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The conceptual design of grid systems in tall buildings is addressed by combining

optimization and multiscale analysis of lattice structures. Macroscopic properties of

lattices with given cross-section are available in the literature for different cell topologies.

A multi-material optimization problem is formulated to find the distribution of a prescribed

discrete set of candidate cross-sections and shapes such that the structural weight

of the grid is minimized under constraints on the lateral displacements of the building.

Preliminary numerical simulations are shown, addressing the design of tall buildings that

employ diagrids and hexagrids.

Keywords: diagrids, hexagrids, high-rise buildings, structural optimization, discrete material optimization,

multiscale analysis, lattice structures

1. INTRODUCTION

Diagrids and hexagrids are special tubular structures that adopt inclined members instead of
conventional vertical columns to carry both vertical and lateral loads (see e.g., Mele et al., 2014;
Montuori et al., 2015). It is well-known that perimeter grids are an efficient solution to cope
with horizontal forces in high-rise buildings. Among the other advantages, a perimeter resisting
system maximizes lever arms to face overturning moments due to lateral loads. By using inclined
members instead of frame rectangular grids, weight is reduced and undesired shear lag effects can
bemitigated (see e.g., Shi and Zhang, 2019). Indeed, several iconic tall buildings have been built over
the last decades exploiting these concepts, thus combining structural functionality and aesthetics.

Diagrids employ diagonally intersecting members that give rise to triangular shapes. A
stiffness-based method for the preliminary design of diagrids was formulated in Moon et al. (2007).
Investigations on the optimal layout of the members of a diagrid can be found e.g., in Moon (2010),
Montuori et al. (2014), and Angelucci and Mollaioli (2017).

Hexagrids draw inspiration from honeycombs, in which hexagonal cells make the resisting
structure.Mechanical properties of hexagrids and diagrids are extensively investigated and critically
compared inMontuori et al. (2015), addressing several geometric layouts. A homogenization-based
procedure is formulated that is able to perform the multiscale analysis of high-rise buildings
adopting a cantilever beammodel. An equivalent material is derived whose elastic and shearmoduli
depend not only on the geometrical properties of the grid, but also on the cross-section and the
material properties of its members. This approach is especially conceived for regular patterns, in
which the representative volume element is detected as the smallest basic cell that can tessellate the
whole grid. Upon introduction of suitable correction factors, the same approach can be extended
to irregular patterns, see in particular the Voronoi grids investigated in Angelucci and Mollaioli
(2018) and Mele et al. (2019). This method provides the designer with a sound and effective tool to
cope both with conventional and innovative structural skins for tall buildings.

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://doi.org/10.3389/fbuil.2020.00080
http://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2020.00080&domain=pdf&date_stamp=2020-06-02
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles
https://creativecommons.org/licenses/by/4.0/
mailto:matteo.bruggi@polimi.it
https://doi.org/10.3389/fbuil.2020.00080
https://www.frontiersin.org/articles/10.3389/fbuil.2020.00080/full
http://loop.frontiersin.org/people/709712/overview


Bruggi Design of Grids by Distribution of Lattice Structures

Design strategies for diagrids and Voronoi-like tall buildings
that are based on size optimization can be found e.g., in
Angelucci and Mollaioli (2017, 2018) and Tomei et al. (2018).
Advances in optimization of high-rise building structures are
reviewed in Aldwaik and Adeli (2016). Among the others,
reference is made to the work in Lagaros (2014), which addresses
large-scale optimization problems for real-world structures
using metaheuristic approaches and parallel computing, and
to Mavrokapnidis et al. (2019), performing the environmental
assessment of cost optimized structural systems in tall buildings.
Within the framework of methods for discrete variable structural
optimization (see e.g., Arora, 2002), reference is made in
particular to Van Mellaert et al. (2018), implementing a mixed-
integer linear programming approach that handles binary
variables to choose the member profiles from a catalog. This
method has the peculiar feature of being globally convergent (see
also Van Mellaert et al., 2016).

Among the methods used for the conceptual design of tall
buildings, topology optimization (Bendsøe and Kikuchi, 1988) is
a powerful tool to sketch lightweight and stiff systems to resist
lateral forces. A distribution of a limited amount of material is
sought thatminimizes a prescribed objective function, such as the
strain energy stored in the body, given a set of constraints, such
as the available amount of material. Optimal layouts made of void
and solid material can be found by adopting the conventional
Solid Isotropic Material with Penalization (SIMP) (Bendsøe and
Sigmund, 2004) to interpolate the elastic properties with respect
to the minimization unknown, i.e., the point-wise material
density. Alternatively, the optimization can be performed by
gradually removing inefficient materials from a continuum
design domain (see Liang et al., 2000). The achieved results can
be also seen as optimal load paths (see e.g., Bruggi, 2016).

Among the topology optimization approaches for high-rise
buildings, reference is made in particular to Stromberg et al.
(2011), introducing pattern gradation for the design of bracing
structures, and Beghini et al. (2015), combining continuum and
discrete elements to design lateral force resisting systems not
only for stiffness but also for global stability (see also Stromberg
et al., 2012). Reference is also made to the application of a three-
dimensional implementation of the so-called ground structure
approach in Zegard and Paulino (2015) to sketch optimal
perimeter grids.

Within the above framework, this contribution addresses
the conceptual design of grid systems in tall buildings by
combining topology optimization and multiscale analysis of
cellular solids (see e.g., Gibson and Ashby, 1988). Instead
of adopting a multiscale cantilever beam model, a three-
dimensional box-shaped structure is used as the design domain
for the generation of optimal grid systems whose panels can
be seen as lattice structures. Among the others, the work in
Vigliotti and Pasini (2012) provides analytical expressions for
the macroscopic constitutive tensors that describe the elastic
behavior of triangular and hexagonal lattices with prescribed
reference dimension, cross-section, and material. Following
Gibiansky and Sigmund (2000) and Stegmann and Lund (2005),
a multi-material topology optimization problem is formulated
to distribute a discrete set of lattices using continuous variables.
Each phase corresponds to a candidate lattice with prescribed

features in terms of geometrical properties and features of the
constituent elements (see also Alzahrani et al., 2015; Han and
Lu, 2018). The distribution of cross-sections and shapes that
minimizes the weight of the structural grid is sought under
constraints on the lateral displacements of the building. Patches
are used to enforce that the same lattice is employed at a
certain height or within a minimum contiguous area. This also
reduces the number of optimization parameters involved in
the optimization. Preliminary numerical results are presented
to assess the method and investigate features of the achieved
optimal solutions.

The algorithm presented in this work should be intended
as a conceptual design tool to allow the designer investigate
and optimize alternative grids, using the same finite element
model. Two peculiar features can be pointed out, referring to
the analysis approach and the to the optimization method. While
most of the existing approaches of multi-scale analysis of tall
buildings employ homogenization to derive the macroscopic
elastic modula for a cantilever beam model, see in particular
Montuori et al. (2014), the macroscopic in-plane elastic constants
are used in this contribution to address a shell model of the
box-shaped grid. Hence, instead of using size or parametric
optimization for truss/beam models, see in particular Zegard
and Paulino (2015) and Tomei et al. (2018), or SIMP-based
topology optimization, see in particular Stromberg et al. (2011),
a multi-material topology optimization approach is conceived to
handle the distribution of a discrete set of lattices throughout the
shell model.

The paper is organized as follows. Section 2 provides details
on the macroscopic modeling of the structural grids and presents
the multiscale optimization approach. Section 3 reports results
of the numerical simulations performed on three-dimensional
shell and beam models, addressing tall buildings with square and
hexagonal plan. Section 4 formulates comments on the achieved
results and draws conclusions.

2. MATERIALS AND METHODS

2.1. Macro-Scale Elastic Properties of
Diagrids and Hexagrids as Lattice
Structures
The work in Vigliotti and Pasini (2012) presents a multiscale
procedure for the linear analysis of components made of two-
dimensional lattices. The method can be applied to pin-jointed
and rigid-jointed lattices with arbitrary cell topology. Two levels
are defined: the micro-scale one, referring to the trusses/beams,
and the macro-scale one, i.e., that of the component. The macro-
scale properties of the equivalent lattice material are determined
by writing the micro-scale deformation work as a function of
the macro-scale strain field. Assuming plane stress, the cartesian
components of themacro-scale stress tensor σij are re-gathered in

the array σ = [σ11 σ22 σ12]
T and, analogously, ε = [ε11 ε22 γ12]

T

for the components of the macro-scale strain tensor εij. Hence,
σ = Cε. Two types of lattices are addressed in this contribution,
as shown in Figure 1. Both the herein considered triangular
and honeycomb lattices have a six-fold rotational symmetry, so
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FIGURE 1 | Two lattices used in structural grids: (A) an isotropic triangular lattice of a diagrid; (B) an isotropic hexagonal lattice of a hexagrid (B) (drawn in the

micro-scale reference system).

that isotropic constitutive relations are found by means of the
multiscale procedure.

Denoting by A and I the area and the moment of inertia of the
cross-section, respectively, L the reference length of the geometry
and E the elastic modulus of the material, the stiffness matrix of
an isotropic diagrid-like lattice of the type in Figure 1A can be
written at the macro-scale as:

Cd =
3E

4
√
3L3





3(AL2 + 4I) AL2 − 12I 0
AL2 − 12I 3(AL2 + 4I) 0

0 0 AL2 + 12I



 (1)

According to the above equation, the bending contribution to the
strain energy is always negligible with respect to the stretching
one. Indeed, diagrids are stretching-dominated structures.

The macro-scale stiffness matrix of an isotropic hexagrid-like
lattice of the type in Figure 1B can be written as:

Ch =
EA

2
√
3L(AL2 + 12I)





AL2 + 36I AL2 − 12I 0
AL2 − 12I AL2 + 36I 0

0 0 24I



 , (2)

see also Gonella and Ruzzene (2008). According to the above
equation, the bending contribution to the strain energy is
always significant, except for hydrostatic stresses when it is
null. Indeed, hexagrids are bending-dominated structures (see
e.g., Ashby, 2006).

The lattices in Figure 1 are well-suited for structural grids. The
contribution in Montuori et al. (2015) concludes that an angle
of 60◦ for the diagonal members can be considered as the best
compromise of structural needs, such as stiffness and weight, and
architectural ones, such as visual density, both for diagrids and
hexagrids. However, the procedure introduced in Vigliotti and
Pasini (2012) is general and can be used to derive constitutive
matrices of other anisotropic lattices that can be similarly handled
within the formulation presented in the following.

Alternative approaches can be implemented to recover the
elastic properties of the lattices at the macro-scale. Among the
others, reference is made to Kumar and McDowell (2004). In
this work, displacements and rotations of a lattice unit cell
were expressed as second order Taylor expansions about the cell
centroid, with the aim of equating the deformation energy of the
discrete lattice to that of a micropolar continuum. This enriched
kinematics is conceived to cope with macroscopic specimens
whose dimensions are not far from those of the microstructure.
It is finally remarked that the optimization procedure proposed

in the sequel may be straightforwardly adapted to deal with
a micropolar material model (see e.g., Bruggi and Taliercio,
2012).

2.2. Optimization With a Discrete Set of
Cross-Sections
Diagrids and hexagrids with given reference length L are assumed
to be made of elements whose cross-section should be selected
within a prescribed set, meaning that the available area A and
moment of inertia I have discrete values. Hence, the relevant
lattice materials should be described referring to a discrete set of
macroscopic stiffness matrices. A multi-material methodology is
adopted to handle this problem within the context of topology
optimization by distribution of isotropic material. A continuous
interpolation of the macroscopic stiffness matrix is adopted
following an original extension of the SIMP that was proposed
in Gibiansky and Sigmund (2000) and reviewed in Stegmann and
Lund (2005) to handle m phases of material along with a void
one. It reads:

C = ρ
p
0



(1− ρ
p
1 )C1 +

m−1
∑

i=2

(1− ρ
p
i )Ci

i−1
∏

j=1

ρ
p
j + Cm

m
∏

j=2

ρ
p
j−1



 ,

(3)

where C is the stiffness matrix of the resulting material, 0 <
ρ0 ≤ 1 is a continuous minimization variable that controls the
distribution of material and void, whereas 0 ≤ ρi ≤ 1 with
i = 1, ...,m govern the stiffness contributions of the material
phases, beingCi the constitutive matrix of the i-thmaterial phase.

In the herein considered problem, there is no void phase.
Indeed, it is assumed that the whole building envelope is endowed
with a structural grid having varying cross-section and shape. A
basic lattice that adopts the smallest among the candidate cross-
sections provides aminimum stiffness all over the design domain.
The goal of the optimization is distributing local increments of
the macroscopic stiffness matrix in order to meet some design
requirements. This can be performed re-writing Equation (3) as:

C = C0 + ρ
p
1



(1− ρ
p
2 )(C1 − C0)

+
m−1
∑

i=2

(1− ρ
p
i+1)(Ci − C0)

i−1
∏

j=1

ρ
p
j+1 + (Cm − C0)

m
∏

j=2

ρ
p
j



(4)

Frontiers in Built Environment | www.frontiersin.org 3 June 2020 | Volume 6 | Article 80

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Bruggi Design of Grids by Distribution of Lattice Structures

TABLE 1 | Macroscopic stiffness matrix retrieved by Equation (5) depending on

the values of ρi .

ρ1 ρ2 ρ3 C

0 0÷1 0÷1 C0

1 0 0 C1

1 1 0 C2

1 1 1 C3

The above equation handles m + 1 cross-sections, i.e., the basic
one along withm bigger cross-sections. The continuous variables
0 ≤ ρi ≤ 1 with i = 1, ...,m are minimization unknowns that
govern the lattice stiffness: C0 is the macroscopic stiffness matrix
of the basic cross-section (the weakest among the available ones),
whereas Ci refers to the i-th cross-section other than the basic
one. The parameter p is a penalization power assumed equal to 3.

Having the aim of using few different sections in the grid,
the assumption m = 3 will be used to perform numerical
simulations.Writing out the expression in Equation (4) to handle
four cross-sections one has:

C = C0 + ρ
p
1

[

(1− ρ
p
2 )(C1 − C0)+ ρ

p
2 (1− ρ

p
3 )(C2 − C0)

+ ρ
p
2ρ

p
3 (C3 − C0)

]

(5)

An interpolation of the type in Equation (5) is very efficient in
pushing the weights of the stiffness increments, i.e., the optimal
values of the continuous variables ρi, toward the bounds 0 and
1. This performs the aimed distribution of the prescribed set
of candidate cross-sections. Table 1 reports triplets of ρi that
recover themacroscopic stiffness matrix of four candidate lattices
through Equation (5).

As reported in Stegmann and Lund (2005), the original
interpolation of Equation (3) can get stuck in local optima,
especially depending on the number of material phases to be
distributed along with void. Different starting points can be
adopted to investigate optimality of the results achieved using
Equation (5). In the case of several candidate cross-sections,
the interpolation originally introduced in Stegmann and Lund
(2005) to cope with the discrete material optimization of multi-
layered composite structures can be alternatively implemented to
address this issue. Reference is also made to Wang and Wang
(2004) and Sanders et al. (2018) for detailed discussions on
the problem of structural shape and topology optimization in a
multi-material domain.

2.3. Minimum Weight Design of Structural
Grids Under Displacement Constraints
The preliminary design of grid systems can be formulated as
a displacement-constrained minimum weight problem. A finite
element discretization of the building envelope is operated,
adopting a patch-wise approximation of the unknown fields ρi.
A patch is a set of elements that share the same cross-section
(see Stegmann and Lund, 2005). In the j-th of the n patches, m
minimization unknowns are defined: xp,i for i = 1, ...,m are the

discrete counterparts of ρi in Equation (5). In the e-th of the nel
elements in the mesh, the element-wise values xe,i descend from
those of xp,i in the relevant patch.

Accordingly, the problem can be stated as:















































































min
0≤xp,1,...,xp,m≤1

W =
nel
∑

e=1

We

s.t.





nel
∑

e=1

Ke(xe,1, ..., xe,m)



U1 = F1,





nel
∑

e=1

Ke(xe,1, ..., xe,m)



U2 = F2,

u1 ≤ ulim,

u2 ≤ ulim

(6a)

(6b)

(6c)

(6d)

(6e)

In the above statement, the objective function is the weight of the
grid system, which is computed through the sum of the element-
wise contributions We. For the e-th element, this is evaluated
assuming the interpolation in Equation (4) with p = 1. Indeed,
p = 3 is conventionally used for stiffness interpolation to penalize
intermediate densities, whereas a penalization p > 1 for the
approximation ofWe is expected to be detrimental in aminimum
weight formulation. Considering a problem with four candidate
cross-sections, the weight of the bars that fall within the e-th finite
element reads:

We = We,0 + xe,1
[

(1− xe,2)(We,1 −We,0) (7)

+ xe,2(1− xe,3)(We,2 −We,0)+ xe,2xe,3(We,3 −We,0)
]

,

where We,0 refers to the cross-section of the basic lattice (the
lighter one), whereas the terms We,i − We,0 define the weight
increments due to each one of the remaining m candidate
sections. Regardless of the values of the minimization unknowns,
the coefficients within square brackets in Equation (8) add up to
unity. The combined adoption of the interpolations in Equations
(5) and (8) is especially conceived to achieve 0-1 solutions, see
results in section 3.

Equations (6b) and (6c) prescribe the discrete equilibrium
of the structure under horizontal actions that act along two
orthogonal axes of the plan of the building, z1 and z2 respectively.
The global stiffness matrix is computed assembling the element-
wise contribution Ke that account for the in-plane stiffness given
by Equation (4) and, particularly, Equation (5). The load vectors
F1 and F2 allow computing the nodal displacements vectors U1

and U2, referring to actions along z1 and z2, respectively. The
scalar quantities u1 and u2 stand for the average values of the
horizontal displacements computed at the top of the building
for the relevant load case. Equations (6d) and (6e) enforce a
prescribed limit ulim to the above quantities, which is assumed
as 1/500 of the height of the building Hz3.

It must be remarked that the proposed framework is intended
as a conceptual design tool to investigate and optimize alternative
grids, at a preliminary level, using the same discretization.
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Indeed, the adopted multi-scale analysis avoids implementing
a different beam model for each solution to explore. The
proposed formulation is based on a stiffness design criterion,
which is implemented under the assumption of linear elastic
behavior of the material and small strain theory. However, it
could be straightforwardly endowed with constraints enforcing
maximum stresses and minimum critical loads to control
strength and buckling failure, respectively. The work in Vigliotti
and Pasini (2012) provides analytical expressions not only for
the macroscopic in-plane stiffness of the lattices, but also for the
internal forces as a function of the components of the macro-
strain field. This could be used to enforce stress constraints and
local buckling constraints on each member of the grid, whereas
an eigenvalue-based approach could be implemented to control
global buckling (see e.g., Bendsøe and Sigmund, 2004).

2.4. Numerical Implementation
A nested design and analysis approach is used, adopting
four-node flat shell finite elements to model the macroscopic
properties of the structural grids. The implemented finite element
is obtained by combining the in-plane stretching behavior of a
plane stress element with the bending behavior of a thin plate
element. As already mentioned, the in-plane stiffness comes from
the element-wise application of the interpolation introduced in
sections 2.1 and 2.2, whereas a negligible out-of-plane stiffness
is prescribed to all the elements. In the numerical simulations
presented in the following, the plane stress element implements
the isotropic material laws in Equations (1) and (2) along
with unitary thickness (1mm); the plate element uses the same
material properties, but the thickness is fictitiously assumed equal
to 10−4mm.

The problem in Equation (6) is attacked via sequential convex
programming, adopting the Method of Moving Asymptotes
(MMA) (Svanberg, 1987) as minimizer. MMA was originally
conceived to attack structural optimization problems and is
well-suited to handle multi-constrained problems, see also the
application in Bruggi (2020). The computation of the sensitivity
of the constraints with respect to the minimization unknowns
is required at each iteration. The adjoint method is adopted in
this regard (see e.g., Bendsøe and Sigmund, 2004). The average
horizontal displacement at the top of the building uk can be
written as:

uk = LTkUk, (8)

with k = 1, 2. In the above equation, Lk is a vector made
of zeros except for the entries referring to the top horizontal
displacements in the zk-axis. In these entries, it takes the value
1/N, with N number of points belonging to the top floor. The
scalar quantity uk does not change if one adds at the right hand
side of Equation (8) a zero function that involves the discrete
equilibrium in Equation (6b) or Equation (6c) for k = 1 and
k = 2 respectively, i.e.,:

−λT
k









nel
∑

e=1

Ke(xe,1, ..., xe,m)



Uk − Fk



 , (9)

where λk is any arbitrary but fixed vector. After rearrangement
of terms, the derivative of uk with respect to the l-th set of
element-wise unknowns may be computed as:

∂uk

∂xl,i
= −λT

k

∂Ke(xe,1, ..., xe,m)

∂xl,i
Uk, (10)

where λk satisfies the adjoint equation:





nel
∑

e=1

Ke(xe,1, ..., xe,m)



λk = Lk (11)

The sensitivity of Ke with respect to the l-th set of element-wise
unknowns is computed by derivation of Equation (4), where C0

and Ci are fixed matrices accounting for the prescribed candidate
lattices. This sensitivity is null, if e 6= l.

The derivative of uk with respect to the h-th set of patch-
wise unknowns may be computed by adding up the relevant
derivatives of the elements in the patch.

At each iteration of the minimization procedure four linear
systems are solved to evaluate constraints and their sensitivities
via finite element (FE) analysis, i.e., Equations (6b), (6c), and (11)
for k = 1, 2.

Figure 2 gives a flowchart of the implemented algorithm.

3. RESULTS

Structural grids for tall buildings having a square or a hexagonal
base are investigated by means of the proposed approach. At
first, the multiscale analysis described in section 2.1 is assessed
by comparing the achieved results with those found adopting
a conventional three-dimensional beam-based analysis. Then,
a preliminary optimization is performed addressing different
patches. The weight of the analyzed/optimized structural grids
are reported in Table 2.

Hexagrids take full advantage of rigid diaphragms (RDs)
to reduce their (bending-dominated) deformability, whereas
(stretching-dominated) diagrids are less affected by such a
stiffening. In the numerical simulations that follow, the nodes at
the same height are enforced to be part of a rigid diaphragm, if
not differently specified (see section 3.1). Constraints equations
are used in the analysis to prescribe that the in-plane motion of
all the points on a floor diaphragm is that of a rigid body. The
nodes of a panel that lie on a RD preserve their mutual distance
in the horizontal direction, thus affecting the relevant component
of the strain in the plane of the panel and, consequently, the
overall flexural stiffness of the grid. The arising stiffening effect is
analogous to the confinement provided by the steel lamina on the
rubber layers in a laminated elastomeric bearing, see in particular
Montuori et al. (2015) and Mele et al. (2019).

As a simplification, it is assumed that all the horizontal
forces acting upon the building (such as wind actions) are
carried by the structural grid in the envelope, whereas no
vertical force is considered, if not differently specified (see section
3.3). Indeed, the adopted displacement-constrained problem
addresses horizontal compliance and disregards the vertical one.
Rigid-jointed grids are considered throughout the section.
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FIGURE 2 | Flowchart of the proposed tool.

Diagrids and hexagrids investigated in the numerical
simulations are handled through the regular discretization
shown in Figure 3: continuous lines stand for bars in the grid;
dash lines stand for shell finite elements; dash-dot lines stand
for a typical patch of 2 × 2 finite elements that share the same
cross-section and shape. For each one of the finite elements, the

ratio of the vertical size to the horizontal one reads d2
d1

= 2√
3
.

It must be remarked that no match is required, in principle,
between the geometry of the finite element discretization (at the
macro-scale) and the geometry of the lattices (at the micro-scale)
(see Vigliotti and Pasini, 2012). Any variation in the orientation
of the members at the micro-scale can be straightforwardly dealt
with at the macro-scale by means of an anisotropic constitutive
law. Patches can be used to control mesh dependence of the

TABLE 2 | Tonnage of the analyzed/optimized structural grids.

Figures Grid Problem Patch W

type type (kN)

Figures 5A,B Diagrid Analysis 36,956

Figure 7A Diagrid Design 8× 1 28,891

Figure 7B Diagrid Design 2× 2 28,267

Figure 10A Diagrid Design 2× 2 28,082

Figures 6A,B Hexagrid Analysis 88,262

Figure 8A Hexagrid Design 8× 1 68,831

Figure 8B Hexagrid Design 2× 2 68,593

Figure 11A Diagrid Design 32× 1 92,978

Figure 11B Diagrid Design 2× 2 89,507

optimal layouts when refined discretizations are implemented.
The adoption of a structured mesh of the type in Figure 3 allows
simplifying the construction of the relevant beammodels, as used
in the following for comparisons.

3.1. Multiscale Analysis vs. Beam-Based
Analysis of a Tall Building
A high-rise building having square plan with dimension Bz1 =
Bz2 = 48m and height Hz3 = 207.85m is considered (see
Figure 4A). A uniform distribution of the horizontal load is
assumed along the height of the building with intensity pz1 =
pz2 = 96 kN/m, being z1 and z2 the baricentrical axes of the
building plan. Each of the two loads is applied along the four
corners of the building, being equally divided among them.

The multiscale approach described in section 2.1 is applied
to the analysis of the building, assuming different structural
grids with constant cross-section along the height. The
computed displacements are compared with those found through
conventional three-dimensional beam models that use the
geometry and the cross-section of the relevant grid. The analyses
address the grids represented in Figure 3: (a) a diagrid having
reference length L = 8m, made of tubes with circular hollow
cross-section, diameter φ = 558mm and thickness th =
16mm, slenderness L/

√
I/A = 42 (tonnage 36956 kN); (b) a

hexagrid having reference length L = 4m, made of tubes with
square hollow cross-section, side l = 650mm and thickness
th = 40mm, slenderness L/

√
I/A = 17 (tonnage 88262 kN).

The elastic modulus of steel is 210GPa in all the simulations
considered in the following.

Multiscale simulations are performed using the same regular
finite element mesh with d1 = 6m and d2 = 6.93m.
The vertical size of the finite element d2 = 6.93m is twice
the story height. There are 8 × 30 finite elements in each
panel of the three-dimensional grid. Beam-based simulations are
performed accounting for the effective geometry of the grids,
implementing two different finite element models. Comparisons
are performed either neglecting the contribution of the floors
or assuming rigid diaphragms (RDs). Due to the symmetry of
the problem, the same average displacement is found at the
top both for the horizontal actions acting along z1 and z2. As
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FIGURE 3 | Layout of the (A) diagrids and (B) hexagrids investigated in the numerical simulations: continuous lines stand for bars in the grid; dash lines stand for

elements; dash-dot lines stand for a typical patch of 2× 2 elements sharing the same cross-section.

FIGURE 4 | Dimensions (in m) of the floors of two tall buildings: (A) a square

plan building and (B) a hexagonal plan building (drawn in the macro-scale

reference system).

already mentioned, no optimization is considered in this section.
However, the adopted lattices have been selected such that, in
case of RDs, the top displacements of the grid are feasible with
respect to the considered constraints on the lateral stiffness of the
building. These layouts may be regarded as reference solutions
to be improved by means of Equation (6), as addressed in the
following section.

Values of uk are reported in Table 3 for each one of the
considered finite element simulations, along with the number of
elements and nodes of the finite element models. The uk values
achieved through a multiscale analysis of the diagrid are almost
the same as those computed by beam-based models, regardless of
the assumption on RDs. Conversely, in the case of the hexagrid,
uk values computed via the multiscale analysis are affected by
a larger error, especially when rigid diaphragms are considered.
This is in agreement with the original validation reported in
Vigliotti and Pasini (2012) when dealing with plane stress
problems. The multiscale analysis exhibited extreme accuracy in
the evaluation of the displacement field for stretching-dominated
lattices, whereas bending-dominated ones were found to be
affected by an error of some percentage points or less, depending
on the reference dimension L. The accuracy of the results
delivered by a multiscale analysis increases if the size of the
unit cell decreases with respect to the size of the component.
Hence, ratios L

Bz1
and L

Bz2
should be carefully considered when

accurate results are needed, especially when dealing with the
multiscale analysis of hexagrids. Also, the enforcement of RDs
could be effectively performed through a modification of the
macroscopic properties of the lattice structure that accounts
for this constraint at the micro-scale level, see in particular
Montuori et al. (2015).

TABLE 3 | Multiscale analysis vs. beam-based analysis of a tall building with

square plan employing a diagrid/hexagrid with constant cross-section.

Diagrid Hexagrid

Shells Beams Shells Beams

Elements 960 2,220 960 3,016

Nodes 992 834 992 2,132

uk (in m, no floors) 0.444 0.455 0.776 0.806

uk (in m, RDs) 0.408 0.409 0.377 0.350

Deformed shapes (with magnification factor 100) are reported
in Figures 5, 6, for the diagrid and the hexagrid, respectively. A
very good agreement of the multiscale solutions is found with
respect to the reference beam-based results. As expected, the
stiffening effect due to the rigid diaphragms is mild in case of
the diagrid, whereas it is noticeable for the hexagrid. RDs allow
for a reduction of approximately 10 and 50% in the former
and latter case, respectively. Looking at the whole hexagrid
system as a cantilever beam, both the beam-based model and
the multiscale analysis predict a bending-dominated deformed
shape. A transition to a shear dominated one can be observed
upon introduction of RDs, especially in the middle and upper
part of the building.

3.2. Macroscopic Optimization of Grids for
a Tall Building With Square Plan
The proposed approach of optimal design by distribution
of lattice structures is applied to the tall building analyzed
in the previous section, making the assumption of rigid
diaphragms. A diagrid and a hexagrid are considered,
prescribing four candidate cross-sections that share the
same external dimensions. This preserves the visual density
of the grid and is expected to simplify the handling of
structural joints.

The considered diagrid system has reference length L =
8m and is made of tubes having circular hollow cross-sections
with diameter φ = 558mm, the same used in the simulations
presented in the previous section. The four thickness candidates
read th = 8, 10, 16, 25mm. Two different patches are considered
in the optimization, i.e., 8 × 1 elements or 2 × 2 elements. The
former calls for a uniform distribution of lattice structures over
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FIGURE 5 | Building with square plan employing a diagrid with constant cross-section. Magnified deformed shapes computed through the multiscale approach and a

beam model: (A) neglecting the contribution of the floors; (B) assuming rigid diaphragms (displacements in m).

FIGURE 6 | Building with square plan employing a hexagrid with constant cross-section. Magnified deformed shapes computed through the multiscale approach and

a beam model: (A) neglecting the contribution of the floors; (B) assuming rigid diaphragms (displacements in m).

the height in each panel, whereas the latter leaves more freedom
enforcing aminimum contiguous area for each cross-section. The
formulation in Equation (6) is effective in achieving pure 0–1
values for the four sets of variables that govern the interpolation
in Equation (5). Optimal distributions of discrete thicknesses are
found at convergence. The achieved solutions are represented
in Figures 7A,B, that report maps of the thicknesses within
the design domain, i.e., the structural grid. Both constraints
are active at convergence, meaning that top displacements uk
at convergence are equal to the enforced limit 1/500Hz3 =
0.416m. The patch 8 × 1 finds a height-dependent distribution
of optimal thicknesses that is the same in the four sides of the
envelope. The upper half of the building is made of the basic
lattice (th = 8mm), whereas increasingly thicker cross-sections
are distributed toward its base. This solution saves a remarkable
amount of material (more than 20%) with respect to the constant
thickness design with th = 16mm used in section 3.1. The layout
found by means of the 2 × 2 patch is a few hundreds kN lighter
than the previous optimal solution. Again, a symmetric solution
arises as expected. Thicker cross-sections are used at the corners,
especially next to the base where the highest values of strain

energy are expected to be stored. Indeed, it may be shown that
a displacement-constrained minimum weight problem is fully
equivalent to a weight-constrained minimization of the strain
energy (see e.g., Bendsøe and Sigmund, 2004).

A similar investigation is performed on the building
addressing a hexagrid system. It has reference length L = 4m
and is made of tubes having square hollow cross-section with side
l = 650mm, i.e., the same used in the simulations presented in
the previous section. The four thickness candidates read th = 20,
32, 40, 50mm. Again, for the two different patches considered in
the optimization, i.e., 8 × 1 elements and 2 × 2 elements, both
displacement constraints are active at convergence. The achieved
results are shown in Figures 8A,B, respectively. The patch 8 ×
1 finds a height-dependent distribution of optimal thicknesses
adopting the basic lattice (th = 20mm) in the upper half
of the building, whereas increasingly thicker cross-sections are
distributed toward its base. This optimal design saves more than
20% with respect to the tonnage of the hexagrid with uniform
thickness th = 40mm that was analyzed in section 3.1. Again,
the design found by means of a patch 2 × 2 is a few hundreds
kN lighter than the solution achieved for the patch 8 × 1. The
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FIGURE 7 | Optimal thickness (mm) in the diagrid of a tall building with square plan, using four circular hollow cross-sections with φ = 558mm: (A) patch with 8× 1

elements, W = 28, 891 kN; (B) patch with 2× 2 elements, W = 28, 267 kN.

FIGURE 8 | Optimal thickness (mm) in the hexagrid of a tall building with square plan, using four square hollow cross-sections with l = 650mm: (A) patch with 8× 1

elements, W = 68, 831 kN; (B) patch with 2× 2 elements, W = 68, 593 kN.

layout of the optimal reinforcement is different with respect to
that presented in Figure 7B. The thickest cross-section is used at
the corners of the grid in the vicinity of the base of the building,
whereas the same thickness is provided both at the corners and
within the bulk elsewhere. This provides additional stiffness not
only to bending actions but also to shear ones, see comments on
the deformed shapes of Figures 5, 6 in the previous section.

The achieved results have been checked using different
starting guesses. Figure 9 reports history plots of the objective
function for the optimal distributions of lattices discussed above
when starting from xp,i = 1 for i = 1, ...,m in each patch.
Simulations adopting the 8 × 1 patch call for 4 · 120 unknowns,
whereas those based on the 2× 2 patch involve 4 · 240 variables.
The stopping criterion is such that the maximum variation of
the unknowns between two subsequent iterations should not
exceed 10−3. In all the considered cases, less than 25 iterations are

needed to achieve convergence smoothly. As detailed in section
2.4, four FE analyses are needed in each iteration, two for the
evaluation of the displacement constraints in Equations (6b–6c)
and two for the evaluation of the adjoint problems in Equation
(11) to perform sensitivity analysis.

More than four cross-sections could be considered in the
implemented numerical tool. From an optimization point of
view, the adoption of a larger set of candidates is expected
to provide some gain in terms of total weight. However, this
depends on the selected set of cross-sections and the adopted
patches. Referring on the computational cost, any additional
lattice that is considered in the optimization involves a new
vector of minimization unknowns, whereas the number of FE
analyses per iteration remains the same, as well as the size of the
linear system of the equilibrium equations. It must be remarked
that standard applications of topology optimization handled via
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MMA involve tens or hundreds of thousands of unknowns
(see Bendsøe and Sigmund, 2004). Due to the non-convexity
of SIMP-based topology optimization problems, converge to a
global optimum can not be guaranteed. As detailed in section
2.2, modifications in the interpolation of Equation (4) could be
conveniently embedded and tested in Equation (6), with the aim
of selecting the most effective approximation for the considered
multi-material problem depending on m. This point is currently
under investigation.

The proposed approach of optimal design can be also used
to distribute different layouts within the same structural grid.
Two diagrids with reference length L = 16m and L = 8m are
considered, defining four candidate equivalent stiffness matrices.
The diagrid with reference length L = 16m is made of tubes
having circular hollow cross-sections with diameter φ = 558mm
and thickness th = 12.5mm or th = 16mm, labeled diagrid

FIGURE 9 | History of the objective function for the optimal distributions of

cross-sections shown in Figures 7, 8.

type A and B, respectively; the diagrid with reference length
L = 8m consists of tubes with the same cross-section type
and equal external diameter but thickness th = 16mm or
th = 20mm, called type C and D, respectively. The optimal
distribution of lattice structures is sketched in Figure 10, along
with the (magnified) deformed shapes computed through the
multiscale and a beam model. The displacements computed at
the top of the grids are in good agreement: u1 = u2 = 0.416m
for the shell model vs. u1 = u2 = 0.421mm for the beam
model. The achieved solution is the lightest among those shown
in this section.

3.3. Macroscopic Optimization of the Grid
for a Tall Building With Hexagonal Plan
A high-rise building having hexagonal plan with dimension
Bz1 = 82m and Bz2 = 34m and height Hz3 = 207.85m is
considered (see Figure 4B). The geometry of the plan is loosely
based on that of the iconic Pirelli Tower inMilan (see e.g., Ziegler,
2009). A uniform distribution of the horizontal load is considered
along the height of the building with intensity pz1 = 68 kN/m
and pz2 = 140 kN/m, being z1 and z2 the baricentrical axes of the
building plan. Rigid diaphragms are assumed in the simulations.
Horizontal loads are applied as point forces acting in the centroid
of each diaphragm.

The proposed approach of optimization by distribution of
lattice structures is used to address the design of a diagrid by
means of two patches: a 32 × 1 patch, collecting all the elements
at the same height and a patch made of 2× 2 elements enforcing
a minimum contiguous area for each cross-section. In both cases
the diagrid system has reference length L = 8m and is made
of tubes having circular hollow cross-section with diameter φ =
762mm. The four thickness candidates read th = 10, 25, 35,
55mm.

The optimal solutions are presented in Figure 11. Only one
constraint is active at convergence, that is the one enforcing un
upper bound for the displacement along the z2 axis, as expected.
Lighter cross-sections are used for increasing height when using
the 32× 1 patch. The patch made of 2× 2 elements allows saving

FIGURE 10 | A diagrid with varying cross-sections and varying reference dimensions for a tall building with square plan: (A) optimal solution, W = 28, 082 kN; (B)

magnified deformed shapes computed through the multiscale approach and a beam model (displacements in m).

Frontiers in Built Environment | www.frontiersin.org 10 June 2020 | Volume 6 | Article 80

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Bruggi Design of Grids by Distribution of Lattice Structures

FIGURE 11 | Optimal thickness (mm) in the diagrid of a tall building with hexagonal plan, using four circular hollow cross-sections with φ = 762mm: (A) patch with

32× 1 elements, W = 92, 978 kN; (B) patch with 2× 2 elements, W = 89, 507 kN.

FIGURE 12 | Building with hexagonal plan employing a diagrid with varying cross-sections: magnified deformed shapes computed through the multiscale approach

and a beam model for (A) pz1 and (B) pz2 (displacements in m).

an additional 4% with respect to the tonnage of the previous
solution. The thicker cross-section is used only at the base of
the long panels, whereas intermediate thicknesses are extensively
used in the lower and middle regions of the short ones. Looking
at the whole diagrid system as a cantilever beam, the horizontal
forces applied along the z2 axis are responsible for bending and
shear actions that should be mainly handled by the long and the
short panels, respectively.

To validate the latter layout, a beam model is built adopting
the optimal distribution of cross-sections that is represented
in Figure 11B. The (magnified) deformed shapes computed
through the multiscale approach and the beam model are shown
in Figures 12A,B for pz1 and pz2, respectively. Notwithstanding
the irregular shape of the plan of the building and the stiffness
that varies all over the grid, the displacements computed at the
top of the tower are almost equal: u1 = 0.059m and u2 =
0.416m for the shell model, whereas u1 = 0.058m and u2 =
0.416m for the beam model.

A further investigation is performed for the case with patches
made of 2 × 2 elements, including vertical forces. A uniformly
distributed load pz3 = −100 kN/m is applied along the top
edge of every shell, i.e., along the perimeter of the building
each 2√

3
· 6m in height. Four load cases are considered: vertical

forces are coupled with the effect of lateral forces, i.e., ±pz1
and ±pz2. Hence, two additional constraints are considered
in the optimization problems with respect to Equations (6d)
and (6e) to control the absolute value of the lateral deflections
at the top of the building. The same result as in Figure 11B

is found. Indeed, no variation in the lateral deflections is
expected when adding a centered axial force in the cantilever-
like building. According to the beam model, the maximum
axial force in compression is 26426 kN when both pz2 and
pz3 loads are considered, whereas 11394 kN when pz2 acts
alone. Both values are far below the Euler’s critical load of
the lattice element at the base of the building, where these
forces arise.
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4. DISCUSSION

A numerical method has been presented to cope with the
conceptual design of structural grids in tall buildings, specially
concerning diagrids and hexagrids. Such kind of regular grids
can be seen as lattice structures, i.e., tessellations of the skin
of the building made through triangular and hexagonal shapes.
Analytical expressions for the components of their in-plane
macroscopic constitutive matrix are available in the literature
depending on the reference dimension, the adopted cross-
section and the constituent material. Elastic constants found
through the multiscale approach for pin-jointed and rigid-
jointed lattices introduced by Vigliotti and Pasini (2012) have
been implemented and investigated in this study addressing
isotropic lattices. Any homogenization approach resulting in a
isotropic or anisotropic constitutive law for a Cauchy material
can be alternatively adopted to derive effective properties of the
lattice structures.

A multi-material topology optimization problem has been
formulated to distribute a discrete set of lattices using a set
of continuous variables. Each candidate lattice has prescribed
geometrical properties and features of the constituent elements,
and is fully characterized by its effective constitutive matrix.
The design domain is a three-dimensional box-shaped structure,
i.e., the skin of the building, which is discretized using two-
dimensional elements. Patches of elements are used to enforce
that the same lattice is distributed at a certain height of the
building or within regions having minimum contiguous area.
The objective function is the weight of the structural grid,
whereas constraints are enforced on the lateral displacements of
the building.

Numerical simulations have been performed in section
3.1 to assess the accuracy of the implemented multiscale
analysis when considering three-dimensional assemblages of
diagrid and hexagrid panels with constant cross-section. The
deformed shapes computed by means of the shell model
match quite well those retrieved by three-dimensional beam
models, independently on the type of the grid or whether rigid
diaphragms are adopted. Referring to the top displacements,
high accuracy is found in the case of stretching-dominated
patterns (diagrids), whereas results for bending-dominated ones
(hexagrids) are more affected by the size of the microstructure
with respect to the panels. For the considered numerical
simulations, the error is less than 3% in the former case,
whereas it ranges between 4 and 8% in the latter. This follows
from the original validation of the multiscale method for
two-dimensional media.

Preliminary applications of the proposed optimization
approach have been performed for tall buildings with regular
(square) or irregular (hexagonal) shape of the plan. The
implemented algorithm succeeds in finding layouts with varying

cross-section and/or varying geometry that save weight with

respect to reference solutions using a single feature all over the
grid. Smooth convergence to 0–1 values is reported for the whole
set of variables that control the distribution of multiple lattices
(see section 3.2). Optimal height-dependent layouts are found
for the building with square plan that save more than 20% in
weight with respect to reference solutions employing uniform
diagrids or hexagrids. The efficiency of height-dependent optimal
layouts can be further improved adopting smaller patches. This
specially applies to the case of irregular shape of the plan of the
building (see section 3.3), in which an additional 4% saving is
shown with respect to the height-dependent solution. Two of
the achieved optimal distributions of lattice shapes and cross-
sections have been implemented in three-dimensional beam
models, recovering the same degree of accuracy that was found
for grid structures with constant features.

A limited number of variables is handled by the proposed
multiscale approach to perform the analysis and the optimization
tasks, see Table 3. Several configurations of geometrical patterns
and cross-sections can be investigated by means of a single
finite element model. This allows for an efficient exploration
of different optimal solutions, as needed when addressing the
conceptual design of a structural grid. Accurate optimization
tasks can be subsequently operated in view of the detailed design
stage using e.g., size optimization.

The proposed approach can be generalized for several
other objectives and constraints, including inter-story
drift, eigenfrequencies, critical loads, and strength of the
elements. Indeed, the implemented multiscale analysis allows
evaluating forces in the elements of the lattice by post-
processing the macroscopic strain field, whereas the adopted
approach of mathematical programming is well-suited to
handle multi-constrained optimization. The implemented
displacement-constrained formulation may be straightforwardly
extended to handle uncertainties in the load amplitude, see in
particular Balogh et al. (2018).
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