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In developed countries, structural assessment of existing bridges should not be

performed using the same conservative models that are used at the design stage.

Field measurements of real behavior provide additional information for the inference

of previously unknown reserve capacity. Structural identification helps identify suitable

models as well as values for parameters that influence behavior. Since the information

gained by the measurement system has a direct impact on structural identification,

studies on optimal sensor placement have been extensively carried out. However,

information collected during monitoring comes at a cost that may not be justified by

its influence on asset manager actions. A metric called value of information measures if

the price of collecting information is justified when compared with the potential influence

on asset manager decision-making. This paper presents a framework to approximate the

value of information of bridge load testing for reserve capacity assessment. Additionally,

an approach based on levels of approximation is used to provide a practical strategy

for the assessment of the value of information. The framework provides guidance to

asset managers to evaluate whether the information from controlled conditionmonitoring,

collected at a cost, may influence their assessment of reserve capacity. Several scenarios

of monitoring systems are compared using their respective potential influence on

asset-manager decisions and cost of monitoring, using a full-scale case study: the Exeter

Bascule Bridge.

Keywords: structural identification, sensor placement, value of information, error domain model falsification,

reserve capacity

INTRODUCTION

Civil infrastructure represents 30% of the annual global expenditure of the construction economy,
evaluated at more than $10 trillion (World Economic Forum, 2016). Due to safe design
and construction practices, infrastructure often has reserve capacity that is well above code
requirements. An accurate reserve capacity assessment is challenging since the deterministic
approach to estimate parameter values, which is suitable at the design stage, is not appropriate to
assess existing structures (Hendy et al., 2016). Field measurements, collected through monitoring,
help engineers improve assessments of reserve capacity of existing structures.

The interpretation of field measurements to improve knowledge of structural behavior is called
structural identification (Catbas et al., 2013). To compare aging structure behavior with code
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load-carrying requirements, a model-based approach is usually
necessary (Smith, 2016). In such cases, data from monitoring are
used to improve model prediction accuracy when extrapolation
is required. Model-free approaches are used only to perform
behavior interpolation and the emergence of anomalies, such as
the detection of structural degradation (Brownjohn et al., 2011).

The task of building behavior models, such as finite-element
(FE) models, requires numerous assumptions, leading to several
sources of uncertainties. The aim of structural identification is
to improve knowledge on structural behavior and ultimately
assess the structural safety through the estimation of reserve
capacity. Most studies of structural identification have used either
a residual-minimization strategy or the traditional Bayesian
model updating (BMU) framework, which usually assume that
uncertainties have zero-mean independent Gaussian forms (Beck
and Katafygiotis, 1998; Katafygiotis and Beck, 1998; Lam et al.,
2015). These assumptions are usually not compatible with the
context of civil infrastructure since most modeling assumptions,
such as idealized boundary conditions, present systematic
uncertainties (Pasquier et al., 2014). Since little information is
usually available, the estimation of correlation values between
prediction errors is challenging and may influence the posterior
parameter estimates (Simoen et al., 2013). To meet this challenge,
traditional implementations of BMU must be modified, and
this leads to complex formulations (Simoen et al., 2013; Pai
et al., 2018). Several multiple-model approaches for structural
identification have been developed using BMU (Dubbs and
Moon, 2015), such as hierarchical BMU (Behmanesh et al.,
2015) and parametrized BMU (Brynjarsdóttir and O’Hagan,
2014). While these approaches may be suitable for interpolation
applications, such as damage detection, they are not suitable for
extrapolation applications, such as reserve capacity assessments,
due to the increase in uncertainty from hyper-parameterization
(Li et al., 2016). Goulet and Smith (2013) presented a new
structural identificationmethodology called error-domain model
falsification (EDMF). Systematic uncertainties are explicitly
taken into account in a way that is compatible with practical
engineering knowledge (Pasquier and Smith, 2015). EDMF
provides more accurate (albeit less precise) model-parameter
identification when compared with traditional BMU and can be
used for extrapolation applications (Proverbio et al., 2018c).

Measurements collected during load testing have been used
to improve serviceability assessment (Goulet et al., 2010).
Studies (Miller et al., 1994; Richard et al., 2010) involving
destructive tests on reinforced concrete full-scale bridges show
that non-linear finite-element models (NLFEA) are required
to improve structural safety assessments involving ultimate
limit states. Studies combining model calibration and NFLEA
have been conducted (Zheng et al., 2009; Pimentel et al.,
2010). However, they require the definitions of structural
characteristics, such as constitutive laws of materials, that are
seldom known precisely and are not directly related to the
structural behavior during normal load conditions (Schlune
et al., 2012; Cervenka et al., 2018). Recently, methodologies for
reserve capacity assessments has been presented for full-scale
case studies using a population-based probabilistic approach
(Pai et al., 2018; Proverbio et al., 2018c). In these studies,

only structural parameters that can be identified during load
tests are updated while remaining parameters are taken to have
conservative values as recommended by design guidelines. In
addition, estimates include model uncertainties for prediction,
and therefore conservative values of the reserve capacity
are obtained.

The measurement system, usually designed by engineers
using qualitative rules of thumb, influences directly the
outcomes of structural identification. Quantitative studies
on optimal sensor placement have been recently carried
out to maximize the information gain for bridge load
testing. The sensor placement task is usually seen as a
discrete optimization task. As the number of possible sensor
configurations increases exponentially with the number of
sensors and locations, most studies have used a sequential search
(greedy algorithms) to reduce the computational effort (Kammer,
2005). Most researchers have used a sensor placement objective
function that selects sensor locations based on their expected
information content, such as maximizing the determinant of
Fisher information matrix (Udwadia, 1994; Heredia-Zavoni
and Esteva, 1998), minimizing the information entropy in
posterior model-parameter distribution (Papadimitriou et al.,
2000; Papadimitriou, 2004; Papadimitriou and Lombaert, 2012;
Argyris et al., 2017), and maximizing information entropy in
multiple-model predictions (Robert-Nicoud et al., 2005a).

To reduce the redundancy in sensor location information
content when multiple sensors are used, the concept of joint
entropy was introduced (Papadopoulou et al., 2014) using a
hierarchical algorithm. This algorithm was extended to account
for mutual information between sensor types and static load
tests (Bertola et al., 2017). Although information gain is critical,
the definition of the optimal sensor configuration must include
multiple performance criteria, such as cost of monitoring and
the robustness of information gain to test hazards. Recently,
a comprehensive framework to design measurement system
based on a multi-criteria decision analysis (MCDA) was
presented (Bertola et al., 2019). This study shows that the best
measurement system depends on asset-manager preferences.
However, the influence of the expected monitoring outcomes to
support asset managers during reserve capacity assessment was
not investigated.

Information collected during monitoring comes at a cost that
may not be justified by its influence on asset manager actions.
The value of information (VoI) is a measure of how information
benefits decision making under uncertainty (Raiffa and Schlaifer,
1961). Within Bayesian Frameworks, VoI has been extensively
used to evaluate the benefit of structural health monitoring
systems (SHM) (Straub et al., 2017). The principal limitation is
that VoI estimation is computationally expensive (Straub, 2014).
Quantitative frameworks have been proposed (Pozzi et al., 2010;
Zonta et al., 2014; Thöns, 2018). Nevertheless, they used only
idealized structural systems, reducing their practical applications.
Additionally, many applications have been proposed for
maintenance and operations over time based on Bayesian
dynamic networks (BDN) (Weber et al., 2012; Luque and
Straub, 2016) or partially-observable Markov decision process
(POMDP) (Ellis et al., 1995; Papakonstantinou and Shinozuka,
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2014a,b). POMDP methodologies have been extended for multi-
element systems (Fereshtehnejad and Shafieezadeh, 2017) and
continuous and non-linear states (Schöbi and Chatzi, 2016).
However, most studies have been performed assuming that each
system component behaves independently (Li and Pozzi, 2019).
Including system-level interactions that are present in practical
applications generates additional computational challenges.

Additionally, VoI has been used as an objective function
for sensor-placement tasks and shown to provide better
configurations than independent entropy-based objective
functions (Malings and Pozzi, 2016a). A disadvantage of using
the VoI as a sensor placement objective function is again the long
computation times (Malings and Pozzi, 2016b). Additionally,
greedy approaches that are used in the optimization task of
sensor placement may lead to sub-optimal decisions since the
VoI metric is not submodular (Malings and Pozzi, 2019).

For structural identification purposes, the task differs from
operation and maintenance as it is not time-dependent.
Methodologies developed for operation and maintenance of
infrastructure, such as POMDP, are thus not suitable. A
methodology to select the optimal sequence of measurements
and intervention actions based on pre-posterior analysis and
using a greedy search was presented for a simplified structure
(Goulet et al., 2015). For a full-scale case study, the expected
identifiability of parameter values and prediction ranges was
proposed based on simulated measurements and the EDMF
framework (Goulet and Smith, 2012). The work was extended
in Pasquier et al. (2017) to quantify the expected utility of
measurement systems for remaining fatigue life estimations.
However, this methodology is applicable only to fast critical
reserve capacity calculations, such as remaining fatigue life.

This paper presents a framework to evaluate the VoI of load
testing for reserve capacity assessment for several limit states on
a full-scale case study. The aim is to determine if the information
collected during monitoring at a given cost is justified by
its potential to influence asset managers in their decisions.
As this framework is based on EDMF rather than traditional
BMU, the approach to estimate the expected information gain
of monitoring differs significantly (Bertola et al., 2017). This
means that traditional VoI quantifications must be adapted.
Additionally, a new approach by levels of approximation is
employed to prevent unnecessary computationally expensive VoI
analyses when faster upper bound estimations may be sufficient
to reject the hypothesis that monitoring is useful. The design
approach where the detail level of an analysis increases only
whenmore accurate predictions are necessary, such as inMuttoni
et Fernandez (Muttoni and Ruiz, 2012), for structural design.
This approach provides a practical strategy in the assessment of
the VoI of bridge load testing when decisions require complex
reliability analyses. In cases where load testing is appropriate, VoI
helps select alternatives of measurement systems (Bertola et al.,
2019), where the expected information gain is estimated using
the joint entropy objective function.

The study is organized as follows. Background methodologies
which are necessary to the understanding of the paper
are first presented in section Background. Section Level-of-
Approximation Approach to Evaluate the Value of Information

of Bridge Load Testing for Reserve-Capacity Assessment shows
the framework to evaluate the value of information of bridge
load testing for reserve capacity assessment using a level
of approximation approach. Results in terms of value of
information of multiple measurement system scenarios of a full-
scale case study are then provided in section Case Study and
results are discussed in section Discussion.

BACKGROUND

In this section, background methodologies that are necessary
for the understanding of this study, are presented. First,
the structural identification methodology, called error-domain
model falsification, is presented. Then, the sensor placement
algorithm for static measurements, called hierarchical algorithm,
is described.

Structural Identification—Error-Domain
Model Falsification
Error-domain model falsification (EDMF), is an easy-to-use
methodology for structural identification (Goulet and Smith,
2013). A population of behavior model instances are generated,
and their predictions are compared with field measurements in
order to identify plausible model instances of a parameterized
model class.

At a sensor location i, model predictions gk (i,2k) are
generated by assigning a vector of parameter values 2k.
The model class involves a finite element parametric model
that includes characteristics, such as material properties,
geometry, boundary conditions, and excitations, as well as the
quantification of both model (Ui,gk ) and measurement (Ui,ŷ)
uncertainties. The real structural response Ri, that is unknown
in practice, is linked to the measured value ŷi at sensor location i
among ny monitored locations using Equation (1).

gk (i,2k) + Ui,gk = Ri = ŷi + Ui,ŷ ∀i ∈
{

1, . . . , ny
}

(1)

Following Robert-Nicoud et al. (2005c), Ui,gk and Ui,ŷ are
combined in a unique source Ui,c using Monte-Carlo sampling.
Equation (1) is then transformed in Equation (2), where the
residual ri quantifies the difference between the model prediction
and the field measurement at a sensor location i.

gk (i,2k) − ŷi = Ui,c = ri (2)

In EDMF, plausible models are selected by falsifying instances
for which residuals exceed threshold bounds, given combined
uncertainties and a target reliability of identification. First the
target of reliabilityφ is fixed. Traditionally, a value of 95% is taken
(Goulet and Smith, 2013). The Šidák correction (Šidák, 1967), is
used to maintain a constant level of confidence when multiple
measurements are compared to model-instance predictions.
Then, threshold bounds, ti,low and ti,high are calculated using
Equation (3). These bounds express the shortest intervals
through the probability density function (PDF) of combined
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uncertainties fUi (ui) at a measurement location i, including the
probability of identification φ.

∀i = 1, . . . , ny : φ1/ny =

∫ ui,high

ui,low

fUi (ui) dui (3)

The candidate model set is defined using Equation (4), where
�

′′

k
is the candidate model set (CMS) built of unfalsified model

instances. Candidate models are set to be equally likely since
little information is usually available to describe the combined
uncertainty distribution (Robert-Nicoud et al., 2005b). Thus,
they are assigned an equal probability, while falsified model
instances are assigned a null probability.

�
′′

k =
{

θk ∈ �k| ∀i ∈ {1, . . . , ny} ti,low ≤ gk (i,2k) − ŷi ≤ ti,high
}

(4)

If all model instances are falsified, this means that no model
predictions are compatible with measurements given uncertainty
sources. This situation can happen if the initial model instance
set does not effectively reflect the true behavior. Provided that
the initial sampling is adequate, this means that the model
class is not correct. In such cases, the data interpretation using
EDMF leads to reevaluation of assumptions and a new model
class is generated (Pasquier and Smith, 2016), which is an
important advantage of EDMF compared with other structural
identification approaches.

Sensor-Placement Algorithm—Hierarchical
Algorithm
A measurement system design framework is used to rationally
select the appropriate measurement system when structural
information is incomplete. The first step involves building the
numerical model and selecting the model class. Then, prediction
data from a population of model instances are generated using
a sampling procedure. This prediction set is the typical input to
evaluate expected information gained by sensor locations using a
sensor placement algorithm. The optimal measurement system is
then defined using a multi-criteria approach, taking into account
multiple performance criteria, such as information gain and cost
of monitoring as well as asset manager preferences.

Information entropy was introduced as a sensor-placement
objective function for system identification by Papadimitriou
et al. (2000). At each sensor location i, the range of model
instance predictions is subdivided intoNI,i intervals. The interval
width is evaluated using combined uncertainty Ui,c(Equation
2) (Robert-Nicoud et al., 2005a). The probability that model
instance prediction gi,j falls inside the jth interval is equals to

P
(

gi,j
)

=
mi,j

∑

mi,j
, where mi,j is the number of model instances

falling inside this specific interval. The information entropy
H

(

gi
)

is evaluated at a sensor location i using Equation (5).

H
(

gi
)

= −
∑NI,i

j=1
P

(

gi,j
)

log2 P
(

gi,j
)

(5)

Sensor locations with high values for H
(

gi
)

are attractive
locations since sensors are most effective when placed in

locations that have high disorder in model-instance predictions.
When physics-based systems are monitored, measurements are
typically correlated. To assess the redundancy of information
gain between sensor locations, joint entropy as new objective
function was proposed by Papadopoulou et al. (2014). Joint
entropy H

(

gi,i+1
)

assesses the information entropy amongst
sets of predictions to account for mutual information between
sensors. For a set of two sensors, the joint entropy is calculated
using Equation (6), where P

(

gi,j, gi+1,k
)

is the joint probability
that model instance predictions falls inside the jth interval at
sensor i and the kth interval at sensor i+1.

H
(

gi,i+1
)

=−
∑NI,i+1

k=1

∑NI,i

j=1
P

(

gi,j, gi+1,k
)

log2 P
(

gi,j, gi+1,k
)

(6)

where k ∈
{

1, . . . ,NI,i+1
}

and NI,i+1 is the maximum number of
prediction intervals at the i+1 location and i + 1 ∈ {1, . . . , ns}
with the number of potential sensor locations ns. Due to the
redundancy in information gain between sensors, the joint
entropy is less than or equal to the sum of the individual
information entropies. Equation (7) can be rewritten as Equation
(10), where I

(

gi,i+1
)

is the mutual information between sensor i
and i+1.

H
(

gi,i+1
)

= H
(

gi
)

+H
(

gi+1
)

− I
(

gi,i+1
)

(7)

If multiple static load tests are performed, mutual information at
a sensor location i occurs between the measurements, as it does
between sensors. The hierarchical algorithm is an optimization
strategy introduced by Papadopoulou et al. (2014) to calculate
the joint entropy of sensor configurations in a reasonable
computational time, following a greedy-search strategy. This
algorithm was adapted to take into account mutual information
between static load tests (Bertola et al., 2017) as well as dynamic
data (Bertola and Smith, 2019).

Bertola et al. (2019) have proposed a multi-objective approach
for measurement system design. Five conflicting performance
criteria are taken into account to recommend a measurement
system: information gain, cost of monitoring, sensor installation,
ability to detect outliers, and robustness of information gain in
case of the best sensor failure. Recommendations are made based
on asset manager preferences and is found using the SMAA-
PROMETHEE methodology (Corrente et al., 2014).

LEVEL-OF-APPROXIMATION APPROACH
TO EVALUATE THE VALUE OF
INFORMATION OF BRIDGE LOAD TESTING
FOR RESERVE CAPACITY ASSESSMENT

In this section, a framework that assesses the value of information
of bridge load testing for reserve capacity estimation using an
approach by levels of approximation is presented. The first
section provides an overview of the framework. Then, each
step of the framework is presented in detail throughout the
following sections.
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Framework Presentation
The reserve capacity (RC) of existing bridges is usually
defined as the additional carrying capacity compared with code
requirements for a specific limit state. When traffic loading is
the leading action, the reserve capacity is the ratio between the
carrying capacity of the structural system using a conservative
approach Qcons and the code traffic load Qd.

For existing structures, reserve capacity is usually assessed
after monitoring. First, structural identification is conducted
and parameter values 2CMS that most influence the model
predictions at the test conditions are identified. The reserve
capacity estimation is an extrapolation task; values for parameters
at test conditions may not be representative of the behavior at
ultimate limit state loading conditions. For example, boundary
conditions, such as pinned supports may have rotational rigidity
during load tests. This rigidity cannot be used to calculate
conservative estimates of reserve capacity at the ultimate limit
state. Therefore, a subset of the plausible parameter values
obtained under load test conditions2CMS,LS is taken into account
for the estimation of ultimate carrying capacity of the structural
system Q

(

2CMS,LS
)

. Remaining parameters influencing the
reserve capacity that cannot be identified during load testing
are taken to have design values. Reserve capacity is then
assessed using Equation (8). Prior to measurements, the value
of reserve capacity estimated after monitoring RC(2CMS,LS) is
thus unknown.

RC(2CMS,LS) =
Q(2CMS,LS)

Qd
(8)

The value of information (VoI) quantifies the amount of money
asset managers are willing to pay for information prior making a
decision. In this study, the VoI is used to evaluate the influence
of load-testing information on asset manager decisions related to
reserve capacity assessment. The VoI is calculated using Equation
(9) (Zonta et al., 2014),where Cprior monitoring is the action cost if
no monitoring information is available and Cafter monitoring is the
cost of actions after monitoring.

VoI = Cprior monitoring − Cafter monitoring (9)

Prior to monitoring, the bridge is assumed to present insufficient
reserve capacity (RC(2CMS,LS) < 1), and the Cprior monitoring is
equal to the cost of intervention Cint , where int stands for
intervention. Cint is assumed to be the lowest possible cost of
interventions that could include either structural improvements,
load reduction, or better load definition.

Information collected during load testing may influence
reserve capacity assessments through the identification of
unknown model parameter values (Equation 8), and this can
modify asset managers operational costs after monitoring.
Cafter monitoring includes possible asset manager decisions after
monitoring associated with their probability of occurrence as
well as the cost of monitoring. In this study, a simple binary
scheme of possible asset manager decisions is assumed. If the
bridge presents a reserve capacity (RC(2CMS,LS) ≥ 1) after
monitoring, no action is required and a “do nothing” scenario,
with an associated cost of Cnot , is preferred. If the bridge does

not have reserve capacity (RC(2CMS,LS) < 1), asset managers
proceed to interventions with the unchanged associated cost Cint .

When the bridge RC is assessed using load testing, the VoI for
a given limit state is influenced by three factors: i) the amount of
money saved (Cint−Cnot) by avoiding unnecessary interventions
when monitoring reveals a reserve capacity; ii) the probability
of finding RC(2CMS,LS) ≥ 1 after monitoring, called P(RC+)
and iii) costs of monitoring Cmon. Equation (9) is consequently
rewritten in Equation (10). Asset managers are willing to cover
monitoring expenses only if expected savings exceed monitoring
costs. Monitoring is recommended when VoI > 0, while VoI < 0
suggests that interventions should proceed without monitoring.

VoI = (Cint − Cnot)
∗P(RC+)− Cmon (10)

With,

P
(

RC+
)

≡ Probability that RC
(

2CMS,LS
)

≥ 1 after monitoring

(11)

The estimation of P(RC+) is computationally expensive. For
instance, this estimation requires the evaluation of the expected
information gain of monitoring using a measurement system
design methodology. Additionally, the influence of model
parameters on reserve capacity assessments using FE model
predictions is needed. Nevertheless, upper bounds of P(RC+),
corresponding to upper bounds of VoI, can be computed. These
upper bounds are assessed using optimistic estimates of model
instance discriminations and reserve capacity assessments.

The level of approximation is a design approach where the
level of detail of an analysis increases only when more accurate
predictions are necessary. For example, see Muttoni et Fernandez
for structural design (Muttoni and Ruiz, 2012). In the case of
structural design, if a simple conservative model provides a lower
bound of load capacity that already fulfills code requirements,
no further analysis is needed and engineers avoid the costs of
building detailed models.

Figure 1 presents the level-of-approximation (LoA) approach
for RC assessment using bridge load testing. Four levels are
depicted, where the accuracy of the VoI estimation and the
time devoted to the analysis increases with the LoA. In the first
three LoAs, an upper bound of P(RC+) is estimated. Therefore,
each LoA represents an upper bound estimation of the VoI of
monitoring. For example, in LoA 1, a perfect model instance
discrimination is assumed, and no uncertainties are included in
the reserve capacity assessment. Due to these assumptions, the
value of P(RC+)LoA1 is overestimated. When increasing the level
of approximation, less optimistic assumptions are involved and
thus P(RC+) decreases and becomes more accurate. As other
assumptions are reevaluated in each LoA, the framework must
be performed until LoA 4 is reached to confirm that monitoring
is recommended. When the computed VoI is negative despite
using an upper bound estimation, no monitoring should be
performed and increasing prediction accuracy is meaningless. If
VoI > 0, the next step of the estimation of the VoI should be
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FIGURE 1 | Accuracy of the value of information (VoI) estimation of bridge load testing for reserve capacity assessment as function of time devoted to the analysis.

performed, requiring additional information and increasing the
cost of the analysis.

The inequality VoI > 0 is rearranged in Equation (12). The
left-hand side corresponds to the ratio between cost savings and

costs of monitoring, called the potential benefit
cost ratio, and must be

larger than the inverse of P(RC+)to justify monitoring. As this
ratio is typically an input of the analysis, the estimation of 1

P(RC+)

provides a threshold of theminimum potential benefit
cost ratio to justify

load testing.

Cint − Cnot

Cmon
>

1

P(RC+)
(12)

To illustrate the potential of the framework, three scenarios are
presented in Figure 2 along with their assessments of probability
and benefit-cost ratios. In the first scenario, the upper bound
of P(RC+), calculated in LoA 1, leads to the conclusion that
the benefit-cost ratio does not justify monitoring. Therefore,
the analysis stops and interventions should proceed without
monitoring. For the second scenario, the benefit-cost ratio is
significantly larger than 1

P(RC+) after the first LoA. The second

LoA of VoI is thus performed and a new upper bound of 1
P(RC+)

is calculated, leading to the conclusion that monitoring is not
justified. In this scenario, the analysis terminates with LoA2 and
monitoring is not recommended. In the third scenario, the VoI
estimation is performed until the fourth level, which corresponds
to the most accurate estimation of P(RC+). As the true benefit-
cost ratio of this scenario is larger than the threshold given by

1
P(RC+) , monitoring is recommended.

Figure 3 shows the framework to evaluate the VoI of bridge
load testing. Each step of the framework is described in detail
in subsections below. The task definition involves generating
the structural behavior model, selecting model parameters that
influence predictions, defining possible measurement systems
and critical limit states. The aim of preliminary RC assessments
is to evaluate if the load testing can influence the structural-
safety assessment. If this condition is fulfilled, the RC is estimated
according to the level of approximation strategy described in
Figure 1. The first three levels evaluate an upper bound of VoI.
Therefore, the if VoI < 0, interventions are necessary. LoA1

[section LoA 1—Value of Information With Perfect Monitoring
Outcome (VoIPMO)] requires generation a population of model
instances with predictions of reserve capacity. This level involves
the assumption of perfect distinction of model instances and
provides a simple RC assessment. LoA2 [section LoA 2—Value
of Information With Expected Monitoring Outcome (VoIEMO)]
includes a measurement system design framework to evaluate
the expected information gain using additional information
of model instance predictions under test conditions. LoA3
[section LoA 3—Value of Information With a Probabilistic
Approach for Reserve-Capacity assessment (VoIPA)] involves
a probabilistic approach to assess the population-based RC,
while the fourth level includes uncertainties related to the
monitoring into the estimation of the VoI. LoA4 [section
LoA 4—Value of Information (VoI)] presents an accurate VoI
estimation, based on the probabilistic definition of the P(RC+),
while lower LoAs involve more approximate assessments. Based
on the VoI distribution, hypothesis testing is introduced to
determine whether monitoring provides effective support to
decision making. In case VoI > 0, is it thus recommended
to monitor the structure, while if VoI < 0 interventions are
needed. A detailed description of each step of the framework is
provided below.

Task Definition
This section describes the preliminary steps that are required
before performing the structural identification task. The physics-
based model of the structure is constructed and analyzed to
obtain quantitative predictions of structural behavior, such as
deflections under load test conditions and reserve capacity
estimations. Model parameters that have the highest impact on
predictions are selected based on a sensitivity analysis. Significant
non-parametric uncertainties are usually involved as the results
of geometrical and mathematical simplifications are present in
the FE model. These uncertainties must be estimated as they
influence the structural-identification outcome.

Load testing conditions, such as the bridge excitation,
available sensor types, the number of sensors, and their possible
locations are chosen by engineers. Eventually, critical limit states
are selected and the costs of intervention for each specific
scenario are estimated. Altogether, these preliminary steps allow
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FIGURE 2 | Illustrative scenarios of the level of approximation approach to evaluate the minimum benefit–cost ratio Cint−Cnot

Cmon
that justifies monitoring.

the evaluation of the value of information of the bridge load
testing for reserve capacity assessment.

Preliminary Reserve Capacity
Assessments
This section describes the initial calculation of reserve capacity.
The aim is to evaluate whether the information collected during
the load testing influences the RC assessment. For monitoring to
be worthwhile, two conditions are necessary. When conservative
parameter values 2cons are assumed, the calculated reserve
capacity is expected to be lower than 1 (Equation 13). On
the contrary, when optimistic model parameter values 2opt–
taken as upper bounds ofmodel-parameter ranges—are assumed,
values of reserve capacity >1 are expected (Equation 14). The
first condition implies that, for the current level of knowledge,
the bridge does not satisfy code requirements. Structural
improvements are thus necessary. The second condition implies
that the outcome of the bridge load testing may help avoid
unnecessary interventions by revealing hidden sources of

reserve capacity.

RC (2cons) =
Qmax (2cons)

Qd

(

γQ
) < 1 (13)

RC
(

2opt

)

=
Qmax

(

2opt

)

Qd

(

γQ
) > 1 (14)

LoA 1—Value of Information With Perfect
Monitoring Outcome (VoIPMO)
In this section, the P(RC+)LoA1 is estimated. First, a population
of model instances is generated using traditional sampling
techniques. Each model instance has a unique set of model
parameter values that influence model predictions. In this
section, two assumptions are made. First, the measurement
system is assumed to perfectly differentiate model instances
(assumption of perfect monitoring outcome), which implies that
the CMS will consist of a single model instance after monitoring.
Then, the reserve capacity is assessed using this unique candidate
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FIGURE 3 | Framework of the evaluation of the value of information of bridge load testing for reserve capacity estimation based on a level of approximation approach.

model. As the outcome of the monitoring is unknown (i.e., which
model instance will be identified), the P(RC+)LoA1 depends on
the ratio between the number of model instances nMI

(

RC+
)

having RC
(

2MI,LS
)

≥ 1 over the total number of model
instances nMI . The VoIPMO is calculated using Equation (15),
which includes an estimation of the monitoring cost Cmon. This
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estimation is an upper bound of the true value of information. If
VoIPMO < 0, the cost of monitoring is not justified by the benefit-
cost ratio. Therefore, monitoring should not be performed. If
VoIPMO > 0, the analysis of LoA 2 is required.

VoIPMO = (Cint − Cnot)
∗P(RC+)LoA1 − Cmon (15)

with,

P(RC+)LoA1 =
nMI

(

RC
(

2MI,LS
)

≥ 1
)

nMI
(16)

LoA 2—Value of Information With Expected
Monitoring Outcome (VoIEMO)
In LoA 2, the P(RC+)LoA2 is estimated using a set of candidate
models, rather than a unique instance. A population of candidate
models is likely to be identified when complex structures
are analyzed in presence of several sources of systematic
uncertainties (Goulet and Smith, 2013). The optimistic
assumption of a perfect parameter value identification is
replaced by the model instance discrimination based on the
expected information gain of the monitoring system. When
compared with LoA1, larger ranges of parameter values are
thus used for reserve capacity assessments. As conservative
values within the parameter ranges are considered, lower reserve
capacity assessments are obtained in LoA2.

A sensor placement algorithm (section Sensor-Placement
Algorithm—Hierarchical Algorithm) provides information

of expected model instance discrimination. Based on this
framework, model instances are separated in sets based of their
predictions and combined uncertainty distributions at sensor
locations. Interval widths depend on the uncertainty level at
sensor locations (Equation 5). Each model instance set (MIS)
represents model instances that could not be discriminated based
on measurements, while model instances in different sets will be
discriminated by measurements.

Figure 4 presents an example of definition of the model
instance sets (MISs). The hierarchical algorithm is used to
discriminate model instances based on their predictions. In this
example, four intervals (Iw,i). are defined based on the prediction
range and uncertainties. For a given interval Iw,j, the MISj
corresponds to all model instances in this interval and nMI,j is
the number of model instances in MISj. Each MIS represents
a potential identification outcome of monitoring θn∗ . Then, the
reserve capacity of each MIS is assessed.

In LoA 2, the main approximation lies in the reserve capacity
calculation for a MIS. The reserve capacity of a MISj is taken as
the minimum value of RC among instances in the set RCmin,j =

min
(

RCMI,j
)

. Additionally, the probability that a MISj is the true
CMS is equal to Pj = nMI,j/nMI , where nMI,j is the number of
model instances in this MIS. The P(RC+)LoA2is calculated using
the sum of the MIS probability with RCmin,j ≥ 1 called P(RC+

min).
The VoIEMO is calculated using Equation (17), where NMIS is
the total number of MIS. Additionally, the cost of monitoring is
evaluated based on the measurement-system-design framework.

FIGURE 4 | Illustration of the concept of model instance set (MIS) obtained using the hierarchical algorithm (section Sensor-Placement Algorithm—Hierarchical

Algorithm).
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As VoIEMO is an upper bound of the VoI, the monitoring is not
justified if VoIEMO < 0. In case VoIEMO > 0, a more refined
approach is required to evaluate the reserve capacity.

VoIEMO = (Cint − Cnot)
∗ P(RC+)LoA2 − Cmon (17)

with,

P(RC+)LoA2 =
NMIS
∑

j

Pj(RC
+
min,j) (18)

LoA 3—Value of Information With a
Probabilistic Approach for Reserve
Capacity Assessment (VoIPA)
In this section, the assessment of the reserve capacity for a
population of model instances is further refined by taking into
account model uncertainties. In order to assess the reserve
capacity of a model instance population, the methodology shown
in Figure 5 is adopted from (Proverbio et al., 2018c). For
example, serviceability requirements in steel structures imply that
the maximum stress in each element is lower than the yield stress.
With reference to Figure 5A, stress predictions are computed
for each model instance. Then, the total model uncertainty is

calculated by combining all source of uncertainties related to
the FE model class using the Monte Carlo method (Figure 5B).
In Figure 5C, the model uncertainty is added to the discrete
distribution of stress predictions and the limit state condition
is depicted using a vertical line. In this example, since the
entire stress distribution lies below the yield stress, the reserve
capacity is assessed by increasing the design load using a load
factor LF. Design traffic loads are increased until the probability
of failure of the model population equals the target failure
probability plimit state

f
defined by design codes. The value of SLS

reserve capacity for a specific MIS is equal to the value of load
factor LFset for which the MIS failure probability pf is equal to

plimit state
f

. Figure 5D shows the stress distribution at failure. In

such situations RCLF,j = LFj. The P(RC+)LoA3 is calculated using
the sum of the MIS probability with LFj ≥ 1, called P(RC+

LF).
Compared to LoA 2, the estimation of P(RC+)LoA3 is modified
due to the new method for computing the RC of a population of
model instances.

Once the reserve capacity of each set of model instances is
computed, the VoIPA is obtained using Equation (19). The VoIPA
is an upper bound of the VoI as, at this stage, it is not reduced
by any additional source of uncertainty. When VoIPA > 0, LoA 4
should be performed. In situations where VoIPA < 0, monitoring

FIGURE 5 | Probabilistic approach for model-instance-population reserve capacity assessment. (A)Model instance population stress prediction; (B)model uncertainty

distribution; (C) combination of population and model uncertainty distributions; (D) stress prediction including model uncertainty at failure (load factor LF > 1). The

area on the right side of the limit-state condition corresponds to the target failure probability Pf. Original figure based on the concepts of Proverbio et al. (2018c).
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is not recommended.

VoIPA = (Cint − Cnot)
∗ P(RC+)LoA3 − Cmon (19)

with.

P(RC+)LoA3 =
NMIS
∑

j

Pj(RC
+
LF,j) (20)

LoA 4—Value of Information (VoI)
This section discusses the assumption of a perfect information
in the VoI estimation. In previous sections, it was assumed that
the outcome of themonitoring was exact. However, uncertainties,
such as sensor failures may affect field measurements while
simplifications often reduce the accuracy of methodologies for
sensor placement and structural identification. To evaluate the
VoI, each uncertainty source that may affect the estimation of
P(RC+) has to be evaluated.

Then, all uncertainty sources are combined into the global
uncertainty utot , which corresponds to the confidence level
associated with the VoI estimation. Each uncertainty source uv
is thus defined by a probability distribution having a minimum
value uv,low ≥ 0, and amaximum value uv,high ≤ 1. Consequently,
uncertainty sources can only reduce the VoI estimation as they
account probabilistically for the risk of an inaccurate evaluation
of P(RC+). Equation (21) describes the VoI in probabilistic terms
by including the global source of uncertainty utot .

VoI = (Cint − Cnot)
∗ P(RC+)LoA4 − Cmon (21)

with,

P(RC+)LoA4 = u
∗
tot

NMIS
∑

j

Pj(RC
+
LF,j) (22)

In order to establish whether monitoring is worthwhile,
hypothesis testing is performed (Figure 6). The null hypothesis
(i.e., monitoring is worthwhile) adopts a lower bound PLoA4,low of
P(RC+), thus minimizing the benefit-cost ratio. The alternative

hypothesis (i.e., monitoring is unworthy) adopts an upper bound
PLoA4,high of P(RC

+), which minimizes the benefit-cost ratio. The
upper and lower bounds are fixed at one standard deviation from
the mean value of P(RC+). When the true benefit-cost ratio lies
in this range (dashed area on Figure 6), further investigation
is required.

Parameter Space Sampling Uncertainty
The P(RC+)LoA4 estimation is affected by the initial population
of model instances. To evaluate the uncertainty related to the
model population (u1), the quality of parameter sampling is
investigated. First, each parameter domain r is divided in NP
subintervals, for which the corresponding prediction ranges
are sufficiently distinct according to engineering judgement.
Then, for each subinterval, the observed distribution O and the
expected distribution E of samples are compared. A uniform
distribution is assumed for the uncertainty u1, with upper bound
equal to 1 and lower bound equal to u1,low(Equation 23). u1,low
is calculated, similarly to the Pearson’s chi-squared test (Pearson,
1900) based on the expected and observed distribution in each
parameter domain. When the expected sample distribution and
the observed sample distribution are similar, u1,low approaches 1.

u1 ∼ Uniform(u1,low = 1−

Npara
∑

r





1

NPMIS,r

NPMIS,r
∑

s

(

Or,s − Er,s
)2

Er,s



 ; 1)

(23)

Uncertainty Related to the Expected Information

Gain Evaluation
The expected information gain by the measurement system
affects the estimation of P(RC+)LoA4. Model instances are
clustered according to their predictions. At a sensor location i, the
initial prediction range — between the smallest prediction gi,min

and the largest prediction gi,max — is subdivided into several
intervals. The width of each interval is constant and defined based
on the combined uncertainty Ui,c (Equation 2). The number of
intervals multiplied by the width of each interval is usually larger
than the range of model predictions. Since the interval width is
fixed, the interval configuration has to be defined. Traditional

FIGURE 6 | Probabilistic definition of P(RC+) and hypothesis testing to justify or reject monitoring.
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FIGURE 7 | Qualitative example of the probability of diagnosis error as function of number of measurements.

implementations of the hierarchical algorithm (Papadopoulou
et al., 2014; Bertola et al., 2017) selected arbitrary to start intervals
on gi,min.

The selected interval starts influences the assessment of the
expected information gain and thus influences the P(RC+)LoA4
and eventually the VoI estimation. The uncertainty on the
expected information gain is evaluated based on the possible
variation of the P(RC+), when another choice on the starting
point of intervals is made. As no additional information exists,
the uncertainty is assumed to have a uniform distribution
between a minimum value u2,low and a maximum value equal
to 1 (Equation 24). u2,low is calculated as the ratio between the
evaluations of P(RC+), when model-instance the first interval at
a sensor location is set on gi,min and gi,max, respectively. As the
choice in the hierarchical algorithmmay either under-estimate or
over-estimate P(RC+), the lower bound of u2,low is conservative.

u2 ∼ Uniform(u2,low = min



1;

∑NMIS

l
Pl

(

RC+
LF,l

)

∑NMIS
j Pj

(

RC+
LF,j

)



 ; 1)

(24)

Sensor Failure Uncertainty
Bridge load testing requires installing sensor directly on the
structure and usually the monitoring is performed during a
short period of time. Few sensors may fail, which affects
the information gained by the measurement system (Reynders
et al., 2013). The uncertainty u3 assesses the robustness of the
information gain to a sensor failure. In this study, the loss of
information is evaluated using the variation P(RC+) resulting
from a sensor failure. In order to determine the magnitude
of u3, the best sensor (i.e., the first sensor selected by the
hierarchical algorithm) is assumed to fail and the consequent
loss of information is assessed. When the best sensor is removed,

P(RC+) is equal to
∑N∗

MIS

l
Pl(RC

+
l
). As each sensor is equally

likely to fail, the situation in which the best sensor is out of
order represents the worst-case scenario. The distribution of
uncertainty u3 is thus assumed to be uniform (Equation 25), and

the lower bound u3,low is calculated.

u3 ∼ Uniform(u3,low =

∑N∗
MIS

l
Pl(RC

+
l
)

∑NMIS
j Pj(RC

+
j )

; 1) (25)

Diagnosis Error Uncertainty
Once field measurements are collected, the falsification
procedure for model-based diagnosis is performed to determine
plausible model instances using a target of reliability (Equation
3). An error in the diagnosis occurs when the correct model is
rejected while incorrect models are accepted, leading to wrong
conclusions on the parameter identification and then to an
inaccurate reserve capacity assessment.

Figure 7 presents the probability of diagnosis error as function
of the number of measurements. The probability of a false
rejection of the correct model, called type-I error, increases
with the number of measurements, while the probability of false
acceptance of incorrect models, called type-II error, decreases
with the number of measurements. The simultaneous occurrence
of type-I and type-II errors is the probability of diagnosis error.

Pasquier et al. (2013) demonstrated that adding new
measurements can be beneficial since it improves the robustness
of the structural identification to diagnosis error. The sensitivity
of the diagnosis error to misevaluation of model uncertainties
was investigated. The present study includes a conservative
estimation of the probability of diagnosis error Pdiag as function
of the number of measurements. A similar approach was adopted
in Papadopoulou et al. (2016). The uncertainty of diagnosis error
is estimated using a uniform distribution (Equation 26). The
lower bound u4,low increases when the diagnosis error decreases.

u4 ∼ Uniform(u4,low = 1− Pdiag; 1) (26)

CASE STUDY

The Exeter Bascule Bridge
The Exeter Bascule Bridge (UK) crosses a canal connected to
the river Exe. The bridge has a single span of 17.3m and a
total width of about 8.2m, carrying the traffic and a footway.
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Built in 1972, the bridge is designed to be lifted to allow the
transit of boats. Two longitudinal steel girders are connected to
18 secondary beams. The lightweight deck, consisting of a series
of flanked aluminum omega-shaped profiles, is fixed to secondary
beams. The South bank edges are simply supported, while the
north bank supports are hinges. Two hydraulic jacks, used during
lifting operations, are connected to the two longitudinal girders
on the north bank side. Figure 8 shows the bridge elevation and
a photograph of a static load test. Monitoring devices consist
of 11 strain gauges and one precision camera, which is used
in combination with a target that is positioned on the bridge.
Additionally, five static load configurations can be performed.
Consequently, the optimal measurement system is defined by
combining 12 potential sensors and five load tests.

Model Class Selection
Based on a sensitivity analysis at test conditions, three parameters
are found to influence the most the structural behavior under
this specific loading: the equivalent Young’s modulus of the
aluminum deck (θ1), the rotational stiffness of the north bank
hinges (θ2), and the axial stiffness of the hydraulic jacks (θ3)
(Proverbio et al., 2018b). Initial parameter ranges are shown in
Table 1. The axial stiffness of hydraulic jacks is used to simulate
their contributions as additional load-carrying supports. When
the lower bound for θ3 is used, the two girders are simply
supported at the abutments, while the upper bound introduces
a semi-rigid support at jack connections.

An initial population of 1,000 model instances is generated
using Latin hypercube sampling (McKay et al., 1979). As
no additional information is available, parameter ranges are
assumed with uniform distributions. The same population is
used in order to generate predictions at sensor locations for
each load tests. Uncertainties associated with the model class

TABLE 1 | Model parameter initial ranges for structural identification.

Parameters Initial ranges

θ1–Equivalent Young’s modulus of aluminum deck (GPa) [60; 80]

θ2–Rotational stiffness of bearing devices (log(Nmm/rad)) [8; 12]

θ3–Axial stiffness of hydraulic jacks (log(Nmm)) [3; 5]

are presented in Table 2. Measurement uncertainties associated
with sensor devices are shown in Table 3. They are estimated
using manufacturer specifications, conservative engineering
judgement, and heuristics. Additional information concerning
the model class and uncertainty magnitudes is given in Proverbio
et al. (2018a).

Critical Limit States
To evaluate the bridge structural safety, two critical limit states
are investigated. Under characteristic design loads, serviceability
requirements (SLS) prescribe the maximum Von Mises stress σs

TABLE 2 | Estimation of model-class uncertainties.

Uncertainty source Uncertainty form Uncertainty magnitude

FE model simplification (%) Uniform −5%; +20%

Mesh refinement (%) Uniform −1%; +1%

Additional (%) Uniform −2%; +2%

TABLE 3 | Estimation of measurement uncertainties.

Uncertainty source Uncertainty form Uncertainty magnitude

SENSOR ACCURACY

Camera (mm) Uniform −0.1; +0.1

Strain gauges (µǫ) Uniform −2; +2

MEASUREMENT REPEATABILITY

Camera (%) Gaussian µ = 0; σ = 1

Strain gauges (%) Gaussian µ = 0; σ = 1.5

SENSOR INSTALLATION

Strain gauges (%) Uniform −2%; +2%

TABLE 4 | Preliminary reserve capacity assessments for serveacibility (SLS) and

ultimate (ULS) limit states.

Limit state Criterion Reserve capacity

(2cons)

Reserve capacity

(2opt)

SLS σ3 (θ1, θ2, θ3) ≤ fy 0.8 1.99

ULS Med (θ1, θ3) ≤ MRD 0.73 1.49

FIGURE 8 | The Exeter Bascule Bridge. (A) Side elevation; (B) photograph of a static load test.
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FIGURE 9 | Model-instance reserve capacity distributions. (A) SLS; (B) ULS.

in each element is lower than the yield strength fy (Equation 27).
The ultimate capacity (ULS) is assessed through the comparison
of the maximum bending action MEd with its bending capacity
MRd (Equation 28). Effect of actions are computed under traffic
load specifications defined in the current Eurocode EN 1991-2
(EC). Von Mises stress σs and bending actionMEd are computed
using the updated model class. When the ultimate capacity is
computed, the rotational stiffness of bearing devices is omitted
as the support frictional behavior may disappear at high loads.
In order to be conservative, the identified values of the rotational
stiffness 22,CMS is not taken into account. The lower bound for
θ2 (Table 1) is thus adopted.

SLS : σs
(

21,CMS,22,CMS, 23,CMS

)

≤ fy (27)

ULS :MEd

(

21,CMS, 23,CMS

)

≤ MRd =
Wpl · fy

γM0
(28)

Preliminary Reserve Capacity
Assessments
In this section, preliminary assessments of reserve capacity are
calculated. The aim is to determine if the information collected
during monitoring may influence the structural assessment.
Values of reserve capacity computed using 2cons and 2opt are
presented in Table 4. For both limit states, results show that
RC

(

2cons,LS
)

< 1 and RC
(

2opt,LS
)

> 1, thus meeting the two
conditions for preliminary assessment. Consequently, the VoI is
estimated as described in the following sections.

LoA 1—VoIPMO
In this section, the LoA1 for VoI estimation is presented. Model
instances belonging to the population generated are used to
obtain individual predictions of reserve capacity for both limit
states. Figure 9 shows reserve capacity distributions of model
instances. For both limit states, the reserve capacity distribution
presents a first peak with a RC < 1 and a lower second peak
when RC > 1. Therefore, possible reserve capacity ranges are
significantly influenced by the values of model parameters. The
monitoring output, based on true measurements, may lead to

TABLE 5 | Evaluation of the minimum benefit-cost ratio between cost savings

Cint−Cnot and cost of monitoring Cmon to justify monitoring—LoA 1.

Limit state NMI NMI (RC
+) P (RC+) Min. benefit–cost

ratio

SLS 1,000 540 0.54 1.85

ULS 1,000 464 0.46 2.17

conclusions that the bridge presents reserve capacity or requires
interventions. Estimating the VoI supports asset managers with
quantitative information on the potential of bridge monitoring.
Additionally, the distribution spread is larger for SLS (Figure 9A)
than for ULS (Figure 9B), showing that model-parameter values
have greater influence on the SLS assessment.

P(RC+)LoA1 is defined as the ratio between the number
of model instances with RC ≥ 1 NMI(RC+) over the total
number of model instances NMI. The evaluation of VoPIPMO

requires computing the costs for the two scenarios (Cint andCnot)
and monitoring cost Cmon, which allow defining the minimum
benefit-cost ratio that justifies monitoring. Table 5 reports values
of P(RC+)LoA1 and the minimum benefit-cost ratio for both
SLS and ULS. Minimum benefit-cost ratios are smaller for SLS
than for ULS, as the number of model instances with a reserve
capacity is larger for SLS. Based on true benefit-cost ratio, asset
managers can decide whether to proceed with the interventions
or to perform the LoA 2.

LoA 2—VoIEMO
In this section, the expected information gain from the
measurement system is used to provide more accurate
estimations of VoI, according to the framework presented in
section Sensor-Placement Algorithm—Hierarchical Algorithm.
Following Bertola et al. (2019), the recommended measurement
system depends on asset manager preferences. Three scenarios
are introduced: low-cost monitoring, equal weight scenario, and
maximization of information gain. Recommended measurement
systems are presented in Figure 10. These scenarios were

Frontiers in Built Environment | www.frontiersin.org 14 May 2020 | Volume 6 | Article 65

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Bertola et al. Value of Bridge-Monitoring Information

FIGURE 10 | Recommended measurement system as function of asset manager preferences. (A) Equal-weight scenario; (B) Maximization of information-gain

scenario; (C) Low-cost scenario. (D) Load tests. Original figure based on the concepts of Bertola et al. (2019).

TABLE 6 | Characteristics of monitoring scenarios.

Measurement-system scenario Nloadtest Nsens Nmeas NMIS Information gain

[Joint entropy]

Cost of monitoring

(Cmon) [GBP]

Low-cost monitoring 5 4 20 130 5.82 3,300

Equal weights 5 6 30 189 6.33 4,600

Maximization of information gain 5 11 55 347 7.03 7,000

obtained taking into account five performance criteria:
information gain, monitoring costs, sensor installation,
robustness of information gain to sensor failure, and ability
to detect outliers. As explained in Bertola et al. (2019), sensor
locations close to the hydraulic jack are preferred as this
parameter has significant influence on model predictions.

Table 6 presents characteristics of measurement-system
scenarios. Measurement systems differ by the number of sensors
(Nsens) installed on the bridge. However, they all involve five load

tests (Nloadtest) and thus differ in the number of measurements
Nmeas, calculated as the multiplication of the number of sensors
and the number of load tests. The information gain and the
cost of monitoring increase with the number of measurements,
showing the conflicting nature of performance criteria. Similarly,
the number of MISs (NMIS) increases significantly with the
number of measurements. This result shows that adding more
measurements helps discriminate between model instances,
thus resulting in a smaller CMS after monitoring. However,
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FIGURE 11 | Reserve capacity distributions of model instance-sets using the minimum value of RC in each model instance set (MIS). (A) Low-cost monitoring

scenario—SLS; (B) low-cost monitoring scenario—ULS; (C) scenario of maximization of information gain—SLS; (D) scenario of maximization of information

gain—ULS.

TABLE 7 | Evaluation of the minimum benefit–cost ratio between cost savings

Cint−Cnot and cost of monitoring Cmon to justify monitoring—LoA 2.

Measurement-system

scenario

P(RC+) Min. benefit–

cost ratio

Min. cost savings

[103 GBP]

SLS

Low-cost monitoring 0.53 1.88 6.17

Equal weights 0.53 1.88 8.61

Max. of info. gain 0.54 1.86 13.0

ULS

Low-cost monitoring 0.45 2.23 7.23

Equal weights 0.46 2.20 10.1

Max. of info. gain 0.46 2.16 15.1

this information comes at an additional cost. Therefore, a more
precise reserve capacity assessment may not be justified by its
benefits in influencing asset manager decisions.

Figure 11 presents RC distributions of MIS for both SLS
and ULS using the expected information gain from two
monitoring scenarios: low-cost monitoring (Figures 11A,B)
and maximization of information gain (Figures 11C,D). For

both scenarios, SLS and ULS distributions are similar with
the largest likelihood of reserve capacity around RC ≈

0.8 for SLS and RC ≈ 0.7 for ULS. The SLS reserve
capacity range is slightly larger than the ULS range, showing
that parameter values influence more the SLS assessment.
When comparing measurement system scenarios, reserve
capacity distributions are modified, showing that increasing the
number of measurements leads to more precise assessments
of the expected reserve capacity. Nevertheless, as reserve
capacity ranges are large, it may not increase significantly
P

(

RC+
)

.
Table 7 shows values of the minimum benefit-cost ratio

to justify monitoring for alternative measurement system
scenarios at LoA 2. Results are similar to LoA 1 (Table 5)
due to the particular reserve capacity distributions of the
initial model instance set (Figure 9). For both limit states,
the scenario of maximization of information gain has the
largest P(RC+)LoA2, showing that increasing the number of
measurements increases the probability to find reserve capacity.
However, minimum cost savings to justify monitoring are
smaller for the low-cost monitoring scenario. This result
shows that a more expensive measurement system may
not be justified by its effects on asset manager decision.
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FIGURE 12 | Reserve capacity distributions of model instance-sets using the population-based probabilistic approach for RC estimation of MIS. (A) low-cost

monitoring scenario—SLS; (B) low-cost monitoring scenario—ULS; (C) scenario of maximization of information gain—SLS; (D) scenario of maximization of

information gain—ULS.

TABLE 8 | Evaluation of the minimum benefit–cost ratio between cost savings

Cint−Cnot and cost of monitoring Cmon to justify monitoring—LoA 3.

Measurement-system

scenario

P(RC+) Min. benefit–cost

ratio

Min. cost savings

[103 GBP]

SLS

Low-cost monitoring 0.43 2.331 7.63

Equal weights 0.43 2.331 10.7

Max. of info. gain 0.44 2.288 16.0

ULS

Low-cost monitoring 0.16 6.17 20.2

Equal weights 0.17 6.02 27.6

Max. of info. gain 0.17 5.75 40.1

The next section investigates this option by improving the
VoI estimation.

LoA 3—VoIPA
In this section, the reserve capacity of MIS is assessed by means
of a probabilistic approach. First, model class uncertainties are

included to predictions of steel stress (SLS) and bending moment
(ULS). Then, design loads are progressively increased until the
prediction distribution reaches a target of probability of failure,
fixed at PSLS

f
= 10−1 for SLS and PULS

f
= 10−4 for ULS,

respectively (Proverbio et al., 2018c).
Figure 12 presents new reserve capacity distributions for

both limit states for two measurement system scenarios: low-cost
monitoring (Figures 12A,B) and maximization of information
gain (Figures 12C,D). Reserve capacity distributions are
significantly influenced by the measurement-system scenario.
More measurements lead to more precise assessments of the
expected reserve capacity.When compared with previous reserve
capacity distributions (Figure 11), new distributions exhibit
similar shapes. However, reserve capacity values are smaller due
to the presence of model uncertainties.

For each measurement-system scenario, Table 8 presents
evaluations of the minimum benefit-cost ratio to justify
monitoring at LoA 3. The P(RC+)LoA3 estimations are
similar for all measurement systems. Consequently, the
scenario of low-cost monitoring shows the smallest cost
savings to justify the monitoring. When compared to

Frontiers in Built Environment | www.frontiersin.org 17 May 2020 | Volume 6 | Article 65

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Bertola et al. Value of Bridge-Monitoring Information

TABLE 9 | Uncertainty evaluations of monitoring scenarios.

Measurement-system scenario u1,low u2,low u3,low u4,low u5,low

SLS

Low-cost monitoring 0.99 1.00 0.99 0.90 0.98

Equal weights 0.99 1.00 0.99 0.95 0.98

Max. of info. gain 0.99 1.00 0.99 0.98 0.98

ULS

Low-cost monitoring 0.99 1.00 0.96 0.90 0.98

Equal weights 0.99 1.00 0.96 0.95 0.98

Max. of info. gain 0.99 1.00 0.97 0.98 0.98

LoA 2 (Table 7), minimum benefit-cost ratios are larger
as reserve capacity estimations decrease when model
uncertainties are taken into account. Additional uncertainties
related to the monitoring outcome are introduced in
the next section.

LoA 4—VoI
Monitoring uncertainty sources are evaluated for each
measurement-system scenario. Uncertainty sources ui are
chosen as uniform distribution bounded between uv,low and 1.
Results are presented in Table 9.

The first source of uncertainty u1 is related to the
quality of the sampling used. In this study, 1,000 model
instances are generated using LHS for a three-parameter
space. Due to the sampling technic used and the number of
model instances, parameter distributions are almost uniform
(expected distribution). Additionally, u1 is independent of the
measurement-system scenarios.

The accuracy of sensor placement algorithm is evaluated in the
second uncertainty source u2. P(RC+) estimations are evaluated
for a range of interval starting points, for each measurement
system scenario. Results show that the hypothesis to start
intervals at minimum values of predictions is conservative and
decreases P(RC+) estimations by 1–2%. This uncertainty source
does thus not affect the VoI estimation.

The uncertainty source u3 accounts for possible sensor
failure(s). The best sensor is assumed to fail and its expected
information gain is removed. For each measurement system
scenario and limit state, u3,low is calculated using Equation (25).

The risk of diagnosis error, which is function of the number of
measurements, is estimated using the uncertainty source u4. As
this uncertainty is related to system identification, the selected
critical limit state does not affect u4. Following a conservative
hypothesis of maximum misevaluation of model uncertainties
of 100% (Pasquier et al., 2013; Papadopoulou et al., 2016), the
probability of diagnosis error is estimated to be 10, 5, and 2%
for 20, 30, and 55 field measurements, respectively. u4 is then
calculated using Equation (26).

An additional uncertainty is added to cover potential
remaining uncertainty sources. Based on engineering judgment,
the additional uncertainty u5 is taken as a uniform distribution
bounded between u5,low equal to 0.98 and 1. Once each

TABLE 10 | Evaluation of the minimum benefit–cost ratio between cost savings

Cint−Cnot and cost of monitoring Cmon to justify monitoring—LoA 4.

Measurement-system

scenario

P(RC+)low Min. benefit–cost

ratio

Min. cost savings

[103 GBP]

SLS

Low-cost monitoring 0.39 2.60 8.51

Equal weights 0.40 2.49 11.4

Max. of info. gain 0.42 2.38 16.6

ULS

Low-cost monitoring 0.14 7.01 23.0

Equal weights 0.15 6.54 29.9

Max. of info. gain 0.17 6.07 42.3

TABLE 11 | Evaluation of the maximum benefit–cost ratio between cost savings

Cint−Cnot and cost of monitoring Cmon to avoid monitoring—LoA 4.

Measurement-system

scenario

P(RC+)high Max. benefit–

cost ratio

Max. cost savings

[103 GBP]

SLS

Low-cost monitoring 0.41 2.44 7.98

Equal weights 0.42 2.41 11.0

Max. of info. gain 0.43 2.34 16.3

ULS

Low-cost monitoring 0.15 6.54 21.4

Equal weights 0.16 6.27 28.7

Max. of info. gain 0.17 5.91 41.2

uncertainty source is estimated, the global uncertainty utot is
computed and hypothesis testing is conducted.

Table 10 shows, for each scenario, the minimum benefit-cost
ratios to justify monitoring, while Table 11 shows the maximum
benefit-cost ratios to avoidmonitoring. As small uncertainties are
present (Table 9), upper and lower bounds of benefit-cost ratio
are similar. For the same measurement system, minimum cost
savings are similar to those reported in Table 8. For both limit
states, the measurement system scenario of low-cost monitoring
presents the smallest minimum cost savings to justify testing
the bridge. Minimum costs savings are much larger for ULS
than SLS as P(RC+) evaluations are much lower for ULS. This
result shows that the parameter identification using monitoring
is unlikely to influence RC assessment for ULS. Cost savings must
be significantly larger to justify monitoring for ULS.

Figure 13 presents the thresholds of the benefit-cost ratio
for each monitoring scenario, which differ by the number of
measurements, and both limit states. This figure provides a
visualization of results in Tables 10, 11. The dashed areas refer to
non-informative values of benefit-cost ratios, for which further
investigation is required. When the number of measurements
increases, global uncertainties are reduced and thus the
two thresholds are closer. This result shows that additional
measurements reduce uncertainties on monitoring outcomes.
Nevertheless, adding measurements does not significantly
improve the minimum benefit-cost ratio to justify monitoring
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FIGURE 13 | Benefit–cost ratios to justify or reject monitoring for each monitoring scenario. (A) SLS; (B) ULS.

for SLS and may not be justified by the associated increase
of monitoring costs. A comparison of monitoring outcomes is
presented below.

Measurement System Comparison
In this section, the measurement system scenarios are compared
using minimum benefit-cost ratio and minimum cost savings to
justify monitoring. The aim is to determine which measurement
system should be recommended to asset managers, according to
its VoI.

For each measurement system scenario, Figure 14A shows
the minimum benefit-cost ratio as function of the level of
approximation for SLS. Figure 14B shows the minimum cost
savings to justifymonitoring the bridge. For the estimation of VoI
(LoA 4), only the assumption that testing the bridge is unworthy
(upper bound ofminimum cost savings) is presented (Figure 13).
In both cases, the minimum cost savings increases with the LoA,
showing the upper bound VoI estimations of the framework,
which correspond to lower bound estimations of minimum
benefit-cost ratios (Table 10). The scenario of maximization of
information gain provides the smallest minimum benefit-cost
ratio to justify monitoring. However, the scenario of low-cost
monitoring presents the smallest minimum cost savings to justify
the bridge load testing and, therefore, it is recommended for SLS.
Figures 14C,D present minimum benefit-cost ratios and cost
savings to justify monitoring for ULS with similar observations
when compared to SLS. The main difference between SLS
and ULS is that ULS requires much larger cost savings to
justify monitoring.

For both limit states, the low-cost scenario is therefore
recommended as it presents the smallest minimum cost savings
to justify monitoring. This conclusion differs from the results
of the recommended measurement system based on MCDA
analysis (Table 6), where the information gain is observed to
increase with the number of measurements. The information
gain is measured using the joint entropy, which takes into
account only the identifiability of model instances. On the
contrary, the VoI takes into account the influence of parameter

identifiability on reserve capacity assessment. As the VoI
estimation requires significantly larger computational time, using
a MCDAmethodology to reduce the set of possible measurement
systems is suggested. Nevertheless, the VoI estimation is
recommended when the goal is to select the appropriate
measurement system among a set of good alternatives.

DISCUSSION

The following limitations of the work are recognized: the success
of any model-based methodology for sensor placement or VoI
estimation depends on the quality of the numerical behavior
model used to compute predictions. The reliability of model
assumptions, such as model-class definition, should be verified
via visual inspection. In case a wrong model class is selected, with
EDMF, all model instances are typically falsified, thus suggesting
a revision of the initial assumptions. This risk was not taken
into account in the present study as it still provides useful
information to asset managers. When a model class is rejected,
the information gained by the monitoring still leads to better
understanding of the structural behavior and this understanding
helps avoid further wrong assessment of the reserve capacity. In
such situations, monitoring remains useful.

In the present study, the ultimate limit state of the case
study involves only evaluations at first yield of steel. For
case studies requiring NFLEA simulations, such as reinforced
concrete bridges, the estimation of uncertainties in non-linear
analysis is challenging. Additionally, these uncertainties cannot
be significantly reduced using elastic measurements. Before
performing reserve capacity assessment, model validation is
recommended (Cervenka, 2013). VoI evaluations for static load
testing might be inappropriate. Additionally, computing the
VoI requires the evaluation of the reserve capacity for a large
number of model instance sets and thus may be computationally
expensive. Authors thus suggest to limit the scope of the
proposed framework to serviceability limit states and ultimate
limit states involving evaluation only at first yield, such as for the
case study described in this paper.
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FIGURE 14 | Minimum benefit–cost ratios Cint−Cnot

Cmon
and cost savings Cint−Cnot to justify monitoring as function of the level of approximation. (A) Benefit–cost

ratio—SLS; (B) including Cmon evaluation—SLS; (C) benefit–cost ratio—ULS; (D) including Cmon evaluation—ULS.

The parameters that can be identified during static load
testing are mostly related to the structural stiffness and boundary
conditions. Often these parameters do not dictate the ultimate
carrying capacity as they provide little information on the
material strength and material non-linear behavior. Future work
will involve the use of non-destructive tests to update relevant
parameters at ULS.

The estimation of P(RC+) is influenced by the initial
assumptions of model-parameter distributions. In the Exeter
Bascule Bridge, the three model parameters are assumed having
uniform distributions between bounds of parameter values,
where parameter bounds represent lowest and largest plausible
values. These choices weremade based on engineering judgement
and visual inspection. Wrong initial hypotheses on model
parameter distributions may lead to an inaccurate estimation
of P(RC+).

The VoI estimation of monitoring scenarios also depends on
the possible decisions of asset managers. In the present study,
only two actions are considered, depending of the bridge reserve
capacity. Intervention costs Cimp and do-nothing costs Cnot are
assumed not to be dependent on the reserve capacity assessment.
In the present study, only economic costs are taken into account.

Total costs may also include social costs calculated for example
as the total travel time delay during interventions, environmental
costs of the structural improvement and a lifecycle cost of the
“do-nothing” scenarios. These cost refinements may influence
the decision on whether the bridge should be monitored.

CONCLUSIONS

Efficient asset management of existing civil infrastructure is
necessary. This paper contains a proposal for a framework to
estimate the value of information (VoI) of bridge load testing for
reserve capacity assessment based on the EDMF methodology.
Conclusions are as follows:

• The framework provides useful guidance to asset managers to
evaluate whether the information from monitoring influences
the assessment of reserve capacity, particularly when the
critical limit state is either serviceability or ultimate when first
yield is a good approximation.

• The approach, using levels of approximation, helps reveal if
more accurate estimation of VoI is needed, thus reducing
unnecessary complex analyses when controlled-condition
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monitoring would not provide sufficient information to
influence asset-manager actions.

• A full-scale case study demonstrates that the framework
supports asset managers in the choice of the optimal
measurement system when multiple monitoring scenarios
are proposed.

Future work involves comparing the effects of intervention
actions, such as load testing and non-destructive tests on the
reserve capacity assessment.
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