = −λ
T(A0N1)

T f 0 subjected to

(AN1 − N2)λ = 0 ,

λ
T(A0N1)

T f L − 1 = 0 ,

VA0N1λ = 0 ,

λ ≥ 0 ,

(9)

where introducing B1, i.e., the kinematical submatrix of
maximum rank, and B2, the rest of the kinematical matrix, the
matrix A0 is the inverse of B1. The matrix is defined as A =

B2B
−1
1 , and N is the transpose of block-diagonal gradient matrix

(N = [N1,N2]).
The equation (AN1 − N2)λ = 0 represents the kinematic

compatibility conditions, λT(A0N1)T f L − 1 = 0 is the positive
work of live loads and VA0N1λ = 0 represents the equations
used to introduce the kinematical constraints on rigid blocks.
Following the idea of Portioli and Cascini (2016), in order to
introduce a local foundation settlement into the model, the
mathematical and geometrical formulation of the model has
been modified with the addition of a fictitious rigid block, with
degrees of freedom associated to the imposed movement. In
Figure 1C, an example of the modified geometric model for a
simple masonry panel is shown, indicating in yellow the fictitious
rigid block.

Another difference introduced into the model concerns the
definition of the loads applied to the blocks. Indeed, in that
case, every block of the structure is subjected only to its
dead load, while live load is applied only on the block that
simulates the settlement. In detail, for that block, dead load is an
upward force assumed to be proportional to an admissible base
reaction without foundation settlement, considering a uniform
distribution of vertical loads in the structure, and it is denoted as
f (0,r), while live load f L is a downward force equal to dead load
f (0,r) and proportional to the collapse multiplier α. In the case
of LA based on a lower bound approach, the collapse multiplier
gives information about the base reaction at failure. Otherwise,
since the code here presented is based on upper bound approach,
it represents a mathematical expedient to define analytically the
settlement of the fictitious block.

Figure 1C shows the loading condition for the support block.
The optimization problem has been changed, taking advantage
of the previous modification developed to include kinematic
constraints. Indeed the displacement components of any point
of the fictitious block ûs are related to displacement components
of the centroid us by means a matrix S that plays the same role of
matrix V introduced for kinematic constraints

ûs = S us . (10)

It is consequently possible to particularize the movement of the
support block us using the components described by the vector
ûs. Indeed, purely translational or rotational displacements are
allowed, provided the ûs vector coherently defined. The modified
programming problem, considering the expression us written as
a function of the inelastic multiplier λ, is represented by,

min α = −λ
T(A0N1)

T f 0 subjected to

(AN1 − N2)λ = 0 ,

λ
T(A0N1)

T f L − 1 = 0 ,

SA0N1λ = 0 ,

λ ≥ 0 .

(11)

The equation SA0N1λ = 0 is the additional equality constraint
to take into account the kinematic of the rigid fictitious block.

2.2. Combined Finite/Discrete Element
Model
A discrete model, made by means of a combined Finite-Discrete
Element Model (FEM/DEM) approach, has been adopted here.

Discrete ElementModels (DEM) (Cundall, 1988) are a specific
class of discrete models in which distinct elements can move
independently, can come in or loose contact with other elements
(the contact detection is governed by a molecular algorithm),
and large displacements are considered (Cundall andHart, 1992).
DEM are suitable to study non-linear problems characterized
by the mutual movement of rigid bodies interacting by means
of both contact and friction, such as jointed rock and granular
assemblies (Cundall and Strack, 1979), and they have recently
been adopted for masonry modeling (Cecchi and Sab, 2004, 2009;
Lemos, 2007; Baraldi et al., 2015a).
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In order to describe the deformability of the elements, simple
FE discretizations have been proposed since the beginning of
the development of DE Method (Cundall et al., 1985). Here, the
combined FEM/DEM approach proposed byMunjiza (2004) and
developed by the Toronto Geo Group (Mahabadi et al., 2010) has
been adopted. The approach relies on a combination of FEM and
DEM: DEs are meshed into FEs with embedded crack elements
that activate whenever the peak strength is reached. In this way,
elastic deformation in the continuum is accounted by FEs, while
interaction, fracture, and fragmentation processes are modeled
by DEs.

The FEM/DEM approach adopted here has been successfully
adopted for masonry structures by some of the authors (Reccia
et al., 2012, 2016, 2018; Baraldi et al., 2013, 2015b, 2018, 2019;
Pepe et al., 2019a,b) and by other research groups (Smoljanović
et al., 2013, 2015, 2017).

Numerical analyses are performed through the open source
computer codes Y2D/Y-GUI (Mahabadi et al., 2010) and Y-
Geo (Mahabadi et al., 2012), while input and results have
been processed by means of CAD, ad-hoc MATLAB R© scripts
and spreadsheets.

The specimens were discretized through a triangular CST FEs
mesh under plane stress hypotheses. As rigid and cracking can
only occur in the joints, masonry units were modeled as zero-
thickness interfaces based on aMohr-Coulomb strength criterion
with no cohesion holds. Since the aim of the work was to compare
the results of different models with those obtained with LA,
which implicitly considers the blocks non-deformable, in order
to avoid cracks inside the bricks, the FEM/DEMmodel units were
characterized by a very high value of Young’s Modulus.

2.3. FEM
The third approach adopted to analyze failure mechanisms
characterizing the response to settlements of masonry
constructions is a continuum finite element (FE) one. The
constitutive model, implemented in the FE code PLAXIS 3D R©,
is a three-dimensional anisotropic elastic-perfectly plastic one.
It stems from the Jointed Rock Model, and it has been enriched
with consideration for the block aspect ratio and staggering joints
effects. The Jointed Masonry Model (Lasciarrea et al., 2019) is
characterized by isotropic elasticity and anisotropic yielding
and can be included in the class of multi-laminates models
(Pietruszczak and Niu, 1992). Macroscopic elastic properties
of the continuum are derived from the joints and blocks ones
through a homogenization procedure (De Buhan and de Felice,
1997; de Felice et al., 2010), and an equivalent isotropic behavior
can also be assumed assigning the material an average elastic
modulus E as in the presented case-studies. A set of three sliding
directions (maximum), on which failure is meant to occur, is
defined in the xyz space and described by means of dip (α1)
and strike (α2). These parameters represent, for each plane,
the positive rotation along the x-axis and the negative rotation
along the z-axis, respectively. In the case of masonry panels with
regular texture, these angles can be easily defined according to
Figure 2.

In the proposed examples, only two planes (head and bed
joints) are activated, while a third plane might be considered

in the case of walls with double facing. Yield functions are
defined, for each orientation, in terms of local stress components
according to Coulomb’s and tensile criterion:

f ci = |τi| + σn,i tanφi − ci (12)

f ti = σn,i − σt,i

where i = 1,2, and 3 is the plane id, σn,i, and τi are the normal and
the shear stress along each orientation, φi is the friction angle, ci
is the cohesion, and σt,i is the tensile strength along the joints.
The interlocking effect is accounted by modifying the strength
parameters on the head-joints plane, stemming from equilibrium
conditions and considering the aspect ratio of the blocks through
the parameter β , which also depends on the friction angle of the
bed joints:

β = tanφ2
b

2a
(13)

The tensile strength and cohesion on the head joints are thus

σt,1 = σt0,1 − β σn,2 + c0,2
β

tanφ2
(14)

c1 = c0,1 −

(

β σn,2 − c0,2
β

tanφ2

)

tanφ1

and the modified strength criterion is reported in Figure 3. In
the analyses performed the following model parameters have
been assumed: all the tests are characterized by a unit weight γ
= 12 kN/m3, σt,i = c0,i = 0 MPa and φi = 21.8◦. An associated
flow rule for plasticity has been assumed, but different values
of dilatancy ψi can, in principle, be defined. For Tests 8C and
12C the homogenized shear modulus is equal to 477 MPa, while
G = 511 MPa in all the other cases. According to the different
values of block dimensions ratio assumed in the examples, those
reproduced from Portioli and Cascini (2016) are characterized by
β = 0.8; for all the other walls β is equal to 0.4.

3. NUMERICAL ANALYSES

The models have been validated using, as a benchmark, the
experimental and numerical results obtained by Portioli and
Cascini (2016) who studied the collapse of different wall masonry
panels made of dry jointed tuff blocks subjected to settlements.
The test set-up has been designed ad-hoc, allowing a downward
displacement of a portion of the structure (600×200 mm3) with
the rest of the wall being simply supported. Block dimensions are
equal to 100×200×50mm3; the two walls are 1,100mmwide and
100 mm thick, and differ in terms of height since Test 8C is made
of eight courses, resulting in a height of 400 mm, while Test 12C
is made of 12 courses, resulting in a height of 600 mm.

Figure 4 shows the experimental and numerical benchmark
results producing a mechanism characterized by three macro-
blocks: a first one, which behaves as a rigid block, at the left
bottom side of the panel; a central one that rotates around the
outer right vertex of the first macro-block in which the blocks
are subjected to sliding and rocking; and a third macro-block
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FIGURE 2 | JMM bed and head joint plane orientation.

FIGURE 3 | Modified Mohr-Coulomb criterion.

FIGURE 4 | (A) Experimental and (B) Numerical results for Test 8C. [Courtesy of Prof. F. Portioli].

that is separated by the others through a “stair-stepped” path
and lies on the moving support. Figure 5 shows the collapse
mechanism obtained with the different models for Test 8C.
Figures 5A,B present the mechanism of collapse obtained with
LA and FEM/DEM. Both mechanisms agree with experimental
and numerical results obtained by Portioli, producing a collapse
where the three macro-blocks previously described can be easily
identified. Figure 5C reports the distribution of the plastic points
(blue points indicate tensile failure while gray points localize

shear failure points). According to the typically observed crack
patterns in case of long settlement (Mastrodicasa, 1958), tensile
failure points are concentrated on the top part of the wall,
while shear failure point are located along an approximately 45◦

oriented direction going through the panel.
Figure 6 shows the experimental and numerical benchmark

results producing a mechanism characterized by two macro-
blocks separated by a “stair-stepped” crack: the first macro-
block, which is supported by the fixed base, and the second
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FIGURE 5 | (A) LA, (B) FEM/DEM, and (C) FEM results for Test 8C.

FIGURE 6 | (A) Experimental and (B) Numerical results for Test 12C. [Courtesy of Prof. F. Portioli].

FIGURE 7 | (A) LA, (B) FEM/DEM, and (C) FEM results for Test 12C.

one, translating downwards on the movable support. Figure 7
presents the failure mechanisms obtained with the different
models for Test 12C. Figures 7A,B present the mechanism
obtained with LA and FEM/DEM, which are in good agreement
with the experimental as well as with the numerical results
obtained by the author. Indeed, also in this case, the two
macro-blocks previously described were easily distinguishable.
Figure 7C refers to continuum FEMmodeling results. The plastic
point distribution is the one at failure, i.e., once the vertical
reaction at the base of the moving support is constant and, if
compared to Test 8C case, fewer tensile plastic points can be
observed. The FEM approach allows us to keep track of the entire
settlement process and its evolution. In this paper, however,
FEM results were reported only at the final stage of the analysis,
thus information on the plastic points evolution has not been
provided in the figures. In case of shorter settlements, shear

failure first appears at the lower right corner of the wall, and
the upper part of the panel is involved only in the last stages
of the analysis. Conversely, in case of Panel 8C, for which the
geometry of the problem more clearly outlines a long settlement
condition, the first plastic points to appear are the tensile ones
in the upper portion of the specimen. Another aspect might
clarify the apparent lack of accuracy that the FEMmodel seems to
show in these tests compared to LA and FEM/DEM approaches.
The clear distinction between the failure modes (tensile and
shear failure) that the model is able to catch would be far
more evident in case of more marked differences in boundary
conditions. In fact, in the two cases analyzed, both geometries
(albeit with some differences) would be defined as long according
to Mastrodicasa (1958) since the settling portion is 600 mm
long, and the specimen 8C and 12C are 400 and 600 mm
high, respectively.
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3.1. Square Panels With Opening
After this first validation, some geometries of masonry walls with
openings or façades were analyzed under settlement conditions
involving a portion of the structure.

Two identical dry joints masonry walls, named Panel 1 and
Panel 2, both characterized by the presence of an opening, have
been considered. The panels are constituted by 55 blocks of the
dimensions 50×100×50mm3, and they are 600mmwide, 50mm
thick, and 550 mm high; the opening dimensions are 300×250
mm2. They differ in terms of length of the settling area, namely,
200×50 mm2 for Panel 1 and 300×50 mm2 for Panel 2; the effect
of this feature is here investigated with the three approaches.

Figure 8 presents the collapse mechanism obtained with
the different models, referring to Panel 1. LA, Figure 8A,
and FEM/DEM, Figure 8B, show fragile behavior, with the
macro-block (1) cracking into several parts, some rotating
and others sliding; the portion upon the architrave (2)
slides while the macro-block upon the fictitious block (3)
follows its downward movement cracking into several
portions, which rotate and slide. Figure 8C reports the
plastic points distribution at collapse obtained with the
FEM approach. Tensile failure points are located at the
top of the panel and at the lower right corner of the
architrave, which is modeled here as an elastic element. The
configuration described by this plastic point distribution
is in good agreement with the results of the LA and
FEM/DEM analysis.

Figure 9 presents the collapse mechanism of Panel 2. LA
and FEM/DEM, Figures 9A,B, exhibit the formation of three
distinct macro-blocks divided by “stair-stepped” cracks: a first
one remains stable (1), a second one is represented by
the portion upon the architrave rotates around the upper
right corner of the first block, and a third portion of the
wall (3) follows, without crashing, the downward movement
of the fictitious block. FEM results show that the overall
collapse mechanism is affected by the length of the settlement
only in the supported part of the wall, while, in the top
part, as in the other two approaches, cracking is located at
the corners.

3.2. Slender Panels With Opening
In the following analyses, the effect of settlement configuration
is investigated together with the influence of wall height and
presence of openings. Three slender panels, characterized by
different height and number of openings, named Panel 3, Panel
4, and Panel 5, have been studied. The dimensions of the blocks
are 50×100×50 mm3 for all the specimens, and the openings are
100×250 mm2 wide. Panel 3 and Panel 4 are both made of 73
blocks and have the same dimensions: 400 mm width, 50 mm
thickness, and 900 mm height, but they differ because of the
extension of the portion involved in the settlement. The fictitious
downward moving block has dimension of 100×150×50 mm3

for Panel 3 and dimension 100×250×50 mm3 for Panel 4. Panel
5 is taller and characterized by the presence of three openings. It
is 400 mm wide, 100 mm thick, and 1,300 mm high and is made
of 105 blocks. The dimensions of the fictitious block are the same
adopted in the Panel 4 case.

For Panel 3 and Panel 4, as expected, results show that the
collapse mechanism is affected by the extent of the settling
portion of the structure.

Figure 10 presents the mechanism obtained using the
different models, referring to Panel 3. Results of LA and FEM,
Figures 10A,B, indicate that the masonry wall is almost stable
with the separation of only one little macro-block, which follows
the downward movement of the settlement. The FEM simulation
(Figure 10C) is in partial agreement with the results of the two
previous methods since the portion affected by the settlement is
larger. Nonetheless, apart from a slight localization of the shear
failure point on the first floor spandrel, it can be observed that the
continuum model is able to reproduce the collapse configuration
in which the settlement only involves the supported portion of
the wall.

Figure 11 refers to Panel 4. The collapse mechanism obtained
with LA, Figure 11A, involves three distinct macro-blocks
separated by “stair-stepped” cracks: the first one (1), at ground
level, remains stable, the second portion of the panel (2) follows,
without crashing, the downward movement of the fictitious
block, and the third one (3), which corresponds to the portion
of the panel upon the architrave of the first opening, rotates
without cracking around the upper left corner of the first macro-
block. The FEM/DEM model, Figure 11B, produces a similar
collapse, but the portion of the panel at the first floor, differently
from LA results, splits in two macro-block (3) and (4) with an
almost symmetric mechanism if compared with that occurring
at ground level. FEM simulation results (Figure 11C) show a
localization of the plastic points that reflects the kinematics
described above. In fact, failure involves the bottom spandrel at
the end of the supported part as well as the first floor spandrel
with prevalence of shear failure mechanisms, and it is possible
to see the formation of tensile failure points at the top left part
of the wall according to the mechanism obtained through a
FEM/DEM approach.

Figure 12 refers to Panel 5. The different height of the panel
does not influence the collapse mechanism obtained with LA and
FEM, Figures 12A,B, which results are similar to those obtained
for Panel 4. In particular, we can observed the formation of
three macro-blocks: portion (1) is stable, portion (2) follows the
downward movement of the fictitious block, and the portion
(3) acts as a unique rigid body that rotates around the lower
right corner of the macro-block (2). Furthermore, the presence
of two openings does not affect the collapse mechanism of this
portion of the wall. Apart from the slight cracking occurring in
the top spandrel, FEM results (Figure 12C) are in fair agreement
with the observations reported above, and the failure mechanism
described by the plastic points is very similar to Panel 4 one.

3.3. Façades With Opening
The collapse mechanism of two-story and three-story
masonry façades characterized by different geometries has
been investigated. Façade 1 and Façade 2 have the same geometry
and are characterized by the presence of four openings, two
doors at the ground level, and two windows at the first floor
which have the same dimensions (200×350 mm2). Each façade is
1,500 mm wide, 50 mm thick, and 1,200 mm high, and they are
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FIGURE 8 | (A) LA, (B) FEM/DEM, and (C) FEM results for Panel 1 case.

FIGURE 9 | (A) LA, (B) FEM/DEM, and (C) FEM results for Panel 2 case.

FIGURE 10 | (A) LA, (B) FEM/DEM, and (C) FEM results for Panel 3 case.
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FIGURE 11 | (A) LA, (B) FEM/DEM, and (C) FEM results for Panel 4 case.

FIGURE 12 | (A) LA, (B) FEM/DEM, and (C) FEM results for Panel 5 case.

made up of 320 blocks with dimensions 50×100×50 mm3. The
dimension of the fictitious block is 100×300×50 mm3 for both
the analyzed cases. Façade 1 is affected by a lateral settlement,
while Façade 2 is affected by a central settlement.

Figure 13 presents the collapsemechanism referring to Façade
1. LA, Figure 13A, and FEM/DEM, Figure 13B, present a similar
mechanism with the façade being split into two distinct portions.
The right side, which is involved into settlement, presents
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FIGURE 13 | (A) LA, (B) FEM/DEM and (C) FEM results for Façade 1 case.

FIGURE 14 | (A) LA, (B) FEM/DEM, and (C) FEM results for Façade 2 case.

part (1), which is stable and follows the downward settlement
movement, and part (2), which slightly rotates around the
upper right corner of macro-block (1) without cracking, and
the rigid parts (3) and (4), which are in correspondence with
the architraves of the ground and first floor that both exhibit
a hinging behavior. The left side of the façade, not involved in
the settlement, remains stable, as expected. Interesting to notice
is the presence of two diagonal cracks, starting from the upper
left corner of the right door and the right window, which pass
through all of the central portion of the masonry façade. The
continuum FEM approach (Figure 13C) is able to reproduce the
failure pattern occurring in this case, and the results show that
the most affected parts of the structure are the top right and the
first floor spandrel in which both tensile and shear failure occurs.
Differently to what described by the two previous approaches, in
the continuum FEM model, a slight damage occurs also in the
supported left part, but the kinematic described in Figures 13A,B
reflects in the accumulation of tensile plastic points at the top of
the façades, indicating a rotation of the top spandrel.

Figure 14 shows the collapse mechanism of Façade 2. Also in
this case, LA and FEM, Figures 14A,B, produce a similar collapse
exhibiting an anti-symmetric mechanism with respect to the
central portion of the structure. Macro-block (1), located upon
the fictitious block, follows rigidly the settlement movement and
consequently the part (2) moves downward, hinging and sliding,
with the formation of several diagonal cracks that reach the two
lateral sides of the façade. Here, a macro-block (3), including
portions of the two stories, rotates without cracking around the

lower right corner of the lateral stable portion of the structure
and the macro-block (4), corresponding to the portion upon the
architrave of the first floor windows, and hinges around the upper
left corner of part (3). The symmetry of this failure mechanism is
reflected in the plastic points pattern reported in Figure 14C. The
downward movement of the central pier causes the shear failure
of the spandrels while tensile failure is mainly concentrated at the
lintel ends.

In conclusion, a three-story structure, named Façade 3, shown
in Figure 15 and subjected to a foundation settlement at the right
pier, was analyzed. The structure is characterized by the presence
of six openings, two doors at ground level and four windows, two
for each story, all being 200 mm wide and 350 mm high. The
façade is 1,500 mm wide, 50 mm thick, and 1,800 mm high. It
is made of 480 blocks with dimensions 50×100×50 mm3. The
dimension of the fictitious block is 100×300×50 mm3. Figure 15
presents the collapse obtained with the different models. As for
previously analyzed cases, the mechanisms obtained with LA,
Figure 15A, and FEM, Figure 15B, are in good agreement, being
possible to identify the formation of similar macro-blocks: part
(1), positioned upon the fictitious block, follows the downward
movement of the settlement without cracking. The part (2)
similarly follows the movement of the portion below with a slight
sliding behavior and a more evident rotation around its lower
right corner; part (3), corresponding to the portion of masonry
upon the architrave of the right door at ground level, rotates
rigidly, as does part (4), which includes a portion of masonry
upon the architrave of the window at first floor and a portion
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FIGURE 15 | (A) LA, (B) FEM/DEM, and (C) FEM results for Façade 3 case.

of the lateral side of the façade at the second story. Macro-block
(5), corresponding to the final portion of masonry upon the
architrave of the window at second floor, rotates around the lower
left corner of the architrave. As for other façades, the presence of
diagonal cracks passing through the central portion of the façade
originate from the upper right corner of door and windows. From
the analysis of the collapse mechanism it is possible to notice also
a little rigid rotation of the macro-block (6) and (7) identified
by those diagonal cracks. The left side of structure as well as the
central wall at ground level remain stable. FEM analysis results
(Figure 15C) show a concentration of tensile failure points in
the top part of the wall, which is compatible with the formation
of block 5 reported in the LA and FEM/DEM results and its
clock-wise rotation. As in the two previous cases, at collapse,
only slight damage occurs in the supported part of the structure,
while tensile and shear cracking affects the right portion above
the downward moving pier.

4. CONCLUDING REMARKS

This work presents the comparison of failure patterns
characterizing the response of dry joints masonry walls
subjected to settlements. Three numerical formulations have
been adopted: a Limit Analysis as well as an FEM/DEM and
FEM approach. The models have been briefly described and
gone through preliminary validation, referring to experimental
and numerical literature results. A comparative study has then
been performed, varying the main factors affecting the response
of masonry structures in the case of settlements, namely, wall
dimensions, the presence of openings, and the extension of the
settling area. All the models have proven to be very efficient
from a computational point of view and able to reproduce the
collapse mechanisms, and they can thus be considered a useful
tool with which to back-analyze real-scale problems in order
to identify the causes of observed crack patterns or to predict
the damage distribution when a settlement is expected to occur,
as in the case of underground excavation or in case of natural

triggering factors. The adoption of micro-models, i.e., Limit
Analysis and FEM/DEM, implies that the structure is described
with its real texture, taking into account block dimensions and
the internal structure of the wall. While in most continuum
approaches this aspect is only marginally considered, the FEM
model adopted in this study is founded on a constitutive model
in which both joint orientations and block proportions are
taken into account. A specific advantage of the Limit Analysis
approach is the low number of parameters required to perform
analysis, as friction and self-weight per unit volume are the only
pieces of mechanical information needed. The same holds true
for the FEM model, but the elastic parameters adopted need to
be determined through a homogenization procedure in order
to be assigned to the continuum. The comparisons have been
made on a total set of eight walls (if the benchmark cases are
excluded), and results have been compared in terms of crack
pattern at collapse (LA and FEM/DEM) and failure (plastic)
points (FEM) in which either tensile or shear criterion is reached.
In all the analyzed cases the models are in good agreement,
showing the strong influence of the extension of the settling
area and of the opening distribution. The cases of Panel 4 and
Panel 5 have shown an almost negligible effect of the panel
height (over a certain slenderness of the structure) in the case of
localized settlement.
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