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Using Influence Matrices as a Design
and Analysis Tool for Adaptive Truss
and Beam Structures

Simon Steffen*, Stefanie Weidner, Lucio Blandini and Werner Sobek

Institute for Lightweight Structures and Conceptual Design (ILEK), University of Stuttgart, Stuttgart, Germany

Due to the already high and still increasing resource consumption of the building industry,
the imminent scarcity of certain building materials and the occurring climate change,
new resource- and emission-efficient building technologies need to be developed. This
need for new technologies is further amplified by the continuing growth of the human
population. One possible solution proposed by researchers at the University of Stuttgart,
and which is currently further examined in the context of the Collaborative Research
Centre (SFB) 1244 Adaptive Skins and Structures for the Built Environment of Tomorrow
is that of adaptivity. The integration of sensors, actuators, and a control unit enables
structures to react specifically to external loads, when needed (e.g., in the case of high
but rare loads). For example, adaptivity in load-bearing structures allows for a reduction
of deflections or a homogenization of stresses. This in its turn allows for ultra-lightweight
structures with significantly reduced material consumption and emissions. To reach ultra-
lightweight structures, i.e., adaptive load-bearing structures, two key questions need to
be answered. First, the question of optimal actuator placement and, second, which type
of typology (truss, frame, etc.) is most effective. One approach for finding the optimal
configuration is that of the so-called influence matrices. Influence matrices, as introduced
in this paper, are a type of sensitivity matrix, which describe how and to which extend
various properties of a given load-bearing structure can be influenced by different types
of actuation principles. The method of influence matrices is exemplified by a series of
studies on different configurations of a truss structure.

Keywords: adaptivity, actuator placement, typology, optimization, finite element method, sensitivity, influence
matrices

INTRODUCTION

The cement industry alone causes 5.4% (United Nations Environment Programme, 2019;
Kelleter et al., 2020) of the global emissions of greenhouse gases and up to 10% of the total
anthropogenic CO; emissions (Scrivener et al., 2018). Overall, the building industry accounts
for 35% of all global CO, emissions, thus being a significant contributor to the ongoing
climate change. Furthermore, 35% of the global energy consumption can be attributed to the
built environment and 50% of the global resource consumption (UNEP, 2011; Sobek, 2016),
leading to an ongoing depletion of vital resources, like sand (Peduzzi, 2014). The global growth
of population and the increasing wealth in several parts of the world further intensify this
effect (UN, 2019). Therefore, new building technologies and solutions are needed, which allow

Frontiers in Built Environment | www.frontiersin.org 1

June 2020 | Volume 6 | Article 83


https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://doi.org/10.3389/fbuil.2020.00083
http://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2020.00083&domain=pdf&date_stamp=2020-06-23
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles
https://creativecommons.org/licenses/by/4.0/
mailto:simon.steffen@ilek.uni-stuttgart.de
https://doi.org/10.3389/fbuil.2020.00083
https://www.frontiersin.org/articles/10.3389/fbuil.2020.00083/full
http://loop.frontiersin.org/people/838529/overview
http://loop.frontiersin.org/people/999462/overview

Steffen et al.

Influence Matrices

for a substantial reduction in emissions and resource
consumption. Adaptive load-bearing structures, meaning
structures with integrated active elements, ie., sensors and
actuators, have been put forward as a promising approach.
The integration of such active elements allows an adaptive
structure to monitor its stress state and to react accordingly.
In case of rarely occurring, high external loads, the structure
may induce forces counteracting those from the external load,
respectively change its stiffness distribution to homogenize
stresses and strains (Sobek and Teuffel, 2001; Senatore et al.,
2018a), induce counter deformations (Sobek et al., 2002; Senatore
et al., 2018b; Kelleter et al., 2020), or generate shape changes
to establish a more efficient load transfer (Neuhaeuser et al.,
2013; Reksowardojo et al, 2019), thus increasing structural
performance. Due to this increase in performance, the passive
elements of the adaptive structure can be dimensioned for lower,
more frequently occurring loads, which reduces the structures’
resource consumption and embodied energy while using
comparatively little operational energy (Senatore et al., 2018¢;
Schlegl et al., 2019). While there are early examples of supporting
structures with integrated active components (e.g., Domke,
1992), most studies concentrate on the possibilities of active
control of the dynamic properties of a given structure (Soong and
Manolis, 1987; Reinhorn et al., 1992; Holnicki-Szulc et al., 1998;
Issa et al.,, 2010). The manipulation of quasi-static deflections
and internal forces with the declared goal of a resource- and
emission-efficient design as formulated in Sobek et al. (2006)
and Sobek (2016) is still relatively new. This approach separates
adaptive systems into three different states: first, the passive
state, in which the structure acts as a conventional system under
external load; second, the active state, in which the structure
is subjected to actuation; and third, the adaptive state, the
superposition of passive and active states. The adaptive state
is the desired state of an adaptive system, which has to be
established through actuation (active state) from a given passive
state. Achieving load-bearing structures with an optimal resource
and emission efficiency requires precise knowledge about the
optimal amount and position of actuators for a given structure.
Teuffel (2004) offers a first approach for truss structures, the load
path management, which is built upon in Senatore et al. (2019) to
optimize the structure in regards to overall energy consumption
using the integrated force method (Patnaik, 1973), resulting
in a new integral formulation to optimize adaptive structure
in regards to overall energy consumption. Reksowardojo et al.
(2020) presents a method for stress homogenization through
large shape changes, i.e., geometric non-linearity, for trusses. In
Wagner et al. (2018) and Bohm et al. (2019), Gramian-based
approaches are described, which select actuated elements with
the help of a greedy algorithm. Underlying the above mentioned
methods are matrices, which contain information on how a given
structure can be influenced by the actuation of each individual
structural element. These sensitivity matrices, or influence
matrices—analogous to the theory of influence lines—are used
to determine the optimal actuator placement. In this paper, the
reverse approach is tested. Investigating how variations of a
load-bearing structure affect the contents of influence matrices
generates answers for the overarching question: which topologies

(respectively typologies) of truss and beam structures are most
efficient for adaptive structures?

In Derivation, a general form of influence matrices is
derived, which is further specified in Influence Matrices of Axial
Forces, for the two actuation types presented in Derivation.
In Example, different configurations of the same basic truss
structure are analyzed using the beforehand derived influence
matrices, highlighting how individual changes to a structural
system correlate with its adaptability. The results are summarized
and discussed in Result Discussion and Generalization. Large
Scale Prototype High Rise provides a concise description of
an experimental high-rise building, which will be used for
further experimental validation of the actuation concepts and
the findings of this paper. A conclusion and outlook are given
in Conclusion.

INFLUENCE MATRICES
Actuation Types

In this paper, two different types of linear actuation are
considered (Figure 1)—serial actuation (a) and parallel actuation
(b). In the case of serial actuation, an actuator is integrated into
the load path of the structure, whereas parallel actuation adds
an actuator parallel to an existing passive element (Weidner
etal,, 2018). The actuator force resulting from actuator extension
is defined as positive and the actuator force from retraction
as negative.

Derivation

For a given adaptive load-bearing structure, with #n degrees of
freedom and m actuators, the linear system of equations for static
equilibrium can be written as

Kq :f:fext +fact (1)

where K € R™™ is the stiffness matrix, ¢ € R" is the vector
of deformation, and f € R" is the force vector—separated
into external forces fexy and actuation forces f,ct. As influence
matrices investigate how a given structure reacts to actuation,
the external forces fey can be set to zero. The vector of
actuation forces fact is calculated from an input matrix B €
R™™ which maps the actuator forces u € R™ of the individual
actuator elements onto the respective global degrees of freedom
as nodal forces

Sact =Bu (2)
Each column vector b; € R®
B=(b; by ---bj -+ by by) (3)

thus describes the orientation and the connectivity of each
respective actuator element. Any output y € RP of interest can
be calculated from the vector of deformations g using

y=0Cq (4)

where C € RP* is an output matrix that has to be computed
according to the desired output y. In case of serial actuation, a
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FIGURE 1 | (A) Serial actuation and (B) parallel actuation and their respective free-body diagrams.

second output matrix, the feedthrough matrix D € RP*™, may be
required, which takes the actuation forces u into account:

y=Cq+Du (5)

Integrating Equations (1) and (2) into Equation (5) and setting
Fext to zero yields

y= (CK 'B+D)u (6)

To compute the influence of the actuation, each structural
element is successively actuated by a unit load (number of
actuators m = number of elements), expanding the load vector
u into a matrix:

10---00
01---00

u= (uptz, - Ui U U)=| 1 1 . LD | =1(7)
00---10
00 ---01

with I being the identity matrix in R™™ and wu; therefore
denoting the actuation of the ith element. Substituting the above
into Equation (6) provides the equation, with which influence
matrices E € RP*™ are calculated:

E=CK 'B+D (8)
Influence matrices can also be used to calculate the required

actuation forces u for any desired (adaptive) state y,daptive from
a given passive state ypassiv (cf. Sobek et al., 2006) using

—1
Yadaptive = Ypassiv + Yactive = CK™ f oy + Eu 9)
and solving for u
(10)

—1
u= E+(yaduptive — CK fext)

with (-)T denoting the Moore-Penrose Pseudoinverse (Penrose,
1955).

Influence Matrices of Axial Forces
The influence matrix of axial forces due to parallel linear
actuation Eyp,

Eyp,=CNK'B (1)
describes how the axial forces of a given load-bearing structure
can be manipulated by parallel linear actuation of each individual
element. The output matrix Cy € R™™ therefore needs to
calculate the axial forces from the resulting vector of deformation
q and can be computed as

Cy = (BKjem)" (12)
where Ky € R™™ is a diagonal matrix, containing the
axial stiffness of each element of the load-bearing structure.
Accordingly, the influence matrix of axial forces due to
serial linear actuation Ex; computes the equivalent for serial
linear actuation:

Ens = CNK'B+ Dy (13)
In this case, the additional feedthrough matrix Dy € R™™ is
needed, subtracting the unit load of actuation once from the axial
forces in the actuator element, as the axial load of a serial actuator

is equivalent to the already applied force couple of nodal loads
(cf. Figure 1).

-1 0 0 0
0 -1 0 0
py=|: ¢ o i|=-1
0 o -~ —1 0
0 o --- 0 -1

Thus, the entry ey ;; of the ith row and jth column of the influence
matrix of axial forces Ey depicts the axial force in element
i due to actuation of the element j. For truss structures the
influence matrix of axial forces due to serial linear actuation Ey
is equivalent to the negative inverse of the redundancy matrix R
€ R™™ described in Strobel (1996) and Wagner et al. (2018).

Ens = CyK 'B+ Dy = —RT (15)
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Further types of influence matrices can be derived from Equation
(8), e.g., an influence matrix of deformations, or one of bending
moments. Similarly, other actuation types can be examined
if their actuation principle can be formulated according to
Equation (2).

Example

To showcase the method of influence matrices, different
variations of the modular truss structure displayed in Figure 2
have been investigated. Each module was 1 m wide and high. The
structural members were initially assigned an E modulus of 100
MPa and a quadratic cross-section of 0.01 m? (cf. Table 1). The
structures were modeled in ANSYS Mechanical APDL 17.2, using
link180 and beam188 elements. The computation and analyses of
influence matrices were done with MATLAB R2018a.

Statically Determinate Substructure

The resulting influence matrix of axial forces due to serial linear
actuation Ey ; is depicted in Figure 2. The matrix can be divided
into three sections: the left section Ej_s, which corresponds
to the lowest module, a middle matrix E¢_g containing only
zeros, equating to elements 6-8, and the right part Eg_y4, which
matches the top module. It can further be observed that the
ranks of the left (E;_5) and right (Eg_14) section each are equal
to 1, which corresponds to the degree of static indeterminacy
ns of each substructure, meaning that one linearly independent
state of axial forces can be induced by serial actuation in
the respective modules of the truss. Summing the ranks of
each submatrix results in a rank of 2, which is equal to the
degree of static indeterminacy n; of the overall truss structure.
Thus, to manipulate both states of axial forces, two linear serial
actuators are needed, with one actuator placed in each statically

displacements and rotations) as the extension or retractions of
a linear actuator is not constrained. It is equally not possible
to manipulate any axial forces in the top substructure by serial
actuation of an element in the bottom one and vice versa. If
the goal of the adaptation is the manipulation of axial forces, it
might be most efficient to choose one of the diagonals in each
subsystem as actuator, as a serial actuation of those elements
results in roughly twice the change in axial forces, given the
same actuation force (cf. Figure 2). This correlates with the
increased redundancy of the elements in the given configuration
(cf. Equation 15, resp. Wagner et al., 2018). Assuming the linear
theory, the resulting axial forces from actuation can be calculated
by multiplying the columns of the chosen actuators with the
desired actuation force and vectorially summing the results (cf.
Equation 9). As stated above, a degree of static indeterminacy
ns of one means one linearly independent state of axial forces.
Adding an additional serial actuator into the top or bottom
substructure will not enable a second state of axial forces.
However, it allows for the control of an additional degree of
freedom (Teuffel, 2004). Additional serial actuators can also be
used to compensate the axial forces induced by actuation, thus
enabling constraint free deflections and rotations in statically
indeterminate structures. For example, serially actuating element
1 and 4 by the same force, but one by extension and one by
retraction, will result in an inclination of the upper part of the
load-bearing structure, without inducing any axial forces.

TABLE 1 | Overview of the initially chosen structural properties of the example
structure.

Module Module Young’s Cross-sectional Moment of
indeterminate subsystem (cf. Teuffel, 2004; Wagner et al., 2018). height width modulus area inertia
Integrating a serial actuator in the statically determinate middle
section will not allow any manipulation of forces (only of 1m im 100 MPa 0.01 m? 8.33e—6 m*

Eys=CyK'B+D;=—R" —el L 4

—-0.116 0.231 0.231 -0.116 -0.116 0 0 0 0 0 0 0 0 0_

0163 -0327 -0327 0.163 0.163 0 0 0 0 0 0 0 0 0

0163 -0327 -0327 0.163 0.163 0 0 0 0 0 0 0 0 0

-0.116 0.231 0.231 -0.116 -0.116 0 0 1] 0 0 0 0 0 0

-0.116 0.231 0.231 -0.116 -0.116 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

EN,S = 0 0 0 0 1] 1] 0 1] 0 0 0 0 0 0

0 0 0 0 0 0 0 0 -0104 -0.104 0207 0207 -0.104 -0.104

0 0 0 0 0 0 0 0 -0104 -0.104 0207 0207 -0.104 -0.104

0 0 1] 0 1] 0 0 0 0.146 0.146 -0.293 -0.293 0.146 0.146

0 0 0 0 0 0 0 0 0.146 0.146 -0.293 -0.293 0.146 0.146

0 0 0 0 0 0 0 0 -0104 -0.104 0207 0207 -0.104 -0.104
| o 0 0 0 0 0 0 0 0104 -0104 0207 0207 -0.104 -0.104 |

FIGURE 2 | Influence matrix of axial forces due to serial linear actuation Eys of an exemplary truss.
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Figure 3 depicts the influence matrix of axial forces due
to parallel linear actuation Ey,, which can be structured into
the same three sections. However, the rank of this matrix is
equal to the number of columns, respectively the number of
elements. Parallel actuation, thus, always induces a linearly
independent state of axial forces, as parallel actuation adds an
additional load-bearing element, the actuator, to the existing
structure. An extension or retraction of the actuator is primarily
constrained by the parallel passive element, resulting in a
comparably high axial force in the passive element, with

reversed sign. In case of a statically determinate substructures,
the passive element constitutes the only constraint, therefore
leading to a complete short circuiting of the actuation force
along the passive element (cf. Figure 3, columns 6-8). The
effect that serial or parallel actuation has on the remaining
passive load-bearing structure is identical, assuming identical
actuation forces (cf. Figures 2, 3). The additional state of axial
forces therefore only applies to the parallel actuated element.
However, this allows for a (nearly) isolated force manipulation
of individual elements, which can be preferable. Figure 4 graphs

1 1
— -1 — —>
Eyp=CyK™'B —_
[0.88a 0231 0231 -0.116 -0.116 0 0 0 0 0 0 (] 0 0]
0.163 0.673 -0.327 0.163 0.163 0 0 0 0 0 0 0 0 0
0.163 -0.327 0.673 0.163 0.163 0 0 0 0 0 0 0 0 0
-0.116  0.231 0231 0.884 -0.116 0 0 0 0 0 0 0 0 (]
-0.116  0.231 0231 -0.116 0.884 0 0 0 0 0 0 0 0 0
0 (] 0 0 0 1 0 0 0 0 0 0 0 0
0 (] 0 0 0 0 1 0 0 0 0 (] 0 (]
E Np = 0 0 0 0 0 0 0 | 0 0 0 ] 0 0
0 ] 0 0 0 0 0 0 089 -0.104 0.207 0207 -0.104 -0.104
0 (] 0 0 0 0 0 0 -0.104 0.896 0.207 0207 -0.104 -0.104
0 (] 0 0 0 0 0 0 0.146 0146 0.707 -0.293 0.146 0.146
0 0 0 0 0 0 0 0 0146 0146 -0.293 0707 0.146 0.146
0 0 0 0 0 0 0 0 -0.104 -0.104 0207 0.207 0.896 -0.104
0 (] 0 0 0 0 0 0 -0.104 -0.104 0207 0.207 -0.104 0.896
FIGURE 3 | Influence matrix of axial forces due to parallel linear actuation Ej, of an exemplary truss.
o' o)
c 14
A B
T T T T T T T T T T T T
i 1 1 &
10 13
11 12
0.75 1 0.75 1
9
o 05 1 0.5 1
0]
(8]
—
£ 6 8
g 025 4 025 . 7
®©
0 0 5
-0.25 1 -0.25 - 1 4
2 3
1 1 1 1 1 1 1 1 1 1 1 1
1s 2 4 6 7 8 9 10 11 12 13 14
element -\
FIGURE 4 | Axial forces in (A) the actuated element for serial (index s) and parallel (index p) linear actuation, (B) the remaining structure due to the actuation of
element 1 (C), for a truss of the static degree of indeterminacy of ng = 2.
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Eys=CyK™'B+D; = —R" el L 4
[C0.117 0234 0234 0117 -0.105 0012 -0.025 -0.025 0012 0011 -0.001 0.003 0003 -0.001 -0.001]
0165 -0331 -0.331 0.165 0.148 -0.017 0.035 0.035 -0.017 -0.016 0.002 -0.004 -0.004 0.002  0.002
0165 -0331 -0.331 0.165 0148 -0.017 0035 0.035 -0.017 -0.016 0.002 -0.004 -0.004 0.002  0.002
0117 0234 0234 -0117 -0.105 0.012 -0.025 -0.025 0012 0011 -0.001 0003 0.003 -0.001 -0.001
-0.105 0209 0.209 -0.105 -0.198 -0.094 0.187 0.187 -0.094 -0.084 0.010 -0.019 -0.019 0.010 0.010
0012 -0.025 -0.025 0.012 -0.094 -0.106 0212 0212 -0.106 -0.095 0.011 -0.022 -0.022 0.011 0.011
0.017 0035 0035 -0.017 0133 0.50 -0.300 -0.300 0150 0.134 -0.016 0.031 0.031 -0.016 -0.016
E Ns = [-0017 0035 0035 0017 0133 0150 -0300 -0.300 0150 0134 -0.016 0031 0031 -0.016 -0.016
0012 -0.025 -0.025 0.012 -0.094 -0.106 0212 0212 -0.106 -0.095 0.011 -0.022 -0.022 0.011 0.011
0011 -0.022 -0.022 0011 -0.084 -0.095 0.190 0.90 -0.095 -0.189 -0.094 0.187 0.187 -0.094 -0.094
-0.001  0.003 0003 -0.001 0.010 0.011 -0.022 -0.022 0011 -0.094 -0.105 0.209 0.209 -0.105 -0.105
0.002 -0.004 -0.004 0.002 -0.014 -0.016 0031 0031 -0.016 0.133 0.148 -0.296 -0.296 0.148  0.148
0.002 -0.004 -0.004 0.002 -0.014 -0.016 0031 0031 -0.016 0.133 0.148 -0.296 -0.296 0.148  0.148
-0.001  0.003 0003 -0.001 0010 0011 -0.022 -0.022 0011 -0.094 -0.105 0209 0.209 -0.105 -0.105
0001 0003 0003 -0.001 0010 0011 -0.022 -0.022 0011 -0.094 -0.105 0209 0209 -0.105 -0.105 |
FIGURE 5 | Influence matrix of axial forces due to serial linear actuation Ej, of an exemplary truss of the static degree of indeterminacy of ns = 3.

the resulting axial forces of the truss structure for serial and
parallel actuation of element 1 (Figure4C) in the actuated
element (Figure 4A) and the remaining load-bearing structure
(Figure 4B).

Statically Indeterminate Truss—Homogenous
Stiffness Distribution

For the first variation, a second diagonal is added to the middle
module (cf. Figure 5), thus changing the substructure’s static
determinacy from determinate to indeterminate and increasing
the overall degree of static indeterminacy n; to three, which
corresponds to the rank of the influence matrix of axial forces
due to serial linear actuation Ep for this system. Changing from
statically determinate to indeterminate means constraining the
substructure, disabling it from deforming freely and enabling an
additional state of axial forces of the middle module, which can
be manipulated.

Thus, the separation of substructures (cf. Figure2) is
removed—the influence matrix is filled with non-zero values (see
Figure 5). Actuation of an element in a neighboring substructure
also affects the axial forces in the adjacent module (cf. Figure 6).
However, in the given configuration of the load-bearing structure
with homogenous stiffness distribution, the constraint can be
compensated along two substructures, leading to negligible axial
forces in the top module. Statically determinate substructures,
as described in Statically Determinate Substructure, completely
isolate the influence area of force actuation on chosen elements
or substructures.

Statically Indeterminate Truss—Rigid Joints

Next, the pinned joints are exchanged for rigid connections
(cf. Figure7). As a two-dimensional load-bearing structure,
the degree of static indeterminacy is increased from 3 to 27,
meaning there are now 27 linearly independent states of the
internal force variables (combined states of axial forces, shear
forces, and bending moments), but only 15 elements available

for linear actuation. The imposed constrained of the rigid joints,
however, is very similar to that of the pinned connections in
Figure 6, as the chosen quadratic cross-section is comparably
flexible (cf. Table 1). The result is an almost identical state of
axial forces, although shear forces and bending moments are also
manipulated. Changing the stiffness of all elements equally, for
example by choosing a material with a different Young’s modulus,
would have the same effect. Changing the shape of the cross-
section to one with the same cross-sectional area, but with a
higher area moment of inertia (I = 5.34e—4 m*) and therefore
increasing the ratio of flexural stiffness to axial stiffness, would
constrain the deformations differently, thus resulting in different
states of internal variables (cf. Figure 8).

While the overall stiffness of the structure is increased
through the rigid joints, the stiffness distribution within the
structure ist still homogenous. Therefore, as in Statically
Indeterminate Truss—Homogenous Stiffness Distribution, the
resulting constraint forces from an actuation in the bottom
module can still be compensated along the lower two modules,
disabling the manipulation of forces or bending moments in the
top module.

Statically Indeterminate Truss—Varied Stiffness
Distribution
Using the truss with pinned joints in Statically Indeterminate
Truss—Homogenous Stiffness Distribution as base, the stiffness of
all diagonals is now increased by a factor of 10 (cf. Table 1).
Increasing the stiffness of the diagonals increases, in turn, the
constraint on the actuated column in Figure9, resulting in an
amplified state of axial forces due to actuation in the bottom
module. As the diagonals in both upper substructures are also
stiffened, their imposed constraint increases as well, in relation
to that of the columns and cross girder. This leads to a further
distribution of the influence of actuation. However, there are still
only three linearly independent states of axial forces, as the static
indeterminacy remains at n; = 3. The increased constraint also
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FIGURE 6 | Axial forces in (A) the actuated element for serial (index s) and parallel (index p) linear actuation, (B) the remaining structure due to the actuation of
element 1 (C), for a truss of the static degree of indeterminacy of ng = 3.

element
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FIGURE 7 | Axial forces in (A) the actuated element for serial (index s) and parallel (index p) linear actuation, (B) the remaining structure due to the actuation of
element 1 (C), for a truss with rigid joints.

shows in the resulting axial forces in the actuated element of
this variation (cf. Figure 7A). In the case of serial actuation, the
actuated element experiences a larger compressive force due to
the increased constraint described above. In the case of parallel
actuation, however, the resulting tensile force is decreased, in
comparison to previous system variations. The effect of short

circuiting when using parallel actuation, which was prevalent
before, is now less dominant, as the ratio of constraint imposed
by the parallel passive element and the remaining connected
load-bearing structure shifted toward the latter.

Increasing the stiffness of each module from bottom to top,
each by a factor of 10, also expands the influence of actuation
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element 1 (C), for a truss with rigid joints and beams with increased flexural rigidity.
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FIGURE 8 | Axial forces in (A) the actuated element for serial (index s) and parallel (index p) linear actuation, (B) the remaining structure due to the actuation of

element

element 1 (C), for a truss of the static degree of indeterminacy of ng = 3 and diagonal
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FIGURE 9 | Axial forces in (A) the actuated element for serial (index s) and parallel (index p) linear actuation, (B) the remaining structure due to the actuation of

Is with increased stiffness.

of axial forces (resp. internal force variables) for actuators in the
bottom module (cf. Figure 10). Although the constraint forces
from actuation can still be (partially) compensated along each
substructure, the increasing stiffness of each module results in
higher axial forces.

Inverting the stiffness distribution, however, encourages
a short circuiting of the actuation forces in the bottom
module (cf. Figure11). The induced constraint can be
fully compensated, similarly to the system in Statically
Determinate Substructure. The difference being, that, in
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FIGURE 10 | Axial forces in (A) the actuated element for serial (index s) and parallel (index p) linear actuation, (B) the remaining structure due to the actuation of
element 1 (C), for a truss of the static degree of indeterminacy of ng = 3 and with modules of increased stiffness bottom to top.
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FIGURE 11 | Axial forces in (A) the actuated element for serial (index s) and parallel (index p) linear actuation, (B) the remaining structure due to the actuation of
element 1 (C), for a truss of the static degree of indeterminacy of ng = 3 and with modules of decreased stiffness bottom to top.

this case, the influence of actuation of an element in  of the influence, and to isolate the influence of actuation to
the top module would still extend to the bottom module certain substructures.

(equivalent to configuration in Figure 10). Careful placement

of comparatively stiff elements or substructures in statically ~Module-Overlapping Structural Elements
indeterminate systems can thus be used to control the area  Lastly, two diagonal bracings of the lower two modules (one
of influence of actuation forces, to create unilateral expansion  of each) are replaced by one overlapping bracing (Figure 12).
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FIGURE 12 | Axial forces in (A) the actuated element for serial (index s) and parallel (index p) linear actuation, (B) the remaining structure due to the actuation of
element 1 (C), for a truss with module-overlapping bracing.

Cross-sections and Young’s moduli are reset to the initial values
(Table 1). In this configuration, the axial force, which is induced
by actuation of element 1, cannot be short circuited inside the
bottom module, due to the elimination of the diagonal. The force
is distributed into the structure along elements 4, 6, and 7, before
it can be short circuited, respectively transferred to the supports
through elements 2 and 7, the result being an even distribution
of axial forces in both subsystems. Conversely, forces from
actuation of element 3 would be primarily short circuited and
transferred to the support through element 2, resulting in only
negligible forces in the middle module. The overlapping diagonal
merges two statically determinate substructures to one statically
indeterminate module. This configuration is also comparatively
flexible, as the resulting axial forces through linear actuation are
relatively small and the force from parallel linear actuation is
nearly fully short circuited along the parallel passive element. The
top module, again, is connected comparably flexible, resulting in
minimal axial forces.

Overlapping elements can therefore be used to connect
individual modules, allowing for a further distribution of the
influence of actuation. Likewise, removing or adding certain
elements from, respectively, to a structure controls the possible
load paths, which are activated through actuation.

RESULT DISCUSSION AND
GENERALIZATION

Through actuation, an actuator performs a motion, e.g.,
extension or retraction in case of linear actuators. If this motion
can be performed freely, no internal force variables, e.g., axial

forces, can be manipulated; only rigid body motions can be
induced. If the motion is constrained, internal force variables,
i.e., actuation forces, are activated, leading to deformations (and
rigid body motions). The load-bearing structure is statically
indeterminate. The degree of static indeterminacy corresponds
to the number of linearly independent states of internal force
variables, which can be manipulated through actuation. Placing
serial actuators into a substructure of an ideal truss, in a
number greater its static (in)determinacy, allows for constraint
free rigid body motions. In the case of beam structures, it is
not necessarily possible to actuate all states by linear actuators
alone. The forces and moments induced by actuation have to
be transferred to the supports or short circuited inside the
load-bearing structure. These load paths—and therefore the
sphere of influence—can be controlled by the topology, meaning
the configuration of elements, the stiffness distribution, and
the static (in)determinacy. For example, strategically placing
statically determinate substructures or indeterminate modules
with reduced stiffness limits the sphere of influence, while
overlapping elements or elements with comparatively higher
stiffness can be used to further distribute the influence
of actuation. Parallel actuation always generates a linearly
independent state of internal force variables, due to the
parallel connection of the actuator to the passive element,
which also inverts the resulting force in the parallel passive
element compared to the actuation force. These basic principles
underlie the algorithms listed in Introduction. Applying them
directly in the design process of adaptive load-bearing structures
should therefore result in adaptive topologies (resp. typologies)
with increased resource and emission efficiency. Influence
matrices can be used for additional analysis, for example
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to quantify the effects of actuation, allowing the designer
to further optimize their load-bearing structure in regards
of its adaptability. The method is presumed most effective
in the early conception phase of load-bearing structures
and on smaller (sub)systems with a limited number of
structural elements.

LARGE-SCALE PROTOTYPE HIGH RISE

The method of influence matrices was developed during the
interdisciplinary design process of a large-scale adaptive high-rise
prototype, which is currently being realized on an experimental
platform at the University of Stuttgart. Upon its completion, it
will be the world’s largest adaptive structure with a total height
of 36 m, consisting of 12 identical floors, which are separated into
four similar units (Weidner et al., 2018). Eight hydraulic cylinders
are implemented as parallel actuators in the columns of unit 1
and 2 and a further 16 serially incorporated hydraulic actuators
in the structure’s diagonal bracing (eight in unit 1, and four in
each unit 2 and 3) complete the actuator placement. Movements
and changes in the stress state of the structure are tracked by a
multitude of strain gauges, inertial measurement units (IMUs),
and 16 LED tracking sensors. Oscillation of the tower through
wind is calculated to reach a deflection of maximum 30 mm
at the topmost point. Through actuation, deflections of up to
140 mm become possible. The whole building will be subject
of investigation for multiple research projects, throughout its
lifetime. One focus of its conception, therefore, lies on the
adaptability of the structure and the exchangeability of structural
(and fagade-) elements. This enables a comfortable dismantling
process and also the possibility of removing structural elements
and replacing them with elements of different materials or new
actuation concepts, which result from the ongoing and upcoming
research in the Collaborative Research Centre 1244 Adaptive
Skins and Structures for the Built Environment of Tomorrow,
allowing for large-scale tests of different configuration of the 12-
story experimental high-rise building, according to the findings
of different methods, such as the influence matrices. The concepts
for actuation introduced above have been experimentally tested
and validated in a prototype frame and published in Weidner
etal. (2019).

CONCLUSION

In this paper, a general method of influence matrices is derived
and specified for the case of axial forces for serial and parallel
linear actuations. Influence matrices are a type of sensitivity
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