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This work presents force and shape control strategies for adaptive structures subjected

to quasi-static loading. The adaptive structures are designed using an integrated

structure-control optimization method developed in previous work, which produces

minimum “whole-life energy” configurations through element sizing and actuator

placement optimization. The whole-life energy consists of an embodied part in the

material and an operational part for structural adaptation during service. Depending on

the layout, actuators are placed in series with the structural elements (internal) and/or

at the supports (external). The effect of actuation is to modify the element forces and

node positions through length changes of the internal actuators and/or displacements

of the active supports. Through active control, the stress is homogenized and the

displacements are kept within required limits so that the design is not governed by peak

demands. Actuation has been modeled as a controlled non-elastic strain distribution,

here referred to as eigenstrain. Any eigenstrain can be decomposed into two parts: an

impotent eigenstrain only causes a change of geometry without altering element forces

while a nilpotent eigenstrain modify element forces without causing displacements. Four

control strategies are formulated: (C1) force and shape control to obtain prescribed

changes of forces and node positions; (C2) shape control through impotent eigenstrain

when only displacement compensation is required without affecting the forces; (C3) force

control through nilpotent eigenstrain when displacement compensation is not required;

and (C4) force and shape control through operational energy minimization. Closed-form

solutions to decouple force and shape control through nilpotent and impotent eigenstrain

are given. Simulations on a slender high-rise structure and an arch bridge are carried

out to benchmark accuracy and energy requirements for each control strategy and

for different actuator configurations that include active elements, active supports and

a combination of both.

Keywords: adaptive structures, shape control, force control, eigenstrain, force method

INTRODUCTION

The construction sector is an important field of action in the on-going global effort to reduce
anthropogenic greenhouse gas emissions (GHG) that aims to mitigate the potential consequence of
climate crisis (I. E. Agency, 2018). Efforts to reduce building GHG emissions have focused mainly
on operational emissions such as those that arise from heating/cooling, ventilation, lighting etc.
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However, a significant share of buildings and structures GHG
life cycle emissions is embodied because it arises from the
manufacturing of components, construction, transport and
demolition (Bekker, 1982). Recent studies have highlighted that
the average embodied share of life cycle GHG emissions is 45–
50% for energy-efficient buildings and that considering a service
life of 50 years, the contribution of embodied GHG emissions can
reach and surpass a ratio of 1:1 (embodied:operational) (Röck
et al., 2020). Load-bearing systems have an important share of the
environmental impact embodied in the built environment due to
the large amount of material required for their construction and
energy-intensive fabrication processes (Cole and Kernan, 1996;
Kaethner and Burridge, 2012). According to the International
Energy Agency (IEA), the embodied carbon (EC) of building
structures, substructures and enclosures is responsible for 28%
of global building sector emissions (I. E. Agency, 2018). Rapid
growth population in conjunction with current and future energy
depletion and material scarcity (I. E. Agency, 2017), call for new
and radical solutions to reduce structures material usage and
environmental impact. Despite this, best practice in structural
design has led to significant oversizing because the structure is
designed to withstand worst-case loads with long return periods
such as high winds, earthquakes, heavy snow and large crowds.
Since load-bearing structures are typically subjected to loads that
are significantly lower than the design loads, it means that most
structures are overdesigned for the majority of their service life.

Active structural control through sensing and actuation has
been investigated as a strategy to meet safety and serviceability
requirements under strong loading events such as high winds,
earthquakes and unusual crowds (Soong, 1988; Casciati et al.,
2012). Adaptive structures can control forces and deflections
to stay within required limits such that the effect of external
loading is reduced instead of relying only on passive load-
bearing resistance. Several systems have been studied to control
the structural response including building frames equipped with
active bracings/columns (Reinhorn et al., 1993; Wagner et al.,
2018; Weidner et al., 2018) and variable stiffness joints (Wang
et al., 2020) as well as bridges equipped with active cable-tendons
(Rodellar et al., 2002; Xu et al., 2003). Through integrated
structure-control optimization (Smith et al., 1991; Begg and Liu,
2000; Soong and Cimellaro, 2009; Frohlich et al., 2019) civil
structures can be designed to adapt (e.g., react positively) to
rare loading events of high intensity in order to operate closer
to required limits, which results in a better material utilization
compared to equivalent weight-optimized passive structures
(Teuffel, 2004; Sobek, 2016; Böhm et al., 2019). Material savings,
however, are only possible at a cost of energy that is required to
operate the adaptive system.

A new integrated structure-control optimization method has
been formulated by Senatore et al. (2019), which produces
minimum “whole-life” energy structures. The whole-life energy
consists of the energy embodied in the material for material
extraction, fabrication and construction as well as the operational
energy for control. The whole-life energy is a new design
criterion that allows to obtain adaptive structural systems
with a significantly reduced material mass and which are
minimum energy solutions thus reducing environmental impacts

with respect to conventional passive structures. Extensive
numerical and experimental studies (Senatore et al., 2018a,c)
have demonstrated that adaptive structures designed through
the method given in Senatore et al. (2019), have significantly
improved performances including reduced material mass,
increased slenderness and increased stiffness as deflections are
controlled within tight limits. In parallel, minimum energy
adaptive structures have a lower environmental impact as
the total energy can be reduced by up to 70% for slender
configurations with respect to equivalent weight-optimized
passive structures (Senatore et al., 2018b). Structural adaptation
is particularly beneficial for stiffness governed design problems
where it is challenging to reduce deflections within required
limits for passive load-bearing systems. Instead, a well-designed
adaptive structure can compensate for deflections actively at
the cost of a small amount of operational energy. High-
rise structures, long-span bridges and self-supporting roof
systems are generally stiffness governed and therefore they are
could greatly benefit from adaptive design strategies. Structural
adaptation through geometric non-linear control has been
further investigated in Reksowardojo et al. (2019, 2020a).
Numerical and experimental studies have shown that when the
structure is designed to be controlled into shape configurations
that are optimal to counteract the effect of the external load,
the stress can be effectively homogenized and minimized under
different loading conditions. This leads to significant embodied
energy savings with respect to adaptive structures limited to small
shape changes as well as to weight-optimized passive structures.

The effect of actuation can be thought of as a non-elastic
deformation that is similar to the strain caused by a lack of fit,
thermal loading, plastic deformation or creep. This approach
was taken in Ramesh and Utku (1991) and Lu et al. (1992)
for force and geometry control as well as to formulate actuator
placement optimization procedures. This type of non-elastic
deformation has been referred to as eigenstrain in Mura (1991)
and Irschik and Ziegler (2001). Nyashin et al. (2005) have
shown that an eigenstrain can be decomposed into two main
types: an impotent eigenstrain causes displacements without
producing a stress change while a nilpotent eigenstrain changes
the stress without causing displacements. This decomposition is
of particular relevance in the context of active structural control
because through inducing an impotent or a nilpotent eigenstrain,
it is possible to control independently the external geometry and
the forces, respectively.

The formulation of four control strategies in given in this
paper: (C1) force and shape control to obtain prescribed changes
of forces and node positions; (C2) shape control through
impotent eigenstrain when only displacement compensation is
required; (C3) force control through nilpotent eigenstrain when
displacement compensation is not required and (C4) force
and shape control through operational energy minimization.
This work extends the integrated structure-control optimization
method given in Senatore et al. (2019) with the formulation of
control strategies C2, C3, and C4.

Depending on the actuator layout, actuators can be placed in
series with the structural elements (internal actuator) and/or at
the supports (external actuator). With a few exceptions such as in
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Neuhaeuser et al. (2013), force and shape control through active
supports has received little attention. In Senatore et al. (2019) it
was shown that the length change of a linear actuator integrated
in a reticular structure, can be conveniently modeled through
an eigenstrain assignment which becomes part of the external
load. This work extends the force and shape control formulation
given in Senatore et al. (2019) to include the action (controlled
displacements) of active supports.

This paper is arranged in six sections. Section Synthesis
of Minimum Energy Adaptive Structures gives a summary of
the design method adopted in this work. Section Structural
Adaptation Process defines the structural adaptation process
and it outlines the main formulation adopted in this work for
structural analysis and control. Section Control Strategies gives
the formulation of control strategies C1, C2, C3, and C4. In
Section Case Studies, strategies C1, C2, C3, and C4 are applied
to the control of a slender high-rise structure and an arch-truss
bridge. Section Discussion and Conclusions conclude the paper.

SYNTHESIS OF MINIMUM ENERGY
ADAPTIVE STRUCTURES

This work builds on the design method for adaptive structures
given in Senatore et al. (2019). This method synthesizes adaptive
structures through minimization of the whole-life energy (or
total energy). The ability to actively counteract the effect of
loading generally results in large savings of material and thus
embodied energy. To minimize the consumption of operational
energy for control, the structure is designed to rely on passive
load-bearing capacity under normal loading conditions while
adaptation is employed under strong loading events that occur
rarely. This way, the embodied energy in the material is reduced
at a small cost of operational energy. The formulation has been
implemented for reticular structures with the assumption of
small strains and small displacements. Note that it is assumed the
dynamic response is not controlled through the active system.
For the same reason, seismic design criteria are not included.
Also, since adaptation is only necessary against strong but rare
loads, it is assumed that fatigue is not a critical limit state.

The design variables are the element cross-section areas,
the element forces, the actuator placement and the control
commands. The objective is to minimize embodied and
operational energy subject to ultimate and serviceability limit
states under a randomly varying external load. Optimization is
carried out through a nested scheme. Embodied and operational
energy optimization are coordinated through two auxiliary
variables: a design variable denoted as Material Utilization
(MUT) factor which can be thought of as demand over capacity
ratio defined for the structure as a whole; a state variable denoted
as Load Activation Threshold (LAT) which is the lowest intensity
loading event that causes a violation of a limit state. In the outer
process, the MUT is varied in the range of 0% < MUT ≤ 100%
to obtain the minimum energy configuration. Figure 1A shows
a notional relationship of the whole-life energy as a function of
the MUT. A small MUT produces a very light-weight structure
which has a small embodied energy but it might require large

control energy to satisfy stress and displacements limits during
service (i.e., low level of LAT). Vice versa, a highMUT results into
a stiffer structure which embodies larger energy in the material
but it requires smaller control energy (i.e., high level of LAT).

For each MUT three steps are carried out: (1) embodied
energy minimization, (2) actuator placement optimization, and
(3) operational energy computation.

Step 1: Embodied Energy Optimization
The embodied energy is minimized through optimization of
the element cross-section sizing and the internal load path (i.e.,
element forces). The embodied energy is computed for each
element by scaling its mass with a material energy intensity
factor which is the energy per unit mass for extraction and
manufacturing taken from the Inventory of Carbon and Energy
(ICE) (Hammond and Jones, 2008). For clarity, when all the
structural elements are made of a single material, the embodied
energy is equal to the mass scaled by a single factor.

This process can be thought of as a mapping between external
loads, element forces and nodal displacements:

χ : pj →
(

ftj , d
t
j

)

∀j = 0, 1, . . . , np,

pj 7→ ftj
(

pj
)

,

pj 7→ dtj
(

pj
)

,

(1)

the index j refers to the jth load case and np is the total number
of load cases. The superscript t stands for target to denote the
optimal internal load path. The outputs of this process are the
cross-section areas and target forces ftunder each load case.

Embodied energy optimization is carried out subject to
equilibrium and ultimate limit state (ULS) constraints which
include admissible stress and element buckling. However,
geometric compatibility and deflection limits i.e., serviceability
limit state (SLS) are not part of the optimization constraints. This
means that when the load is applied and geometric compatibility
is considered, the forces f will be, in general, different to the
target ones ft obtained through χ and the node displacements
d might not be within the required serviceability limits dt . The
computation of dt requires selecting the controlled nodes (or
controlled degrees of freedoms, denoted with cd) which is an
input to the optimization process. The choice of cd depends on
the type of structure as well as serviceability criteria. When the
load causes a violation of an ultimate and/or a serviceability
limit state, the forces and node positions will be controlled
through actuation.

Step 2: Actuator Placement Optimization
The actuator layout comprises linear actuators which are
assumed to be installed in series with the structure elements
as shown by the illustrations in Table 1. The action of a
linear actuator is to expand or retract, which is simulated
through a non-elastic change of length 1l of the element
onto which is fitted. The effect of the actuator length changes
is to cause a change of forces 1fc and node positions 1dc

(i.e., a change of shape). When the load causes a violation
of an ultimate and/or a serviceability limit state, appropriate
actuator commands 1l are computed to cause a change of forces
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FIGURE 1 | (A) Embodied, operational, and whole-life energy as a function of the Material Utilization Factor (MUT ); (B) live load Cumulative Distribution Function

(CDF) (Senatore et al., 2019).

TABLE 1 | Structural adaptation process.

State Displacement Forces

(A) CONTROLLED SHAPE UNDER PERMANENT LOAD

din = 0 fin

(B) DEFORMED SHAPE UNDER LIVE LOAD

dp fp

(C) CONTROLLED SHAPE UNDER LIVE LOAD

dc = dp + 1dc fc = fp + 1fc

(D) RESIDUAL EFFECT OF ACTUATION AFTER THE LIVE LOAD IS REMOVED

1dc 1fc

Actuators are represented by thick lines placed in the middle of the element.

1ft = ft − f from a compatible state f to the target state
ft (obtained through χ) and a change of shape 1dt = dt −

d from the deformed shape d to the target one dt required
by SLS.

The actuator placement optimization is a combinatorial
problem which involves placing a certain number of linear
actuators within a set of available sites (the structural elements
or the supports). In order to improve computational efficiency,
this binary problem has been relaxed into a continuous form
through sensitivity analysis (Senatore et al., 2019). The actuators
are placed through ranking by employing a control efficacy
measure which evaluates the contribution of each actuator
toward the attainment of the target change of forces 1ft and
node positions 1dt . The objective is to obtain an actuator

layout so that the change of forces 1fc and node positions 1dc

caused by 1l are as close as possible to the required 1ft and
1dt , respectively:

ϑ :

(

ftj , d
t
j

)

→ ACT ∀j = 0, 1, . . . , np, (2)

where ACT ∈ Z
nact ;ACT ⊆ {1, . . . , ne} is the set which contains

the element indices that denote the actuator locations. When
the actuator placement is known, suitable actuator commands
1l are obtained to control the structure through the target
change of forces 1ft and node positions 1dt . This is an
inverse problem which has been solved through constrained
optimization as described in section Control to Target Forces
and Shapes (C1).
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Once the actuator layout is known, it is possible to compute
the actuation system embodied energy which is added to the
structure embodied energy obtained from step 1. The same
applies to the mass of the adaptive solution which is the sum of
the structure mass and the actuation system mass. Generally, it
is reasonable to assume that the actuator embodied energy (and
thus its mass) increases as the actuator force capacity increases.
In Senatore et al. (2019), it has been assumed that an actuator
is entirely made of steel with an energy intensity of 35 MJ/kg
(Hammond and Jones, 2008) and its mass is a proportional to
the required force capacity (i.e., the maximum force required
through control) with a constant of 0.1 kg/kN (e.g., an actuator
with a push/pull load of 10,000 kN has a mass of 1,000 kg)
(ENERPAC, 2016).

Embodied energy optimization and actuator layout
optimization are interrelated because the actuation system
is an integral part of the structure. The layout of the structure
(produced by process χ in Step 1) is obtained with the
assumption that serviceability requirements are met through
active control. Conversely, the optimal actuator placement that
is determined through process ϑ depends on the layout of the
structure produced by process χ . The actuator efficacy to control
internal forces and displacements depends on its location in
the structure as well as the position of the control nodes. The
actuator optimal layout changes as the MUT is varied during
energy optimization because the material distribution changes
and therefore also the required force control and displacement
compensation change.

Step 3: Operational Energy Computation
The structure is subjected to a permanent (self-weight + dead
load) and a randomly fluctuating live load. For simplicity,
all loads that are not permanent are considered live loads
including events such as high winds, unusual crowds etc. The
probability distribution of the live load is modeled with a log-
normal function which is suitable to model a generic random
occurrence. Figure 1B shows the plot of a generic log-normal
cumulative distribution where the load activation threshold LAT
is indicated by a dashed line. The LAT is the lowest level of
the load probability distribution that causes a state of stress
and/or displacement to violate a limit state. The design load
is set as the characteristic value which corresponds to the
95th percentile of the associated normal distribution. Since the
operational energy is computed during service, the characteristic
value is the design load without load factors (i.e., SLS load
case). The load probability distribution is discretized into nd

bins, the load corresponding to the kth bin (i.e., occurrence) is
denoted as pjk. The discretized probability density is scaled by
the expected service life of the structure which is usually set to
50 years. The duration of each loading event 1tjk is obtained
through scaling the expected service life of the structure with the
probability of the kth occurrence for the jth load case. The total
operational energy is the sum of the energy required for force and
displacement compensation for all the load occurrences above
that corresponding to the LAT.

Steps 1 to 3 are repeated for each MUT to obtain
the configuration of minimum energy. Although embodied
and operational energy optimization are not carried out

simultaneously (nested approach), it has been proven by Wang
and Senatore (2020) that solutions produced by this method
are only marginally different in energy terms to those produced
by an All-in-One implementation of the same method through
Mixed-Integer Non-linear Programming.

Structural Adaptation Process
Table 1 gives an illustration of the four main states of the
adaptation process considered in this work. The structure is
controlled to move from the state (a) to state (d) for each load
case. There are two phases of adaptation: (1) in the 1st phase (b–
c), the structure is controlled to counteract the effect of the live
load, (2) in the 2nd phase (d–a), the structure is controlled to
eliminate the residual effect caused by actuation in the first phase,
after the live load is removed.

The formulation presented in this study is implemented with
the assumption of small strains and small displacements, and thus
superposition applies. fin denote the forces when the structure
is subjected only to permanent load which is assumed to be
counteracted through actuation before the live load is applied.
This can be thought of as a pre-cambering so that the structure
undeformed (the displacements are reduced to zero, i.e., din =

0) when the live load is applied. fp and dp denote forces and
displacements caused by the external load p. 1fc and 1dc are
the change of forces and displacements caused by the actuator
commands 1l. The forces and displacements at the start (b) and
end (c) of the 1st phase are fp, dp and fc, dc, respectively. The
forces and displacements at the start (d) and end (a) of the 2nd
phase are fin + 1fc, din + 1dcand fin, din, respectively.

ANALYSIS AND CONTROL OF ADAPTIVE
STRUCTURES

Force Method
The analysis and control strategies implemented in this work
use a force method formulation based on singular value
decomposition of the equilibrium conditions in matrix form
(Pellegrino and Calladine, 1986; Pellegrino, 1993), which is here
referred to as SVD-FM. In previous own work (Reksowardojo
and Senatore, 2020), it was proven that the SVD-FM is equivalent
to the Integrated Force Method (IFM) (Patnaik, 1973) that was
employed in Senatore et al. (2019) for design and control of
adaptive structures. Both SVD-FM and IFM offer an effective way
to predict the static response of a reticular structure subjected to
external load and actuator actions.With thesemethods, actuation
can be modeled as the effect of an imposed strain distribution i.e.,
eigenstrain, which is assigned directly as part of the external load.
Although the IFM has a simpler and more intuitive formulation,
the SVD-FM offers a way to derive closed-form solutions for
control strategies C2 and C3 (impotent and nilpotent eigenstrain)
which is the main reason it has been adopted in this work.

Given a pin-jointed structure made of ne elements, nn nodes
in dim dimensions and thus having nd = dim · nn degrees of
freedom, force-equilibrium conditions at nodes are:

Af = p (3)
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where p ∈ R
nd×1 is the external load vector. A ∈ R

nd×(ne+nsd)

is an extended equilibrium matrix which concatenates Ael ∈

R
nd×neand Asup ∈ R

nd×nsd :

A =
[

Ael | Asup
]

. (4)

Ael is the familiar equilibriummatrix which contains the element
direction cosines. Details regarding the computation ofAel can be
found in Pellegrino and Calladine (1986) and Achtziger (2007).
Asup is a matrix that contains the support reaction direction
cosines for nsdconstrained degrees of freedom. The supports are
effectively thought of as infinitely rigid elements which constrain
the rigid body motion of the structure. When the support
reaction directions coincide with the global axes, as in most cases,
Asup is a matrix containing zeros and ones.

The vector of forces f ∈ R
(ne+nsd)×1 is the concatenation

of the internal element forces fel ∈ R
ne×1 with the support

reactions fsup ∈ R
nsd×1:

f =

{

fel

fsup

}

. (5)

Depending on the actuator layout, actuators can be placed in
series with the structural elements (internal actuator) and/or
at the supports (external actuator). An internal actuator is a
linear actuator that can either extend or reduce the length
of the element onto which it is fitted. An external actuator
instead moves the position of a support which can be thought
of as an induced differential settlement. The vector of actuator

commands 1l ∈ R

(

ne+nsd
)

×1
is defined as the concatenation

of the internal actuator length changes 1lel ∈ R
ne×1 with the

support displacements caused by external actuators (or active

supports) 1dsup ∈ R
nsd×1:

1l =

{

1lel

1dsup

}

. (6)

Note that, once the actuator placement is determined, the

actuator command vector 1l reduces its dimension to R(nact)×1

by including only the entries that correspond to the selected
internal or external actuators.

Denote with r the rank of the equilibrium matrix A, then

the number of self-stress states is s =

(

ne + nsd
)

− r and the

number of mechanismmodes ism= nd – r (including rigid body
motion). Depending on the structural topology and the number
of supports, static indeterminacy is caused by internal sint and/or
external sext self-stress states such that s = sint + sext .

The singular value decomposition of A gives the following:

A =
[

Ur Um

]

[

Vr 0

0 0

]

[

Wr Ws

]T
. (7)

[Ur Um] ∈ R
nd×nd , [Wr Ws] ∈ R

(

ne+nsd
)

×

(

ne+nsd
)

and Vr ∈

R

(

ne+nsd
)

×

(

ne+nsd
)

are the left singular vectors, right singular

vectors and singular values of A, respectively. The term Ur ∈

R
nd×

(

nd−m
)

is the basis of the load components that are in
equilibrium with the forces lying in the space spanned by

Wr ∈ R

(

ne+nsd
)

×

(

ne+nsd−s
)

which is the basis of the row space

R (A) of A. The term Ws ∈ R

(

ne+nsd
)

×s
is the basis of the

null space of A. The columns of Ws are s linear independent

states of self-stress. The term Um ∈ R
nd×m is the basis

of the left null space of the equilibrium matrix N (At). The
columns of Um are m independent nodal displacement modes
which do not cause first-order deformation of the elements
i.e., the inextensional mechanism basis. If the external load has
components that lie in the space spanned by Um, it will excite
one or more mechanisms and therefore the structure will not
be able to take the load in its original configuration. If only
first-order infinitesimal mechanisms exist, appropriate prestress
might be applied to stabilize the structure (Pellegrino, 1990). For
kinematically determinate structures, Um does not exist. This
work only considers structures with static indeterminacy but
not kinematic indeterminacy. For the full static and kinematic
interpretation of the terms obtained from the SVD of the
equilibrium matrix, the reader is referred to Pellegrino (1993).

Recalling the equilibrium conditions in Equation 3, there is
an infinite number of non-trivial solutions for the homogeneous
system Af = 0 which are linear combinations of the self-
stress vectors:

fN (A) = Wsµ ∈ N (A) (8)

The particular solution instead is:

fR(A) = A+p ∈ R (A) (9)

where A+ is the Moore-Penrose pseudoinverse of A, which can
be computed as:

A+ = WrV
−1
r UT

r (10)

The general solution is the sum of the particular and
homogeneous solutions:

f = A+p+Wsµ ∈ R (A) ⊕N (A) (11)

where the operator⊕ indicates a vector space addition. The linear
coefficient vector µ is:

µ = −

(

WT
s GWs

)−1
WT

s

[

1l+ GA+p
]

, (12)

which is obtained by substituting A+p + Wsµ into the
compatibility conditions:

WT
s (Gf+ 1l) = 0 (13)

and then solving for µ. The term G ∈ R

(

ne+nsd
)

×

(

ne+nsd
)

is
the member flexibility matrix. For reticular structures G is a
diagonal matrix with entries li/ (Eiαi), where li, Ei and αi are
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the length, Young’s modulus and cross-section area of the ith

element of the structure ∀i ≤ ne. The entries of G are zeros
for the supports i.e., ∀i > ne, since supports are assumed to
be infinitely stiff. The s compatibility conditions in Equation 13
can be derived from virtual work or alternatively as shown in
Pellegrino (1993) from the orthogonality between the compatible
strains ε = Gf + 1l and the basis of incompatible strains Ws

(Ws can be interpreted as both the self-stress and incompatible
strain basis). Note that since the equilibrium matrix includes the
support reaction direction cosines (Equation 4), each column of
Ws includes support reactions that are in equilibrium with the
self-stress state. The term ε includes the elastic strain Gf caused
by the internal forces as well as the effect of a non-elastic strain
1l, i.e., eigenstrain, which could be produced by a lack of fit
or thermal loading or, following Senatore et al. (2019), by the
length change of internal actuators and/or external actuators (i.e.,
displacements of the active supports). Through Equation 11, the
forces f caused by the combined effect (fp + 1fc) of the external
load p and actuator commands 1l are computed through a
single statement. When the actuator commands are included in
Equation 11, the forces are denoted as fc i.e., controlled forces and
otherwise as fp.

Considering only kinematically determinate structures and
recalling the compatibility conditions ATd = Gf + 1I, the

node displacements d ∈ R
ndcaused by the combined effect

(dp + 1dc) of the external load p and the actuator commands
1l are obtained as:

d =

(

AT
)+

(Gf+ 1l) ∈ R

(

AT
)

(14)

For kinematically determinate structure AT is a full column rank
matrix and hence its pseudoinverse is unique. When the actuator
commands 1l are included in Equation 14, the displacements
are denoted as dc i.e., controlled displacements (or shape) and
otherwise as dp.

Force and Shape Influence Matrices
Assuming small deformations, control through the actuator
commands1l (internal+ external) causes a change of forces1fc

and shape 1dc, which can be expressed in matrix-vector product
form as:

Sf1lall = 1fc, (15)

Sd1lall = 1dc, (16)

where Sf ∈ R
(ne+nsd)×(ne+nsd) and Sd ∈ R

nd×(ne+nsd) are defined
as the force and shape influence matrix, respectively. Note that

in Equations 15 and 16, 1lAll ∈ R

(

ne+nsd
)

×1
contains control

commands for all the elements and supports as if they were
all active.

The force and shape influence matrices can be obtained by
collating column-wise the effect of a unitary length change of
each element and a unitary displacement of each support in
turn on forces (Equation 11) and node positions (Equation
14) without applying any external load P (Senatore et al.,
2019). However, from Equations 11 and 14, Sf and Sd can be

also computed directly (as also shown in Yuan et al., 2016;
Reksowardojo and Senatore, 2020):

Sf = −Ws

(

WT
s GWs

)−1
WT

s , (17)

Sd =
(

A+
)T (

GSf + I
)

, (18)

where I denotes an identity matrix of dimensions
(

ne + nsd
)

×
(

ne + nsd
)

.

CONTROL STRATEGIES

The four strategies described in this section solve a common
problem, which is the computation of suitable control commands
given an actuator layout and a control objective. As anticipated in
Step 2: Actuator Placement Optimization, following the method
given in Senatore et al. (2019) control commands are computed
to cause a simultaneous change of forces and node positions (C1)
at the occurrence of a load above the activation threshold (LAT).
However, in other cases, it might not be necessary to obtain a
prescribed change of forces and node positions simultaneously.
For example, it might be desirable to control only the node
positions to satisfy deflection limits without affecting the forces if
they are already within required limits (stress and stability). This
can be achieved by applying an impotent eigenstrain through
actuation (C2). Conversely, when it is only necessary to control
the forces, for example, to reduce the stress under critical loading
conditions but displacement compensation is not required,
a possible strategy is to apply a nilpotent eigenstrain through
actuation (C3). Finally, when the energy consumption of the
actuation system is of primary concern, an alternative strategy is
to obtain control commands through minimization of the work
done by the actuators (C4) to minimize the operational energy
during service.

Control to Target Forces and Shapes (C1)
Following the method given in Senatore et al. (2019) when the
load causes a violation of an ultimate and/or a serviceability limit
state, appropriate actuator commands 1l are computed to cause
a change of forces 1ft from a compatible state to the target
state (obtained through χ) and a change of shape 1dt from the
deformed shape to the target one required by SLS. For control
strategy C1 (as well as C2 and C3), it is useful to distinguish
between target change of forces1ft and shape1dt and controlled
change of forces 1fc and shape 1dc. The target state is given as
an input. The objective is to obtain control commands 1l whose
effect is to cause a 1fc and 1dc which are as close as possible to
1ftand 1dt . This objective can be fulfilled with an accuracy that
depends on the actuator layout.

The combined number of internal and external actuators
is denoted as nact i.e., nact = nact,int + nact,ext . The number
of controlled degrees of freedom is denoted as ncd. Recalling
Equations 17 and 18, the force and shape influence matrices
are computed assuming that all elements and supports are
active. However, in practice only some of the elements and
supports are equipped with actuators nact ≤ ne + nsd and it
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is required to control only some of the degrees of freedoms
ncd ≤ nd. Assume an actuator layout with nactactuators and
ncdcontrolled degree of freedom. The force influence matrix is

reduced to S∗
f
∈ R

(ne+nsd)×nactwhich contains only the columns

corresponding to the active elements and supports. Similarly,

the shape influence matrix is reduced to S∗
d
∈ R

ncd×nact which
contains only the rows corresponding to controlled degrees of
freedom and the columns corresponding to active elements and

supports. The target shape change is also reduced to 1dt∗ ∈ R
ncd

which contains only the entries corresponding to the controlled
degrees of freedom. The same applies to the controlled shape

change which is reduced to 1dc∗ ∈ R
ncd .

Since it is generally desirable to control structures with a
simple (i.e., low number of actuators) actuation system, S∗

f
and

S∗
d
are usually rectangular matrices with significantly more rows

than columns (i.e., an over determinate linear system). A general
formulation to compute actuator commands 1l to cause 1ft and
1dt is through a constrained least square optimization:

min
1l

∥

∥ S∗d1l− 1dt∗
∥

∥

2

s.t.
(19)

S∗f 1l = 1ft . (20)

The actuator commands 1l produced as the solution to this
problem cause the required change of target force 1ft and
shape 1dt∗. Generally, the rank of the reduced force and shape
influence matrices S∗

f
and S∗

d
are equal to the degree of static

indeterminacy s and the number of controlled degrees of freedom
ncd, respectively. When this is the case, depending on a well-
chosen actuator placement, if the number of actuators is set to
nact = s+ ncd the problem stated in Equations 19 and 20 admits
a unique solution with low residuals (1fc = 1ft;1dc∗ ≈ 1dt∗).
However, in practice it is generally preferable to reduce the
number of actuators as much as possible. If the number of
actuators is kept in the range s < nact ≤ s + ncd, generally force
control can be carried out accurately (the equality constraint in
Equation 20 is satisfied) but shape control will be approximate
(1fc = 1ft;1dc∗ ∼ 1dt∗). Depending on the choice of the
controlled degrees of freedom and the actuator placement,
there are cases in which S∗

f
or S∗

d
might be ill-conditioned.

In these cases, adding more actuators might help to solve
numerical issues.

Control Through Impotent and Nilpotent
eigenstrain
In this work, the effect of actuation is modeled as a non-elastic
deformation that is similar to the strain caused by thermal
effect, plastic deformation or creep. This type of non-elastic
deformation has been referred to as eigenstrain. Any eigenstrain
can be uniquely decomposed into two distributions (Nyashin
et al., 2005): impotent eigenstrain change the node positions
without producing stress while nilpotent eigenstrain redistribute
the stress without causing displacements. Impotent eigenstrain
through actuation is useful when it is required to control the node

positions without affecting the forces. Conversely, when it is only
necessary to control the forces, a nilpotent eigenstrain could be
applied through actuation.

Shape Control Through Impotent eigenstrain (C2)
An impotent eigenstrain is produced by actuator commands that
cause a required change of node positions 1dt without changing
the forces, therefore:

min
1lall

∥

∥

∥
Sd1lall − 1dt

∥

∥

∥

2
,

s.t.

(21)

Sf1lall = 0. (22)

Equation 22 is a homogeneous linear equation system whose
trivial solution is 1lall = 0. Assuming that all elements
and supports are active, there is an infinite number of non-
trivial solutions:

1lall = Wrβ, (23)

where Wr is the basis of the row space of the equilibrium
matrix A which is defined in section Analysis and Control of
Adaptive Structures. Recalling Equation 17 for the force influence
matrix Sf , the product ofW

T
s with any linear combination ofWr

vanishes since by definition the row space is orthogonal to the
null space. Therefore, if the actuator command components lie in
the space spanned byWr , it will produce an impotent eigenstrain.
Replacing Equation 23 in Equation 21 and then solving for β:

β =
(

SdWr

)+
1dt . (24)

Therefore, 1lall to produce an impotent eigenstrain is:

1lall = Wr

(

SdWr

)+
1dt . (25)

Assuming small deformations, Equation 25 gives actuator
commands 1lall which cause the required change of node
positions 1dc = 1dt and no change of forces 1fc = 0.
This means that the node positions change only through non-
elastic deformations that do not cause any elastic deformation of
the elements.

If only selected elements are actuators and only selected
degrees of freedom are controlled, the non-trivial solutions of
Equation 22 are actuator commands whose components lie in the
null space of the reduced force influence matrix S∗

f
:

1l = W
S∗
f

s β, (26)

Replacing Equation 26 in Equation 21 and solving for 1l:

1l = W
S∗
f

s

(

S∗dW
S∗
f

s

)+

1dt∗ (27)

where W
S∗
f

s is the basis of the null space of S∗
f
i.e., N

(

S∗
f

)

.

Equation 27 gives actuator commands1l which cause a change
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TABLE 2 | Shape control through impotent eigenstrain.

Configuration nact 1l S*f1l S*d1l

Only internal actuators nact,int = ne Equation 25 = 0 = 1dt*

sint < nact,int ≤ ne Equation 27a; else Equations 28, 29 = 0 ≈ 1dt*

nact,int ≤ sint Equations 28, 29 ≈ 0 ∼ 1dt*

Only external actuators sext < nact,ext ≤ nsd Equation 27a; else Equations 28, 29 = 0 ≈ 1dt*

nact,ext ≤ sext Equations 28, 29 ≈ 0 ∼ 1dt*

Internal + external actuators nact,int + nact,ext = ne + nsd Equation 25 = 0 = 1dt*

sext < nact,ext ∪ sint < nact,int Equation 27a; else Equations 28, 29 = 0 ≈ 1dt*

ayield 1l → ∞ when S∗
f
is ill-conditioned.

of node positions1dc∗ ∼ 1dt∗ and no change of forces1fc = 0.
1dc∗ caused by 1l is not exactly 1dt∗ because only some of the
elements or supports are active, the degree of accuracy depends
on the actuator placement and the number of actuators. Note
that Equation 27 produces a non-zero 1l vector provided that

the nullity of S∗
f
is not zero. Since Sf ∈ R

(

ne+nsd
)

×

(

ne+nsd
)

is a rank deficient matrix of rank s (i.e., the degree of static

indeterminacy), the nullity of S∗
f

∈ R

(

ne+nsd
)

×nact
is greater

than zero only if the number of internal actuators is greater
than sint i.e., nact,int > sint . Otherwise when nact,int ≤ sint ,
the columns of S∗

f
are linearly independent and therefore the

nullity is zero i.e., the linear system S∗
f
1l = 0 admits only the

trivial solution of 1l = 0. When external actuators (i.e., active
supports) are employed, the requirement nact,int > sint does not
apply. Instead, impotent eigenstrain can be caused by actuator
commands computed through Equation 27 if the number of
active supports is greater than sext i.e., nact,ext > sext . When
internal and external actuators are employed in combination,
Equation 27 can be used if sext < nact,ext ∪ sint < nact,int is true.

For the case when the nullity of S∗
f

is zero (nact,ext ≤

sext ∪ nact,int ≤ sint) and if a small change of forces
is admissible, displacements can be controlled through an
approximate impotent eigenstrain by solving the following
constrained optimization problem:

min
1l

∥

∥

∥
S∗f 1l

∥

∥

∥

2
,

s.t.
(28)

S∗d1l = 1dt∗. (29)

The actuator commands 1l obtained from the solution of the
problem stated in Equations 28 and 29 cause the required change
of node positions 1dc∗ = 1dt∗ through a minimum change
of forces 1fc ∼ 0, which can be thought of as the effect of an
approximate impotent eigenstrain. Similar to C1, if the number
of actuators is set to nact = s + ncd the problem stated in
Equations 28 and 29 admits a unique solution with low residuals
(1fc ≈ 0;1dc∗ = 1dt∗). However, note that a significant change
of forces may occur when nact,int ≤ sint . Equations 28 and 29
may also be used in cases where Equation 27 yields 1l → ∞

because S∗
f
is ill-conditioned. Table 2 gives a summary of the

different approaches to obtain control commands that cause an
impotent eigenstrain. Control accuracy decreases as the number
of actuators reduces from nact,int = ne or nact,ext = nsd (all
elements or supports are active) to nact,int = sint or nact,ext = sext

in which cases it is no longer possible to control the shape without
also causing a change of forces.

Force Control Through Nilpotent eigenstrain (C3)
A nilpotent eigenstrain is produced by actuator commands that
cause a change of forces but no change of displacements:

min
1le

∥

∥

∥
Sf1lall − 1ft

∥

∥

∥

2
,

s.t.
(30)

Sd1lall = 0. (31)

Equation 31 has a trivial solution for 1lall = 0. Assuming that all
elements and supports are active, there is an infinite number of
non-trivial solutions:

1lall = GWsδ. (32)

Equation 32 can be derived by expanding Equation 31 through

Equations 17 and 18 and replacing 1lall with GWsδ:

SdGWsδ =
(

A+
)T

(

−GWs

(

Ws
TGWs

)−1
Ws

TGWsδ + GWsδ

)

(33)

The underlined term is an identity matrix and therefore the
right-hand term vanishes. This proves that any 1lall spanning
GWs causes no change of node positions. Replacing Equation 32
into Equation 30 and then solving for δ:

δ =
(

SfGWs

)+
1ft . (34)

Therefore, 1lall to produce a nilpotent eigenstrain is:

1lall = SfGWs

(

SfGWs

)+
1ft . (35)

Assuming small deformations, Equation 35 gives actuator
commands 1lall which cause the required change of forces
1fc = 1ft and no change of shape 1dc∗ = 0. Note that
force control through nilpotent eigenstrain can be performed
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TABLE 3 | Force control through nilpotent eigenstrain.

Configuration nact 1l S1

f
l S*d1l

Only internal actuators nact,int = ne Equation 35 = 1ft = 0

ncd < nact,int ≤ ne Equation 37a; else Equations 38, 39 ≈ 1ft = 0b

nact,int ≤ ncd Equations 38, 39 ∼ 1ft ≈ 0

Only external actuators nact,ext > 0 Equations 38, 39 ≈ 1ft ∼ 0

Internal + external actuators nact,int > 0 ∩ nact,ext > 0 Equations 38, 39 ≈ 1ft ≈ 0

ayield 1l → ∞ when the matrix S∗
d is ill-conditioned.

b≈ 0 with Equations 38 and 39.

with good accuracy only if the target force change is a linear
combination of the s column vectors ofWs.

If only selected elements are actuators the non-trivial solutions
of Equation 31 are actuator commands whose components lie in
the null space of the reduced shape influence matrix S∗

d
:

1l = W
S∗
d

s δ, (36)

Replacing Equation 36 in Equation 30 and solving for 1l:

1l = W
S∗
d

s

(

S∗f W
S∗
d

s

)+

1ft (37)

where W
S∗
d

s is the basis of the null space of S∗
d
i.e., N

(

S∗
d

)

.
Equation 37 gives actuator commands 1l that cause a change
of forces 1fc ∼ 1ft and no change of shape 1dc∗ = 0. 1fc

caused by1l is not exactly1ft because only some of the elements
or supports are active, the degree of accuracy depends on the
actuator placement. Note that Equation 37 produces a non-zero
1l vector provided that the nullity of S∗

d
is not zero. Referring to

the rank-nullity theorem, since Sd ∈ R
nd×

(

ne+nsd
)

is a full row

rank matrix, the nullity of S∗
d
∈ R

ncd×nact is greater than zero only
if the number of internal actuators is greater than the number of
controlled degrees of freedom i.e., nact,int > ncd. Otherwise when
nact,int ≤ ncd, S∗

d
becomes a full rank matrix which has a nullity

of zero and thus the linear system S∗
d
1l = 0 can only admit the

trivial solution 1l = 0. Note that it is not possible to obtain
actuator commands that cause a nilpotent eigenstrain through
Equation 37 when active supports are employed. This is because
the effect of an active support is to move the node position
and therefore by definition it cannot be employed to produce
a nilpotent eigenstrain. In addition, in some configurations
that include internal and external actuators, S∗

d
might be ill-

conditioned. In this case, Equation 37 yields 1 l → ∞.
For the case when the nullity of S∗

d
is zero because nact,int ≤

ncd and when active supports are employed, if a small change
of shape is admissible, forces can be controlled through an
approximate nilpotent eigenstrain by solving the following
constrained optimization problem:

min
1l

∥

∥ S∗d1l
∥

∥

2
,

s.t.
(38)

S∗f 1l = 1ft . (39)

The actuator commands 1l obtained from the solution of the
problem stated in Equations 38 and 39 cause the required change
of forces 1fc = 1ft through a minimum change of node
positions 1dc∗ ∼ 0, which can be thought of as the effect of an
approximate nilpotent eigenstrain. Similar to C1 and C2, if the
number of actuators is set to nact = s+ ncd the problem stated in
Equations 38 and 39 admits a unique solution with low residuals
(1fc = 1ft;1dc∗ ≈ 0). However, note that a significant change
of node positions may occur when nact,int < ncd. Equations
38 and 39 may also be used in cases where Equation 37 yields
1l → ∞ because S∗

d
is ill-conditioned.

Table 3 gives a summary of the different approaches to
obtain control commands that cause a nilpotent eigenstrain.
Control accuracy decreases as the number of actuators reduces
from nact,int = ne (all elements are active) to nact,int =

ncd in which case it is no longer possible to control the
forces without also causing a change of node positions. It is
generally not possible to compute control commands that cause
a nilpotent eigenstrain through Equation 37 if active supports
are employed. However, active supports can be used through
Equations 38 and 39.

Control Through Operational Energy
Minimization (C4)
When operational energy consumptions are of primary concern,
control commands 1l can be obtained through minimization of
the work done by the actuators subject to stress and deflection
limits. In this case, no target change of forces 1ft and node
positions 1dt are supplied as inputs. The objective is to obtain
suitable control commands so that forces fc and displacements dc

are controlled as required by ULS and SLS, respectively, using
minimum energy. Assuming small deformations and a linear
elastic force-displacement relationship, the actuator work ismade
of two parts:

Wi = W
p
i +Wc

i , (40)

W
p
i =











0 if sgn
(

f
p
i

)

= sgn
(

1li
)

∣

∣

∣

∣

(

f
p
i

)T
1li

∣

∣

∣

∣

otherwise
, (41)

Wc
i =

{

0 if sgn
(

1f ci
)

= sgn
(

1li
)

1
2

∣

∣

∣

(

1f ci
)T

1li

∣

∣

∣
otherwise

, (42)
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where fp are the forces before control which are assumed
constant during actuation and 1fc is the change of forces
caused by the actuator commands 1l. The objective function
is sign-dependent because an actuator does work only when
the applied forces and the length (internal) or displacement
(support) changes are of opposite signs. For example, work is
done when an internal actuator is required to extend under
compression or to contract under tension and an external
actuator is required to move the support in the opposite direction
of the force it receives from the structure (opposite in sign
of the support reaction). Otherwise, theoretically there would
be a release of energy but since this study does not consider
energy harvesting solutions, it is assumed that no energy gain
can be made.

The total operational energy during service is computed as:

Eopr =
∑

iǫACT

np
∑

j

nb
∑

k∗

(

W
(1)
ijk

+W
(2)
ijk

)

1tjkω

η
(43)

W
(1)
ijk

and W
(2)
ijk

are the work done during the first (1) and

second (2) phase of adaptation (see section Structural Adaptation
Process), respectively, by the ith actuator, under the jth load
case for the kth occurrence (i.e., bin) of the load probability
distribution which, in this work, is assumed to be a log-
normal distribution as defined in Step 3: Operational Energy
Computation. 1tjk is the duration of the load occurrence which
is obtained through scaling the expected life-span of the structure
with the probability of the kth occurrence for the jth load case
pjk. As discussed in Step 3: Operational Energy Computation,
only load occurrences that are above the load activation threshold
(LAT), which is denoted by k∗, are accounted for. The actuator
working frequency ω is assumed to be identical to the 1st
natural frequency which is likely to dominate the response of the
structure. The actuator mechanical efficiency η is set depending
on the actuator specification. For more details regarding the
computation of the operational energy, the reader is referred to
Senatore et al. (2019).

Minimization of the operational energy is subject to stress and
displacement constraints to satisfy ULS and SLS:

min
x

Eopr

s.t.
(44)

f
p

ijk
+ S∗f 1lijk ≤ σ+

i αi (45)

f
p

ijk
+ S∗f 1lijk ≥ max

(

σ−
i αi,−

π2EIi

li
2

)

(46)

−dSLSjk ≤ d
p

jk
+ S∗d1ljk ≤ dSLSjk (47)

−1llim ≤ 1ljk ≤ 1llim (48)

W
p(1)

ijk ≤

(

f inijk + f
p

ijk

)

1lijk (49)

W
c(1)
ijk ≤

1

2
1f cijk1lijk (50)

W
p(2)

ijk ≤

(

f inijk + 1f cijk

)

(

−1lijk
)

(51)

W
c(2)
ijk ≤

1

2

(

−1f cijk

)

(

−1lijk
)

(52)

W
p(1)

ijk ≤ 0;W
c(1)
ijk ≤ 0 (53)

W
p(2)

ijk ≤ 0;W
c(2)
ijk ≤ 0 (54)

This formulation follows a Simultaneous Analysis and Design
approach (Haftka, 1985) which was developed in previous own
work (Wang and Senatore, 2020). The design variables vector
xcomprises the actuator work as well as the control commands:

x =
[

W
p
W

c
1l

]

(55)

The actuator work is reformulated using two auxiliary variables:

Wijk = −(W
p

ijk +W
c
ijk) (56)

subject to auxiliary constraints (Equations 49–54). The auxiliary

variables W
p
, W

c
and constraints are introduced to handle

the sign-dependency of the optimization objective in order to
formulate it as a continuous function. Note that Equation 56 is
satisfied only at convergence i.e., when −(W

p
+ W

c
) reaches a

minimum. The superscript (1) and (2) in the auxiliary constraints
refer to the 1st and 2nd phase of the adaptation process (Section
Structural Adaptation Process).

Similar to C1, C2, and C3, stress and displacement constraints
in Equations 45–47 employ the force S∗

f
and shape and S∗

d

influence matrices to relate the actuator commands 1l to the
controlled change of forces 1fc

jk
= S∗

f
1ljk and node positions

1dc
jk

= S∗
d
1ljk, respectively. The change of forces 1fc is

obtained so that the controlled forces fc = fp + 1fc, where
fp are the forces caused by the external load before control,
are constrained by stress and stability limits (Equation 45 and
46). The change of node positions 1dc is obtained so that the
controlled displacements dc = dp + 1dc, where dp are the
displacements caused by the external load before control, are
bounded by SLS limits (Equation 47). The actuator commands
1l are also constrained to stay within required limits which are
specific to the selected actuation system (Equation 48).

The optimization problem stated in Equations 44 to 54
has been successfully solved for the case studies presented
in this work using the Sequential Quadratic Programming
(SQP) algorithm built-in Matlab. Note that since the problem is
generally non-convex, the optimal solutions obtained through
SQP are local minima. Since control commands obtained
through C4 require minimum operational energy, this strategy
will be used to benchmark the energy requirements of C1, C2,
and C3.

CASE STUDIES

The structure-control optimization method outlined in section
Synthesis of Minimum Energy Adaptive Structures (Senatore
et al., 2019) combined with the control strategies given in
section Control Strategies has been applied to the design of a
high-rise structure and an arch bridge. The main objective of
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the comparative study presented in this section is to benchmark
the control strategies to evaluate energy requirements and
control accuracy.

Scope of Comparative Study
The four control strategy described in section Control Strategies
are compared: (C1) force and shape control to obtain prescribed
changes of forces and node positions, (C2) shape control through
impotent eigenstrain, (C3) force control through nilpotent
eigenstrain, and (C4) force and shape control through operational
energy minimization. For all control strategies, three actuator
configurations (AC) are considered: only internal actuators
(AC1), only external actuators (AC2) and a combination of both
(AC3). The control strategies and related actuator configurations
are compared in terms of:

• Maximum controlled displacement max
(
∣

∣dp + 1dc − din
∣

∣

)

to evaluate if the required SLS limit is met

• Control residuals with respect to target force
∥

∥

∥
S∗
f
1l− 1ft

∥

∥

∥

2

and shape
∥

∥S∗
d
1l− 1dt

∥

∥

2
changes

• Maximum element force change max (|1fc|)caused
by actuation

• Maximum shape change max (|1dc|)caused by actuation
• Maximum actuator force capacity max (|f|) ∀i ∈ ACT

• Maximum internal actuator length extensionmax
(

1lel
)

and

reduction min
(

1lel
)

• Maximum active support displacement max
(

1dsup
)

;
min

(

1dsup
)

• Embodied and operational energy as well as mass and energy
savings with respect to the passive solution

• Computation time to obtain control commands 1l.

Since actuators are assumed to be installed in series, they have to
carry the full force in the corresponding element or support. For
this reason, the maximum actuator force capacity is computed
as the maximum force (in absolute value) that an actuator has
to withstand over the entire adaptation process, namely the
maximum among fin, fp, fc and fin+1fc (see section Analysis and
Control of Adaptive Structures). For simplicity of notation, this is
indicated as max (|f|). With regard to the internal actuator length
changes, a positive sign indicates an extension whereas a negative
sign a length reduction. For external actuators, a positive sign
indicates that the displacement is applied in the same direction
of the support axis.

Material and Loading Assumptions
In both cases studies, the structures are made of circular
hollow section elements. The minimum radius is set to 50mm
and 100mm for the high-rise structure and the arch bridge
configurations, respectively. To limit optimization complexity,
the wall thickness is set to 10% of the external radius. The element
material is structural steel with a Young’s modulus of 210 GPA,
a density of 7,850 kg/m3 and an energy intensity of 36.5 MJ/kg
(Hammond and Jones, 2008). Following Senatore et al. (2019),
it is assumed that the actuators are made of steel with an energy
intensity factor of 36.5 MJ/kg and the actuator mass is linearly
proportional to the required force capacity (i.e., maximum force

TABLE 4 | Load combination cases.

Limit state Load case Load combination

ULS LC0 1.35 (SW + DL)

LC1, LC2,… 1.35 (SW + DL) + 1.5 (LL1, LL2,…)

SLS LC0 SW + DL

LC1, LC2 SW + DL + (LL1, LL2,…)

required during control) with a coefficient of 0.1 kg/kN (e.g.
an actuator with a push/pull load of 10,000 kN has a mass of
1,000 kg) (ENERPAC, 2016). Note that the mass of the adaptive
configuration includes the mass of the actuation system layout.
The same applies to the embodied energy. Similarly, the self-
weight of the adaptive configuration comprises the weight of the
structure and that of the actuation system.

The structure is subjected to a permanent load, which
comprises self-weight (SW) and dead load (DL), as well as
to a randomly fluctuating live load (LL) whose frequency of
occurrence is modeled with a log-normal probability distribution
(see section Step 3: Operational Energy Computation). The load
combination cases considered in the case studies are summarized
in Table 4.

High-Rise Structure
The vertical cantilever truss considered in this study can be
thought of as the primary structure of a multi-story building
reduced to two dimensions. The geometry of the structure is
illustrated in Figure 2A which shows dimensions, support and
loading conditions. The horizontal displacements of all free
nodes are set as controlled degrees of freedom for a total of
ncd = 16. The controlled nodes are indicated by circles. The
serviceability limit is set to H / 500= 200mm, where H = 100m
is the height of the structure. The degree of static indeterminacy
(s) is sint = 7 internally and sext = 1 externally.

The structure is designed to support a permanent and a live
load. The permanent load consists of self-weight (SW), which
includes the weight of the actuators, and dead load (DL). The
dead load is set to 2.94 kN/m2 (300 kg/m2) resulting in a
uniformly distributed load of 22 kN/m (assuming 7.5m of cover
out of plane) applied every 4m for each floor. The live loads,
LL1 and LL2, are horizontally distributed in opposite direction
(Figure 2A) with an intensity which is a function of the square
root of the height to approximate a wind pressure distribution.
The live-to-dead-load ratio is set to 1 and hence the live load
maximum intensity is 2.94 kN/m2. The live load frequency of
occurrence is modeled with a log-normal probability distribution
(see section Step 3: Operational Energy Computation)

The adaptive solution is compared to a weight-optimized
passive solution of identical topology subjected to the same
loading and limit states. The passive solution has been optimized
using a method given in Senatore et al. (2019) that produces
similar results to the Modified Fully Utilized Design method
(Patnaik et al., 1998). Figures 2B,C show the passive and adaptive
solution, respectively. The optimal adaptive solution has been
obtained forMUT = 28% (see Table 8). For the passive solution,
the equivalent MUT = 13% thus showing that material is
better utilized in the adaptive solution. Line thickness variation
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FIGURE 2 | Multi-story building: (A) dimensions, controlled nodes, and loading; (B) passive; (C) adaptive (MUT 28%); (D) deformed shape and element forces of the

adaptive solution under LC1 before control (magnification ×20); (E) element cross-section area passive vs. adaptive.

indicates the element diameter while the cross-section area is
represented through a color gradient whereby a larger area is
assigned a darker gray shade. The element cross-section area

for both passive and adaptive solutions are also indicated by
the bar chart shown in Figure 2E. With regard to the adaptive
solution, elements #1, #33 and #25 have the largest and smallest
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diameter which are 1,707 and 100mm, respectively. On average,
the elements of the adaptive solution have a cross-section area
and external diameter that are 45 and 23% smaller, respectively,
with respect to the weight-optimized passive solution. Figure 2D
shows the deformed shape of the adaptive solution under LC1 for
the SLS case before control. As expected, themaximumdeflection
is 311m which is above the serviceability limit (200mm). The
internal forces are indicated by color shading; red is for tension
and blue for compression. Since the deformed shape under LC2
mirrors that under LC1, for brevity it is not illustrated.

The objective of this case study is to benchmark energy
requirements between control strategies C1, C2, and C4. The
configuration shown in Figure 2 (structure dimensions +

loading) has been selected for this case study because it allows the
application of control strategy C2. C2 can be only employed when
displacement compensation is required but it is not necessary
to control the forces because stress and stability limits are met
without the contribution of the active system. The configuration
selected for this case study met this condition for anMUT in the
range 0 ≤ MUT ≤ 33%. In such range of the solution domain,
which contains the optimal solutions for all cases considered in
this study, the design for this configuration is purely stiffness
governed thus allowing to benchmark control strategy C2 against
C1 and C4.

The number of actuators for the different configurations are
varied according to the conditions given for C1 and C2 (Table 2).
For actuator configuration AC1 (only internal) three sub-cases
are considered by decreasing the number of internal actuators
from nact,int = ne to sint ≤ nact,int ≤ ne and finally to nact,int <

sint . For AC2 (only external) the number of external actuators is
set to the number of constrained degrees of freedom nact,ext =

nsd = 4. For AC3 (combination of internal and external) two sub-
cases are considered by setting the number of external actuators
nact,ext = nsd = 4 (nact,ext > sext) and reducing the number of
internal actuators from sint ≤ nact,int ≤ ne to nact,int < sint .

Tables 5–7 give results with regard to the metrics of interest
for AC1, AC2, and AC3, respectively. The illustrations in Table 8

show the controlled shapes and the actuator layout for each
configuration. In addition, labels indicate the actuators that are
subjected to the most demanding control requirements including
maximum force capacity and maximum length change/support
displacement. For brevity, illustrations in Table 8 are only given
for strategy C2 under load case LC1 (which is symmetrical
to LC2).

AC1: Active Elements (Internal Actuators)
AC1a: nact,int = ne

In this configuration all elements are active. The actuator
commands for C2 are computed through Equation 25 (Table 2).
The optimal design has been obtained forMUT = 25%.

For all control strategies, the maximum deflection
max

(∣

∣dp + 1dc − din
∣

∣

)

(free-end) is reduced from 376mm
before control to 200mm after control as required by SLS. Stress
and stability limits are met through all control strategies. Good
control accuracy is achieved through C1 and C2, as indicated
by low residuals for force and shape control. In C4, control

residuals are not computed because the target shape and forces
are not supplied.

The largest force change max (|1fc|) is required in C1 at
element #9. This is because in C1 the forces are constrained
to be equal to the target forces obtained through load-path
optimization χ . Instead, shape control through C2 causes a zero
change of forces. Control through energy minimization C4 also
gives actuator commands that cause a minimum (practically
zero) change of forces. The maximum force capacity max (|f|)

is required in all strategies for the actuator placed at element
#1 under LC1 and element #33 under LC2. The mass of the
actuators subjected to maximum force capacity requirements is
2200 kg (see assumption given in section Material and Loading
Assumptions). The maximum absolute length change is required
in C4 for the actuator placed at element #39.

The actuation system embodied energy (and thus the mass)
is on average 8% of the total (structure + actuation system)
embodied energy among all control strategies. As expected,
energy savings are the highest when the structure is controlled
through C4. The operational energy for C4 is 53% of that
required by C1. However, C2 is also efficient in terms of energy
requirements. As expected, the computation time to obtain
control commands through C4 is significantly higher than that
required for C1 and C2.
AC1b: sint ≤ nact,int ≤ ne

In this configuration nact,int is set to nact,int = ncd + s =

24 which is the required number of actuators to obtain a
unique solution for C1 [Section Control to Target Forces and
Shapes (C1)]. Actuator commands for C2 are obtained through
Equation 27 (Table 2). The optimal design has been obtained for
MUT = 28%.

The maximum deflection max
(∣

∣dp + 1dc − din
∣

∣

)

is reduced
from 415mm before control to 200mm after control through
all strategies since the number of actuators meets the minimum
requirement for accurate shape control. Low residuals indicate
a good control accuracy through C1 and C2. Stress and stability
limits are met through all control strategies.

Control strategy C4 requires the largest force change
max (|1fc|) at element #18. Control through C2 produces no
change of forces while C4 causes a small force change compared
to C1. The maximum force capacity max (|f|) is required in all
strategies for the actuator placed at element 1 under LC1 and
element 33 under LC2. The mass of the actuator subjected to
maximum force capacity requirements is 2,200 kg. Themaximum
absolute length change is required in C4 for the actuator placed
at element #39.

The actuation system embodied energy (and thus the mass)
is on average 8% of the total (structure + actuation system)
embodied energy among all control strategies. The computation
time for C4 is lower than that in AC1a because the number of
actuators is lower and thus the number of optimization variables
(Equation 44 to 54) is reduced.
AC1c: nact,int < sint

In this configuration nact,int is set to 6, which is lower than
the degree of internal static indeterminacy (sint = 7). Actuator
commands for C2 are computed through Equations 28, 29
(Table 2). The optimal design has been obtained for MUT =

Frontiers in Built Environment | www.frontiersin.org 14 July 2020 | Volume 6 | Article 105

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Senatore and Reksowardojo Force and Shape Control of Adaptive Structures

TABLE 5 | AC1 results.

Passive C1 C2 C4

Maximum deflection (mm)

AC1a 200 200 200 200

AC1b 200 200 200 200

AC1c 200 211 211 200

Residual
∥

∥S∗
d1l − 1dt∗

∥

∥

2
(mm)

AC1a – ∼0 ∼0 n/a

AC1b – ∼0 ∼0 n/a

AC1c – 20.7 20.7 n/a

Residual
∥

∥S∗
f 1l − 1ft

∥

∥

2
(kN)

AC1a – ∼0 ∼0 n/a

AC1b – ∼0 ∼0 n/a

AC1c – 75.1 68 n/a

max
(∣

∣1fc
∣

∣

)

(kN)

AC1a – 775 (el# 9) ∼0 ∼0

AC1b – 227 (el# 10) ∼0 888 (el# 18)

AC1c – 89.4 (el# 9) 21.7 (el# 10) 250.4 (el# 14)

max (|f|) ∀i ∈ ACT (× 104 kN)

AC1a – 2.20 (el# 1, LC1; el# 33, LC2) 2.20 (el# 1, LC1; el# 33, LC2) 2.20 (el# 1, LC1; el# 33, LC2)

AC1b – 2.20 (el# 1, LC1; el# 33, LC2) 2.20 (el# 1, LC1; el# 33, LC2) 2.20 (el# 1, LC1; el# 33, LC2)

AC1c – 2.23 (el# 1, LC1; el# 33, LC2) 2.23 (el# 1, LC1; el# 33, LC2) 2.23 (el# 1, LC1; el# 33, LC2)

max
(

1lel
)

;min
(

1lel
)

(mm)

AC1a – 10 (el# 6); −10 (el# 38) 10 (el# 6); −10 (el# 38) 1 (el# 31); −27 (el# 39)

AC1b – 17 (el# 6); −12 (el# 38) 17 (el# 6); −11 (el# 38) 0 (el# 18); −24 (el# 39)

AC1c – 3 (el# 34); −3 (el# 2) 3 (el# 34); −3 (el# 2) 0 (el# 34); −2 (el# 2)

Embodied energy (MJ)

Total; Actuators

AC1a 1.95 × 107 1.14 × 107; 9.51 × 105 1.14 × 107; 9.40 × 105 1.14 × 107; 9.40 × 105

AC1b 1.95 × 107 1.04 × 107; 8.53 × 105 1.04 × 107; 8.46 × 105 1.04 × 107; 8.50 × 105

AC1c 1.95 × 107 1.85 × 107; 5.76 × 105 1.85 × 107; 5.76 × 105 1.85 × 107; 5.79 × 105

Operational energy (MJ)

AC1a – 4.45 × 106 3.55 × 106 2.40 × 106

AC1b – 6.38 × 106 5.35 × 106 3.53 × 106

AC1c – 7.27 × 105 7.10 × 105 1.59 × 105

Energy savings

AC1a – 18% 23% 28%

AC1b – 14% 19% 24%

AC1c – n/a n/a n/a

Mass savings

AC1a – 41% 41% 41%

AC1b – 47% 47% 47%

AC1c – n/a n/a 5%

Computation time (s)

AC1a – 0.02 0.01 20.2

AC1b – 0.02 0.01 2.6

AC1c – 0.03 0.03 0.11

15%. The maximum deflection max
(∣

∣dp + 1dc − din
∣

∣

)

cannot
be reduced from 260mm to the serviceability limit (200mm)
because the number of actuators is significantly lower than
the minimum requirement for accurate shape control. Control
accuracy in AC1c is generally poor as indicated by higher control
residuals than those given for AC1a and AC1b. Control residuals

for C1 and C2 are similar, indicating a comparable performance
for shape control through both strategies. Stress and stability
limits are met through all control strategies.

The highest force change max (|1fc|) is required by C4
at element #14. Since the number of actuators is lower than
the minimum requirement to cause an impotent eigenstrain
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TABLE 6 | AC2 results.

Passive C1 C2 C4

Maximum deflection (mm) 200 233 233 200

Residual
∥

∥

∥
S*d1l− 1dt*

∥

∥

∥

2
(mm) – 61.6 61.6 n/a

Residual
∥

∥

∥
S*f 1l− 1ft

∥

∥

∥

2
(kN) – 272.1 ∼0 n/a

max
(
∣

∣1fc
∣

∣

)

(kN) – 244.9 (el# 9) ∼0 ∼0

max (|f|)∀i ∈ ACT
ext (× 104 kN) – 2.44 (sup# 2, LC1; sup# 4, LC2) 2.44 (sup# 2, LC1; sup# 4, LC2) 2.44 (sup# 2, LC1; sup# 4, LC2)

max
(

1dsup
)

;min
(

1dsup
)

(mm) – 3 (sup# 3); −2 (sup# 4) 0 (sup# 3); −3 (sup# 4) 0 (sup# 3); −5 (sup# 4)

Embodied energy (MJ)

Total; Actuators

1.95 × 107 1.55 × 107; 2.78 × 105 1.55 × 107; 2.78 × 105 1.55 × 107; 2.78 × 105

Operational energy (MJ) – 9.23 × 105 3.06 × 106 1.18 × 106

Energy savings – n/a n/a 14%

Mass savings – n/a n/a 20%

Computation time (s) – 0.03 0.03 0.12

(Table 2), a relatively small change of force is also produced
through C2. The maximum force capacity max (|f|) is required in
C1, C2, and C4 for the actuator placed at element #1 under LC1
and element #33 under LC2. Themass of the actuator subjected to
maximum force capacity requirements is 2,230 kg. Themaximum
absolute length change is required in C1 and C2 for the actuator
placed at elements #34.

The actuation system embodied energy (and thus the mass)
is on average 3% of the total (structure + actuation system)
embodied energy among all control strategies. Since SLS has not
been met for this configuration in C1 and C2, energy and mass
savings are not given.

AC2: Active Supports (External Actuators)
In this configuration, there are no internal actuators and all
supports are set to active nact,ext = 4. Actuator commands for C2
are computed through Equation 27 (Table 2). The optimal design
has been obtained for MUT = 18%. The maximum deflection
max

(∣

∣dp + 1dc − din
∣

∣

)

can be reduced from 260mm to the
serviceability limit (200mm) through C4, but not C1 or C2.
Control accuracy in AC2 is generally poor for C1 and C2 as
indicated by higher control residuals than those given for AC1.
Control residuals

∥

∥S∗
d
1l− 1dt∗

∥

∥

2
for C1 and C2 are identical,

indicating a comparable performance for shape control. Stress
and stability limits are met through all control strategies.

The highest force change max (|1fc|) is required in C1 at
element #9. Since the number of actuators is higher than the
degree of external indeterminacy nact,ext > sext , it is possible to
produce an impotent eigenstrain through C2 and thus there is
no change of forces. The active supports provide a force couple
that opposes the action of the external load. Under LC1, the
vertical displacements are opposite (upward for support 2 and
downward for support 4) (see illustration in Table 8). Identical
but opposite in sign is the reaction of the active supports under
LC2. The maximum force capacity max (|f|) is required in C1
and C2 for the actuator placed at support 2 (vertical direction)
under LC1 and support 4 (vertical direction) under LC2. The
mass of the actuators subjected to maximum force capacity
requirements is 2,440 kg. The maximum absolute displacement

is required in C1 for the external actuator placed at support #3
(horizontal direction).

The actuation system embodied energy (and thus the mass)
is on average 2% of the total (structure + actuation system)
embodied energy among all control strategies. Since SLS has not
been met for this configuration in C1 and C2, energy and mass
savings are not given.

AC3: Combination of Active Elements and Supports

(Internal and External Actuators)
AC3a: sint ≤ nact,int ≤ ne, nact,ext = 4

In this configuration nact is set to nact = ncd + s = 24 which is
the required number of actuators to obtain a unique solution for
C1. In this case nact = nact,int + nact,ext where nact,int = 20 and
nact,ext = 4. Actuator commands for C2 are computed through
Equation 27 (Table 2). The optimal design has been obtained for
MUT = 28%. The maximum deflection max

(∣

∣dp + 1dc − din
∣

∣

)

is reduced from 415mm to within serviceability limits (200mm)
for all strategies. Stress and stability limits are met through all
control strategies. Control residuals are relatively low, indicating
a good control accuracy for C1 and C2. Shape control residuals
for C2 are lower than those for C1.

Control strategy C4 requires the largest force change
max (|1fc|) at element #18. The change of force in C1 is lower
than that in C4. Control through C2 instead produces no change
of forces. The maximum force capacity max (|f|) is required in
all strategies for the actuators placed at element #1 and support
#2 under LC1 and element #33 and support #4 under LC2.
The mass of the actuators subjected to maximum force capacity
requirements is 2,200 kg for the internal type and 2370 kg for the
external one. The maximum absolute length change is required
in C4 for the internal actuator placed at element #39. The active
support displacements are practically zero for all strategies hence
no action is required for the external actuators.

The actuation system embodied energy (and thus the mass)
is on average 10% of the total (structure + actuation system)
embodied energy among all control strategies. The energy savings
are the highest for C4, which requires only 53% of the operational
energy required by C1. Due to high force requirements that result
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TABLE 7 | AC3 results.

Passive C1 C2 C4

Maximum deflection (mm)

AC3a 200 200 200 200

AC3b 200 210 210 200

Residual
∥

∥S∗
d1l − 1dt∗

∥

∥

2
(mm)

AC3a – ∼0 ∼0 n/a

AC3b – 20.5 20.5 n/a

Residual
∥

∥S∗
f 1l − 1ft

∥

∥

2
(kN)

AC3a – ∼0 ∼0 n/a

AC3b – 75.1 ∼0 n/a

max
(∣

∣1fc
∣

∣

)

(kN)

AC3a – 227 (el #9) ∼0 929.2 (el #18)

AC3b – 89.3 (el #10) ∼0 250.4 (el# 14)

max (|f|)∀i ∈ ACT
int (× 104 kN)

AC3a – 2.20 (el# 1, LC1; el# 33, LC2) 2.20 (el# 1, LC1; el# 33, LC2) 2.20 (el# 1, LC1; el# 33, LC2)

AC3b – 2.23 (el# 1, LC1; el# 33, LC2) 2.23 (el# 1, LC1; el# 33, LC2) 2.23 (el# 1, LC1; el# 33, LC2)

max (|f|)∀i ∈ ACT
ext (× 104 kN)

AC3a – 2.37 (sup# 2, LC1; sup# 4, LC2) 2.37 (sup# 2, LC1; sup# 4, LC2) 2.37 (sup# 2, LC1; sup# 4, LC2)

AC3b – 2.48 (sup# 2, LC1; sup# 4, LC2) 2.48 (sup# 2, LC1; sup# 4, LC2) 2.48 (sup# 2, LC1; sup# 4, LC2)

max
(

1lel
)

; min
(

1lel
)

(mm)

AC3a – 16 (el# 6); −12 (el# 38) 17 (el# 6); −11 (el# 38) 3 (el# 23); −25 (el# 39)

AC3b – 7 (el# 34); −6 (el# 2) 7 (el# 34); −7 (el# 2) 0 (el# 34); −2 (el# 35)

max
(

1dsup
)

; min
(

1dsup
)

(mm)

AC3a – ∼0 ∼0 ∼0

AC3b – 0 (sup# 3); −1 (sup# 2); 0 (sup# 3); −1 (sup# 2); ∼0

Embodied energy (MJ)

Total; Actuators

AC3a 1.95 × 107 1.06 × 107; 1.11 × 106 1.06 × 107; 1.10 × 106 1.06 × 107; 1.11 × 106

AC3b 1.95 × 107 1.88 × 107; 8.57 × 105 1.88 × 107; 8.57 × 105 1.88 × 107; 8.62 × 105

Operational energy (MJ)

AC3a – 6.79 × 106 5.87 × 106 3.62 × 106

AC3b – 1.90 × 106 1.90 × 106 1.59 × 105

Energy savings

AC3a – 10% 15% 27%

AC3b – n/a n/a 3%

Mass savings

AC3a – 45% 45% 45%

AC3b – n/a n/a 4%

Computation time (s)

AC3a – 0.02 0.01 1.9

AC3b – 0.03 0.02 0.19

in large operational energy consumption, the active supports
do not contribute to displacement control in C4 i.e., control
commands for the external actuators obtained through C4 are
practically zero. As for previous cases, the computation time
required by C4 is significantly higher than that for C1 and C2.
AC3b: nact,int < sint , nact,ext = 4

In this configuration nact = nact,int + nact,ext = 10 where
nact,int = 6 and nact,ext = 4. Actuator commands for C2
are obtained through Equations 28, 29 (Table 2). The optimal
design is obtained for MUT = 15%. The maximum deflection

max
(∣

∣dp + 1dc − din
∣

∣

)

can be reduced from 260mm to the
serviceability limit (200mm) through C4, but not C1 and C2.

Control strategy C4 requires the largest force change
max (|1fc|) at element #14. Control through C2 instead produces
no change of forces because the total number of actuators is
nact > s (Table 2). The maximum force capacity max (|f|)is
required in all strategies for the actuators placed at element #1
and support #2 under LC1 and element #33 and support #4
under LC2. The mass of the actuators subjected to maximum
force capacity requirements is 2,230 kg for the internal type and
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TABLE 8 | Multi-story structure: summary of results.

AC1a AC1b AC1c AC2 AC3a AC3b AC3c

MUT 25% 28% 15% 18% 28% 15% 28%

nact,int 40 24 6 0 20 6 14

nact,ext 0 0 0 4 4 4 4

SLS satisfied? Yes Yes Yes (C4 only) Yes (C4 only) Yes Yes (C4 only) Yes
∥

∥S∗
d1l − 1dt

∥

∥

2
(mm)

C1 0 0 20.7 61.6 0 20.5 2.3

C2 0 0 20.7 61.6 0 20.5 1.5
∥

∥S∗
f 1l − 1ft

∥

∥

2
(kN)

C1 0 0 75.1 272.1 0 75.1 117.2

C2 0 0 0 0 0 0 0

max (|f|)∀i ∈ ACT
int (× 104 kN)

C1 2.20 2.20 2.23 – 2.20 2.23 2.20

C2 2.20 2.20 2.23 – 2.20 2.23 2.20

C4 2.20 2.20 2.23 – 2.20 2.23 2.20

max (|f|)∀i ∈ ACT
ext (× 104 kN)

C1 – – – 2.44 2.37 2.48 2.37

C2 – – – 2.44 2.37 2.48 2.37

C4 – – – 2.44 2.37 2.48 2.37

Energy/mass savings

C1 18%/41% 14%/47% n/a n/a 10%/45% n/a n/a

C2 23%/41% 19%/47% n/a n/a 15%/45% n/a n/a

C4 28%/41% 24%/47% 4%/5% 14%/20% 27%/45% 3%/4% 26%/46%

Actuator layouts and

controlled shapes (mag. ×

20) (LC1, C2)

Active support

displacements (mag.

×400) (LC1, C2)

n/a n/a n/a

Frontiers in Built Environment | www.frontiersin.org 18 July 2020 | Volume 6 | Article 105

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Senatore and Reksowardojo Force and Shape Control of Adaptive Structures

2,480 kg for the external one. The maximum absolute length
change is required in C1 and C2 for the internal actuator placed
at element #34. The maximum absolute displacement is required
in C1 and C2 for the external actuator placed at support #2
(vertical direction).

The actuation system embodied energy (and thus the mass)
is on average 5% of the total (structure + actuation system)
embodied energy among all control strategies. Since SLS has not
been met for this configuration in C1 and C2, energy and mass
savings are not given.

Summary of Results
A comparison of the results obtained for configurations AC1,
AC2 and AC3 is given in Table 8. The actuator placement
and controlled shapes under LC1 are illustrated for each
configuration. For brevity, only the configurations for C2 are
illustrated. The internal actuators are represented by thicker lines
placed in the middle of the elements while the external actuators
are represented by arrows placed in proximity of the supports.

Generally, accurate control is only possible through C4 if the
number of internal actuators is lower than the degree of internal
static indeterminacy nact,int < sint . For this case study, the

external actuators are not as effective as the internal ones. In AC2,
although all supports are active, the SLS limit could only be met
through C4, but not C1 and C2. Control accuracy improves when
external actuators are employed in combination with a sufficient
number of internal actuators nact,int > sint (AC3a).

The actuation system embodied energy (and thus the total
mass of the actuators) is only a fraction of the total embodied
energy (structure + actuation system). The actuation system is
AC3a embodies the highest energy which, nonetheless, is only
10% of the total embodied energy for this configuration.

For all configurations, C4 produces solutions with the
lowest operational energy requirement. However, since C4 is
based on a non-convex optimization that employs explicit
constraints on displacements, the computation time to obtain
control commands is on average 2,020 times higher than
that required for C1 and C2. C2 is also efficient with
regard to operational energy requirement which is always
lower than that required by C1. Note that C2 can be
employed when displacement compensation is required but
it is not necessary to control the forces because stress
and stability limits are met without the contribution of the
active system.

FIGURE 3 | Multi-story structure: (A) total, embodied, and operational energy; (B) energy and mass savings vs. the number of internal actuators.
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Operational energy requirements when using external
actuators are generally higher, which results in lower energy
and mass savings for AC3a compared to AC1b. In AC3a
(nact,int = 20, nact,ext = 4) using control strategy C4, the
combination of internal and external actuators produce a small
increase (3%) of the energy savings with respect to AC1b
(nact,int = 24) at the cost of a marginal reduction of mass savings
(2%). This is because generally, the maximum force capacity of
external actuators is higher than that of internal actuators.

A parametric study has been carried out to evaluate the
sensitivity of energy requirements, as well as mass and energy
savings, with respect to the number of internal actuators nact,int .
An adaptive structure solution has been obtained for each
configuration by settingMUT= 28%, which is kept constant. The
number of internal actuators nact,intvaries from nact,int = neto
nact,int = sint while the number of external actuators is kept
constant nact,ext = ncd = 4. The control strategy adopted in
this parametric study is C4. Figure 3 shows (a) the variation
of energy requirements as well as (b) energy and mass savings
with respect to nact,int . The embodied energy (and thus the mass)
remains almost constant because the MUT is kept constant. The
slight increase of embodied energy with the number of actuators
is due to the increase of the actuation system embodied energy.
Operational energy requirements increase as nact,int reduces from
nact,int = ne; conversely, energy savings decrease. However,
energy savings decrease significantly only after the number of
internal actuators is further reduced from nact,int = 14. This
configuration is denoted as AC3c. Metrics of interest for AC3c
are given in Table 8 which includes an illustration of the actuator
placement and controlled shape obtained through C2 under LC1.
AC3c can be regarded as the best overall configuration because it
achieves very similar energy andmass savings to AC3a (which has
the highest energy savings), albeit using 30% fewer actuators.

Arch Bridge
The arch truss considered in this study can be thought of as an
arch bridge reduced to two dimensions. The geometry of the
structure is illustrated in Figure 4A which shows dimensions,
support and loading conditions. The vertical displacement of all
free nodes of top and bottom chords are set as controlled degrees
of freedom for a total of ncd = 19. The controlled nodes are
indicated by circles. The serviceability limit is set to S/1,000 =

100mm, where S = 100m is the span of the bridge. The degree
of static indeterminacy (s) is sint = 0 internally and sext = 3
externally. The structure is designed to support a permanent and
a live load. The permanent load consists of self-weight (SW),
which includes the weight of the actuators, and dead load (DL).
The dead load (DL) is uniformly distributed on the top chord
nodes with an intensity of 10 kN/m. There are three uniformly
distributed live loads (LL) cases. LL1 is applied on the whole span
while LL2 and LL3 are applied on one-half of the span. The live-
to-dead-load ratio is set to 1 for LL1 to simulate normal traffic
conditions and to 1.25 for LL2 and LL3 to simulate asymmetric
loadings due to vehicular traffic. The live load frequency of
occurrence is modeled with a log-normal probability distribution
(see section Step 3: Operational Energy Computation).

Figure 4B shows the adaptive solution which has been
obtained for MUT = 68%. Element diameters are indicated by
line thickness variation, cross-section areas and element forces
are indicated by color shading as for the previous case study
(Section High-Rise Structure). Elements #11, #21 and #28, #35,
#42, #43 have the largest and smallest diameter, which are 1,210
and 200mm, respectively. Figure 4C shows the deformed shape
under LC2 (before control). The maximum nodal displacement
is 92mm, which is lower than the required serviceability limit
(100mm), hence there is no need for active compensation of
displacements. For this reason, the focus of this study will be on
force control through strategy C3 i.e., nilpotent eigenstrain. In
this case, the control objective is to maintain an optimal load-
path under multiple load cases without causing any (or minimal)
change of the node positions. Since the structure works as an
arch bridge, an optimal load-path is when both top and bottom
chords work in compression even under asymmetric loading. The
target forces 1ft are obtained through process χ (Section Step
1: Embodied Energy Optimization) by adding extra constraints
that limit the forces in the top and bottom chord elements to
compression.

The number of actuators for the different configurations are
varied according to the conditions given in Table 3. For actuator
configuration AC1 (only internal) three sub-cases are considered
by decreasing the number of internal actuators from nact,int = ne

to ncd < nact,int ≤ ne and finally to nact,int ≤ ncd. For AC2
(only external) the number of external actuators is set to the
number of constrained degrees of freedom nact,ext = nsd. For
AC3 (combination of internal and external) two sub-cases are
considered by setting the number of external actuators nact,ext =
nsd (nact,ext > sext) and reducing the number of internal actuators
from nact,int > s+ ncd to nact,int < s+ ncd.

Control strategy C3 is benchmarked against C4. For both
strategies, the change of forces 1f = 1fp + 1fc should be such
that all elements of top and bottom chords are in compression
under all load cases. Control accuracy is evaluated through a
measure of the maximum change of displacements which should
be as small as possible i.e., max (|1dc|) ≈ 0. Results for AC1 to
AC3 are summarized in Table 9. Each configuration is illustrated
in Figure 5, which shows the actuator layout, element forces and
controlled shapes.

In AC1a, since all elements are set to active (43 actuators,

Figure 5A) control commands for C3 are obtained through

Equation 35. Both strategies produce actuator commands that

cause a nilpotent eigenstrain and top and bottom chord

elements are controlled in compression under all load cases.

Accurate force control for C3 is indicated by low residuals
∥

∥

∥
S∗
f
1l− 1ft

∥

∥

∥

2
. The operational energy for C4 is 11% of

that required by C3. the computation time to obtain control
commands through C4 is significantly higher than that required
for C3.

In configuration AC1b, nact,int = 24 > s + ncd (Figure 5B).
Similar to AC1a, it is possible to obtain control commands that
do not cause any change of node positions and to control the
internal forces so that all elements of top and bottom chords are
in compression. The operational energy for C4 is 26% of that
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FIGURE 4 | Arch bridge: (A) dimensions, controlled nodes, and loading; (B) adaptive; (C) deformed shape and element forces under LC2 before control

(magnification × 20).

required by C3. Similar to AC1a, the computation time for C4
is significantly higher than that for C3.

In AC1c, nact,int = 10 (Figure 5C). In this case, it is not
possible to obtain control commands that do not cause any
change of node positions through neither C3 nor C4. Control
strategy C3 requires a change of node position max (|1dc|)=

21.8mm which results in a violation of the serviceability limit
(100mm). As indicated by high residuals

∥

∥S∗
d
1l− 1dt∗

∥

∥

2
,

control accuracy is poor due to the low number of actuators
employed in this configuration. Through both strategies, top and
bottom chord elements are controlled in compression under all
load cases. The operational energy for C4 is 12% of that required
by C3. In AC1c, the computation time is significantly lower than
that required in configurations with more actuators such as AC1a
and AC1b.

In AC2, all supports are set to active for a total of nact,ext = 8
(Figure 5D). In this case, it is not possible to obtain control
commands that do not cause any change of node positions
through neither C3 nor C4. As discussed in section Force Control
Through Nilpotent Eigenstrain (C3), the effect of an active
support is to move the node positions and therefore it cannot
be employed to produce a nilpotent eigenstrain. Although the
serviceability limit (100mm) is still respected, control strategy
C3 requires the largest change of node position max (|1dc|)

of 39.9mm. Similar to AC1c, high residuals
∥

∥S∗
d
1l− 1dt∗

∥

∥

2
indicate poor control accuracy. Similar to AC1c, top and bottom
chords are in compression under all load cases through both
control strategies. The operational energy for C4 is only 1% of
that required by C3. In AC2, the computation time is comparable
to AC1c.

In AC3a and AC3b, all supports are set to active for a total
of nact,ext = 8 in combination with nact,int = 24 > s +

ncd and nact,int = 6 internal actuators (Figures 5E,F). When
nact,int < ne or when the supports are active (AC2, AC3a, and
AC3b) control commands are computed through Equations 38
and 39, which produce an approximate nilpotent eigenstrain.
No significant change of shape occurs in AC3a for both C3
and C4, while in AC3b it is not possible to obtain control
commands that do not cause any change of node positions
through neither C3 nor C4. Although the serviceability limit
(100mm) is still respected in AC3b, control strategy C3 requires
the largest change of node position max (|1dc|)= 10.4mm.
High residuals

∥

∥S∗
d
1l− 1dt∗

∥

∥

2
in AC3b indicate poor control

accuracy due to the low number of actuators. In both AC3a and
AC3b, and with both control strategies, top and bottom chords
are in compression under all load cases. The operational energy
for C4 is only 14% and 1% of that required by C3 in AC3a and
AC3b, respectively.

The largest change of node positions occurs in AC2, where
the actuators are only placed at the supports. No change of node
positions occurs in AC1a, AC1b, and AC3a where the number of
actuators nact = 24 > s + ncd satisfies the condition to obtain a
unique solution with low residuals for C1, C2, and C3 (see section
Control Through Impotent and Nilpotent Eigenstrain).

The maximum force capacity max (|f|)is required in AC1c for
the actuators placed at element #25 and #38 under LC2 and LC3,
in AC2, AC3a, and AC3b for the actuators placed at support #5
and 7 under LC2 and LC3. The mass of the actuators subjected to
maximum force capacity requirements is 4,410 kg for the internal
type and 1710 kg for the external one. The maximum absolute
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TABLE 9 | Arch bridge: summary of results.

AC1a AC1b AC1c AC2 AC3a AC3b

nact,int 43 24 10 0 24 6

nact,ext 0 0 0 8 8 8

Maximum deflection (mm)

C3 92 92 103 90 90 95

C4 92 100 100 88.1 100 100

Residual
∥

∥S∗
d1l − 1dt∗

∥

∥

2
(mm)

C3 ∼0 ∼0 47.1 87.7 ∼0 24.4

Residual
∥

∥S∗
f 1l − 1ft

∥

∥

2
(kN)

C3 ∼0 ∼0 ∼0 ∼0 ∼0 ∼0

min
(
∣

∣fc
∣

∣

)

∀i ∈ {1, . . . , 21} (kN)

C3 −150 −150 −150 −150 −150 −150

C4 −0.1 −0.1 −0.1 −0.1 −0.1 −0.1

max
(
∣

∣1dc
∣

∣

)

(mm)

C3 ∼0 ∼0 21.8 39.9 ∼0 10.4

C4 ∼0 ∼0 25.9 20.4 ∼0 12

max (|f|) ∀i ∈ ACT
int (× 104 kN)

C3 1.99 (el# 11, LC2 ; el#

21, LC3)

1.06 (el# 3, LC2 ; el# 8,

LC3)

4.41 (el# 25, LC2 ; el#

38, LC3)

– 1.07 (el# 3, LC2 ; el# 8,

LC3)

2.29 (el# 30, LC2 ; el#

33, LC3)

C4 1.99 (el# 11, LC2 ; el#

21, LC3)

1.06 (el# 3, LC2 ; el# 8,

LC3)

4.41 (el# 25, LC2 ; el#

38, LC3)

– 1.07 (el# 3, LC2 ; el# 8,

LC3)

2.16 (el# 30, LC2 ; el#

33, LC3)

max (|f|) ∀i ∈ ACT
ext (× 104 kN)

C3 – – – 1.71 (sup# 5, LC2;

sup# 7, LC3)

1.71 (sup# 5, LC2;

sup# 7, LC3)

1.71 (sup# 5, LC2;

sup# 7, LC3)

C4 – – – 1.71 (sup# 5, LC2;

sup# 7, LC3)

1.71 (sup# 5, LC2;

sup# 7, LC3)

1.71 (sup# 5, LC2;

sup# 7, LC3)

max
(

1lel
)

; min
(

1lel
)

(mm)

C3 3 (el#1); −1 (el #12) 9 (el#19); −5 (el #25) 18 (el#34); −15 (el #25) – 5 (el#19); −4 (el #8) 12 (el#37); 0 (el #1)

C4 4 (el#1); −1 (el #29) 6 (el#26); −4 (el #25) 19 (el#26); −23 (el #29) – 3 (el#19); −2 (el #29) 9 (el#33); 0 (el #1)

max
(

1dsup
)

; min
(

1dsup
)

(mm)

C3 – – – 27 (sup# 1); −62 (sup#

4)

3 (sup# 1); −3 (sup# 7) 9 (sup# 1);

−25 (sup# 4)

C4 – – – 6 (sup# 1); −13 (sup#

7)

4 (sup# 2); 0 (sup# 3) 5 (sup# 1);

0 (sup# 4)

Embodied energy (× 106 MJ)

Total; Actuators

C3 5.24; 1.39 4.39; 0.53 3.99; 0.13 4.24; 0.39 4.78; 0.92 4.31; 0.46

C4 5.19; 1.34 4.37; 0.51 3.99; 0.13 4.24; 0.39 4.76; 0.90 4.31; 0.46

Operational energy (MJ)

C3 6.80 × 106 8.61 × 106 6.61 × 106 6.50 × 107 8.26 × 106 2.38 × 107

C4 7.33 × 105 2.21 × 106 7.69 × 105 6.75 × 105 1.16 × 106 2.52 × 105

Total energy (MJ)

C3 1.20 × 107 1.30 × 107 1.06 × 107 6.93 × 107 1.30 × 107 2.81 × 107

C4 5.93 × 106 6.57 × 106 4.75 × 106 4.92 × 106 5.91 × 106 4.56 × 106

Computation time (s)

C3 0.01 0.002 0.003 0.003 0.002 0.003

C4 11.8 7.6 0.3 0.3 15 2
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FIGURE 5 | Arch bridge: actuator layout, element forces, and controlled shapes (magnification × 20) under LC2 for AC1a-c (only internal actuators), AC2 (only

external actuators) and AC3a-b (combination of internal and external actuators).

length change is required for the actuator placed at element #34
in AC1c where the number of internal actuators is the lowest.

Generally, the active supports move inward to counteract the

effect of the external load as shown in Figure 5D for AC2. The

maximum absolute support displacement occurs in AC2 for the
external actuator placed at support #4.

In all configurations and under all load cases, top and bottom

chords are controlled to stay in compression. Accurate force

control in C3 is indicated by the residual
∥

∥

∥
S∗
f
1l− 1ft

∥

∥

∥

2
, which

is practically zero for all cases (Table 9) including AC2 where
only active supports are employed. Figure 6 shows a bar chart
of the internal forces for top and bottom chord elements #1
to #21 before control (black), after control through C3 (light
gray) and after control through C4 (dark gray). For brevity, only
forces for load case LC2 and configuration AC1b are given. The
maximum force after control through C3 among the top and
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FIGURE 6 | Arch bridge: internal forces in the top and bottom chord elements for AC1b under LC2.

bottom chord elements, max (fc) ∀i ∈ {1, . . . , 21}, is −150 kN
in all configurations. The maximum force after control through
C4 among the top and bottom chord elements, max (fc) ∀i ∈

{1, . . . , 21}, is−0.1 kN in all configurations.
The embodied energy (and thus the mass) is lower for

AC1c, AC2, and AC3b compared to the other configurations,
which employ more actuators. This is because in AC1a, AC1b,
and AC3a, actuators are placed on elements subjected to high
forces such as element #11, #21, #3, #8, #13 and #19, which
causes the actuation system embodied energy to reach 27%, 12%
and 20% of the total (structure + actuation system) embodied
energy, respectively. For AC1c, AC2 and AC3b instead, the
actuation system embodied energy is 3, 9, and 10% of the total
embodied energy.

Through strategies C3 and C4, the structure is controlled as
required so that top and bottom chords are in compression even
under asymmetrical load cases. Both strategies produce actuator
commands that generally cause a minimal change of shape,
which, in this case, was not needed as deflection limits are met
without the contribution of the active system. The computation
time to obtain a solution through C4 is on average 1,180 times
higher than that required by C3. However, control through C4
requires significantly less operational energy which is on average
only 9% of that required by C3.

Operational energy requirements are the highest in AC2
through C3 because the external actuators are required to
work against high forces and to perform larger displacements
compared to those required by the other configurations.
Combination of internal and external actuators in AC3a is
effective to reduce the operational energy requirement with
respect to AC1b without reducing shape control accuracy (the
maximum change of node positions and shape control residuals
are practically zero for AC1b and AC3a). Configuration AC3b
(nact,int = 6, nact,ext = 8) is the best overall configuration

because its embodied energy (and thus the mass) is only 8%
higher than that of the minimum embodied energy configuration
(AC1c) and its operational, as well as total energy, are the lowest
among all configurations. In addition, AC3b employs fewer
actuators compared to other configurations e.g. 43 actuators in
AC1a, 24 in AC1b, 32 in AC3a vs. 14 actuators in AC3b.

DISCUSSION

Decoupling Force and Shape Control
Closed-form solutions to decouple force and shape control
through impotent and nilpotent eigenstrain have been presented
through strategies C2 and C3. Within the assumption of small
deformations, impotent (C2) and nilpotent (C3) eigenstrain can
be caused through actuation exactly (1fc = 0;1dc∗ = 0,
respectively) provided that the null space of the force S∗

f
∈

R

(

ne+nsd
)

×nact
and shape S∗

d
∈ R

ncd×nact influence matrices exist.
The nullity of S∗

f
is greater than zero if the number of actuators

is higher than the degree of static indeterminacy i.e. sext <

nact,ext ∪ sint < nact,int ; the nullity of S∗
d
is greater than zero if

the number of internal actuators is higher than the number of
controlled degrees of freedom i.e., nact,int > ncd. When these
conditions are met, generally, force and shape control can be
decoupled i.e., forces can be controlled without changing the
shape through a nilpotent eigenstrain (1fc ≈ 1ft;1dc∗ = 0)
and the shape can be controlled without changing the forces
through an impotent eigenstrain (1fc = 0;1dc∗ ≈ 1dt). In
some cases, depending on the actuator layout and the position
of the controlled degrees of freedom, the basis of the null

space of the force W
S∗
f

s and shape W
S∗
d

s influence matrices may
be ill-conditioned. In such cases, and when the number of
actuators does notmeet required conditions (Tables 2, 3), control
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commands to cause an approximate impotent and nilpotent
eigenstrain can be obtained through optimization as shown in
section Shape Control Through Impotent Eigenstrain (C2) and
Force Control Through Nilpotent Eigenstrain (C3), respectively.
Note that it is not possible to obtain actuator commands that
cause an exact (1dc∗ = 0) nilpotent eigenstrain when active
supports are employed i.e., nact,ext > 0. In such case, nilpotent
eigenstrain can only be approximated through optimization in
order to control the forces as required albeit causing a small
change of shape.

Summary of Comparative Study Results
The structure-control optimization method given in Senatore
et al. (2019) combined with the control strategies presented in
section Control Strategies has been applied to the design of a
high-rise structure and an arch bridge to benchmark control
accuracy and energy requirements. Actuator layouts that include
active elements (internal actuators), active supports (external
actuators) and combination of both have been tested. For all
control strategies, the actuator placement has been obtained
through the method given in Senatore et al. (2019) and control
commands are obtained so that that ULS and SLS are respected.
Information regarding control requirements in terms of actuator
maximum force capacity and length change has also been given
for each configuration.

Since C4 is based on a non-convex optimization problem, the
computation time to obtain control commands is significantly
higher than that required for C1, C2, and C3. C1, C2, and C3
are convex problems that comprise either constrains on forces or
displacements but not simultaneously and thus an approximate
solution can be obtained in lower computation time. Owing
to the simplicity and computational efficiency of C1 and C2,
they have been successfully applied to linear (Senatore et al.,
2018c) and geometric non-linear (Reksowardojo et al., 2020b)
real-time control of experimental adaptive structures equipped
with linear actuators.

The operational energy required by C2 and C4 is lower
than that required by C1. Control through C1 aims to cause
a prescribed change of forces and node positions and thus it
involves more stringent constraints with respect to C4 in which
forces and displacements are only constrained as required by ULS
and SLS, respectively. This is the main reason C1 requires larger
operational energy with respect to C2 and C4. While C4 always
requires the least energy, C2 has comparable operational energy
requirements. In addition, C2 is significantly more efficient
in computation time terms which is on average 0.05% with
respect to C4. That being said, C2 can only be employed when
displacement compensation is required but it is not necessary
to control the forces because stress and stability limits are
met without the contribution of the active system. In these
conditions, shape control through impotent eigenstrain (C2)
should be employed instead of C1 or C4. This is an important
finding because, since high-intensity loads occur rarely, it
is only necessary to reduce displacements within SLS limits
without affecting the internal forces under most occurrences
of the load probability distribution which are above the load
activation threshold (LAT) (see section Step 3: Operational

Energy Computation). This is particularly relevant to stiffness
governed structures for which non-controlled displacements are
likely to violate SLS limits before any critical stress condition
might occur. In addition, when fail-safe constraints that account
for control system failure and power breakdown are added to
the structural optimization process outlined in section Synthesis
of Minimum Energy Adaptive Structures (Senatore et al., 2019;
Wang and Senatore, 2020), ULS is met without the contribution
of the active system and thus only displacement compensation is
required under SLS load cases.

In general, external actuators require higher operational
energy than internal actuators since forces acting on the supports
are usually higher than the element forces. However, a layout
that combines external and internal actuators may require
lower operational energy compared to one which comprises
only internal actuators. For example, for the arch bridge case
study, simulations have shown that it is effective to use external
actuators in combination with internal actuators to lower the
control energy.

A parametric study has been carried out to evaluate the
sensitivity of energy requirements, as well as mass and energy
savings, with respect to the number of internal actuators nact,int .
Embodied (and thus material mass) and operational energy
requirements increase as nact,intreduces from nact,int = ne.
Conversely, mass and energy savings decrease. However, mass
and energy savings decrease significantly only when the number
of internal actuators is significantly lower than nact = s +

ncd(static indeterminacy+ controlled degrees of freedom), which
is the condition to obtain a unique solution with low residuals for
C1, C2, and C3 (see section Control Strategies).

CONCLUSIONS

This work has presented the formulation of four control
strategies for adaptive structures equipped with linear actuators:
(C1) force and shape control to obtain prescribed changes of
forces and node positions; (C2) shape control through impotent
eigenstrainwhen displacement compensation is required without
affecting the forces; (C3) force control through nilpotent
eigenstrain when displacement compensation is not required
and (C4) force and shape control through operational energy
minimization. These control strategies have been integrated
within a previously developed structure-control optimization
method (Senatore et al., 2019) which produces adaptive structural
configurations that outperform equivalent weight-optimized
passive structures on a variety of aspects: the adaptive solutions
embody a significantly reduced material mass, they can be much
more slender, they have a higher stiffness because deflections are
controlled within tight limits, they areminimum energy solutions
thus reducing environmental impacts.

The main contributions of this work are: (1) formulation
of three new control strategies C2, C3 and C4 which extend
the integrated structure-control optimization method given in
Senatore et al. (2019); (2) derivation of closed-form solutions
and formulation of optimization methods to decouple force and
shape control through nilpotent and impotent eigenstrain; (3)
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extension of the force and shape control formulation given in
Senatore et al. (2019), which considered only internal actuators
(i.e., active elements), to include the action of external actuators
placed at supports (i.e., active supports).

The following conclusions are drawn from the analytic and
numerical studies presented in this paper:

• A necessary condition to decouple force and shape control is
the existence of the null space of the force and shape influence
matrices defined in Force and Shape Influence Matrices.
Therefore, it follows that: (1) the shape can be controlled as
required without changing the forces through an impotent
eigenstrain if the number of actuators is higher than the degree
of static indeterminacy i.e., sext < nact,ext ∪ sint < nact,int ;
(2) forces can be controlled as required without changing the
shape through a nilpotent eigenstrain if the number of internal
actuators is higher than the number of controlled degrees of
freedom i.e., sext < nact,ext ∪ sint < nact,int .

• Energy savings increase as the number of actuators increases
from nact = s. However, no further significant savings are
gained as the number of actuators increases from nact = s+ncd

that is the sum of the degree of static indeterminacy and the
number of controlled degree of freedom.

• When displacement compensation is required but no change
of forces is needed, shape control through impotent eigenstrain
(C2) is an effective strategy. C2 has comparable energy
requirements to C4, which produces control solutions of
minimum energy, and it is significantly more efficient than C4
with regard to computation time.

Future work could look into applying the methods formulated
in this paper to other structural configurations with the aim
to evaluate in which conditions the interaction of internal and
external actuators is most beneficial in energy/mass savings terms
as well as to increase structural performance for example of
slender high-rise structures or long-span bridges. In this work,

actuators are assumed to be installed in series, and thus they have
to carry the full force in the corresponding element. Another
approach is to consider the actuators in parallel with the elements
thereby decoupling the active elements from load transfer
(Weidner et al., 2018; Böhm et al., 2020). This approach could
be beneficial for control through nilpotent eigenstrain where the
main objective is force control. Future work could extend the
design and control strategies given in this paper to consider
actuators installed in parallel. Extensions of the control strategies
presented in this work to include geometric non-linear shape
control (Reksowardojo et al., 2020a) as well as consideration of
dynamics could also be subject of future investigations.
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NOMENCLATURE

A ∈ R
nd×(ne+nsd ) Equilibrium matrix

Ael ∈ R
nd×ne Element direction cosines

Asup ∈ R
nd×nsd Support direction cosines

G ∈ R

(

ne+nsd
)

×

(

ne+nsd
)

Flexibility matrix

Sd ∈ R
nd×(ne+nsd ) Shape influence matrix

Sf ∈ R
(ne+nsd )×(ne+nsd ) Force influence matrix

S∗
d ∈ R

ncd×nact Reduced shape influence matrix

S∗
f ∈ R

(ne+nsd )×nact Reduced force influence matrix

Ur ∈ R
nd×

(

nd−m
)

Basis of the column space of the equilibrium

matrix

Um ∈ R
nd×m Basis of the left null space of the equilibrium

matrix i.e., m linear independent inextensional

mechanisms

Vr ∈ R

(

ne+nsd
)

×

(

ne+nsd
)

Equilibrium matrix singular values

Wr ∈ R

(

ne+nsd
)

×

(

ne+nsd−s
)

Basis of the row space of the equilibrium matrix

Ws ∈ R

(

ne+nsd
)

×s
Basis of the null space of the equilibrium matrix

i.e., s linear independent states of self-stress

d ∈ R
nd Displacements (or shape)

dc ∈ R
nd Controlled displacements (or shape)

din ∈ R
nd Initial displacements (or shape)

dp ∈ R
nd Displacements (or deformed shape) caused by

external loads

dt ∈ R
nd Target displacements (or shape)

1dc ∈ R
nd Change of shape through actuation

1dc∗ ∈ R
ncd Change of shape through actuation reduced to

the controlled degrees of freedom

1dsup ∈ R
nsd Change of constrained node positions through

actuation (active support displacements)

1dt ∈ R
nd Target change of shape

1dt∗ ∈ R
nd Target change of shape reduced to the

controlled degrees of freedom

f ∈ R
(ne+nsd ) Forces (internal forces + support reactions)

fc ∈ R
(ne+nsd ) Controlled forces

fel ∈ R
ne Internal forces

fin ∈ R
(ne+nsd ) Initial forces

fp ∈ R
(ne+nsd ) Forces caused by external loads

fsup ∈ R
nsd Support reactions

1fc ∈ R
(ne+nsd ) Change of forces through actuation

1ft ∈ R
(ne+nsd ) Target change of forces

i ∈ Z ith element

l ∈ R
ne Element lengths

1l ∈ R
nact Actuator commands (element length changes

+ active support displacements)

1lall ∈ R
(ne+nsd ) Actuator commands, all elements and support

as active

1lel ∈ R
ne Internal actuators length changes

nact ∈ Z Number of actuators

ncd ∈ Z Number of controlled degrees of freedom

nd ∈ Z Number of degrees of freedom

ne ∈ Z Number of elements

nn ∈ Z Number of nodes

p ∈ R
nd External load

pjk ∈ R
nd kth occurrence of the load probability

distribution for the jth load case

s ∈ Z Degree of static indeterminacy

W ∈ R
nact Actuator work

α ∈ R Cross-section area

β Impotent eigenstrain coefficient vector

δ Nilpotent eigenstrain coefficient vector

ε ∈ R
(ne+nsd ) Compatible strains

µ ∈ R
s Self-stress states coefficient vector

χ Optimization of load path and element sizing

ϑ Optimization of actuator layout
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