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This paper presents with an effective and fast approach to the optimization of
the pretension forces in arched bridges with suspended deck, which makes use
of the influence matrix method (IMM). The given cable-tensioning procedure leads
to a linear system of equations with a reduced number of unknowns and can
be effectively implemented within active control procedures that handle time-varying
loading conditions. This method produces a target bending moment distribution (TBMD)
over the structure, which significantly mitigates the state of stress of the deck. Numerical
simulations referred to a Nielsen arch bridge illustrate the versatility of the proposed
approach when dealing with different loading conditions.

Keywords: arch bridges, pretension, target bending moment distribution, influence matrix, Nielsen bridge

INTRODUCTION

There are several adaptive applications of cable-stayed structures in the field of bridge construction
(Simões and Negrão, 1995; Freire et al., 2006; Fabbrocino et al., 2017; Song et al., 2018;
Reksowardojo et al., 2019). An adaptive design searches for the optimal configuration of these
structures, which in most cases is not unique. Therefore, it is important to have effective methods
to design cable-stayed bridges that are capable of responding in real time to changing loading
conditions., with the aim of designing structural systems capable of responding in real time to
the change of the design parameters, due, e.g., to the time-variation of the loading condition. It is
also worth observing that recent history is full of dramatic examples of structural breakdowns or
collapses of cable-stayed and suspended bridges, demonstrating that such structures require critical
maintenance intervention and structural strengthening. Notable recent bridge collapses are that of
the Polcevera viaduct, also known as Ponte Morandi, in Genoa, Italy (2019), and that involving the
Chirajara bridge in Guayabetal, Colombia (2018).

Cable-stayed bridges, suspension bridges and arched bridges (e.g., the Langer, Lohse, and Nielsen
types) have made rapid technological progress over the past century and their numbers have
increased rapidly. There are two main reasons for their success: the first is aesthetic, due to their
elegant appearance; the second is economic, due their efficient use of structural material (during
construction) and reduced maintenance costs (Simões and Negrão, 1995; Freire et al., 2006; Song
et al., 2018). Suspended deck bridges have also excellent anti-seismic and stabilizing properties
and offer some notable practical advantages. For example, they do not require access from below,

Frontiers in Built Environment | www.frontiersin.org 1 July 2020 | Volume 6 | Article 114

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://doi.org/10.3389/fbuil.2020.00114
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fbuil.2020.00114
http://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2020.00114&domain=pdf&date_stamp=2020-07-16
https://www.frontiersin.org/articles/10.3389/fbuil.2020.00114/full
http://loop.frontiersin.org/people/500859/overview
http://loop.frontiersin.org/people/164467/overview
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles


fbuil-06-00114 July 16, 2020 Time: 11:6 # 2

Modano et al. Optimal Pretension Suspended Arch Bridges

FIGURE 1 | Reference configuration C0 of a Nielsen arch bridge model with n = 20: (A) front view; (B) structural model.

and the erection process is relatively straightforward. Despite
all these positive aspects, they are highly sensitive to the
load distribution, as well as to dynamic loads, such as wind.
Additionally, they exhibit non-linear structural behavior that
derive mainly from the changes in geometry, cable failure, etc.
(Wang and Yang, 1996). From a mechanical point of view,
suspended deck bridges are statically indeterminate structures
that often exhibit a high degree of static indeterminacy. Their
structural behavior is strongly influenced by the arrangement
and the pre-tensioning forces of the cables, as well as by the
distribution of stiffness in the load-bearing elements (cables,
deck, support arch, etc.) (Lee et al., 2008). Therefore, the
tendency has been to improve the structural behavior by
using a variety of optimization methods (Sung et al., 2006;
Lonetti and Pascuzzo, 2014).

The load balancing method introduced by Lazar et al.
(1972) is one of the oldest available approaches for the
optimization of the cable pretension forces. It assumes that
such forces are responsible for reducing the bending moments
and displacements of the deck. Lazar and co-authors base
their optimization procedure on the bending moment influence

FIGURE 2 | Virtual bridge configuration V0 showing fictitiously stiffened stays
and arch.

matrix, which is computed by applying a unit force to each
suspension cable in turn (Lazar et al., 1972). Another approach,
known as the Zero Displacement Method, was initially proposed
by Wang et al. (1993) and recently improved by Zhang and
Au (2014). Four different optimization methods are compared
by Wang et al. (1997), which are minimization of the sum of
the squares for vertical movements along the beam (MSSVD);
minimization of the maximum beam moment (MMM); the
continuous beam method (CBM); and the simple beam method
(SBM). The study presented in Wang et al. (1997) concludes
that the best approach to get accurate results with minimum
effort is SBM, which describes the deck as a continuous beam on
elastic supports, by neglecting non-linearities. Another available
approach is the Force Equilibrium Method (Chen et al., 2000),
which models for the unknown cable pretension forces through
an iterative approach. It is well known that suspended deck
bridges are lightweight structures, and that the structure’s ability
to actively respond to external stresses is a key requirement for
this bridge typology.

The present work applies the Influence Matrix Method
(IMM) presented in Fabbrocino et al. (2017) and Mascolo and
Modano (2020) for an effective design of the pretension forces
in cable-stayed arch bridges. An optimized cable-pretension

TABLE 1 | Main geometric parameters of the analyzed bridge model.

Bridge length 140.8 (m)

Maximum arch height 28 (m)

The deck width 13.90 (m)

Roadway width 7.50 (m)
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procedure is proposed to produce a target bending moment
distribution (TBMD) over the deck, which approximates that
exhibited by a continuous beam. It provides a fast design
tool that can be enforced within closed-loop active control
procedures, making use of active tendons, and weight-in-motion
(WIM) technologies (Jacob and Feypell-de La Beaumelle, 2010;
Preumont, 2011; Reksowardojo et al., 2018, 2019; Senatore et al.,
2018a,b, 2019). The traditional designing and sizing of a bridge
is based on the worst expected load scenario. Contrary to
such a conventional approach, the pretension design procedure
here proposed allows the structure to cope with variable load
scenarios. It can be profitably used as a tool to increase the load
bearing capacity of the structure through a geometric-stiffness
approach, during events that might result in the partial loss of
the load bearing capacity (Casas, 2015).

COMPUTATION OF CABLE PRETENSION
FORCES

Let us examine the arched bridge model in Figure 1, whose
deck is suspended on a number n of stays. The bridge has been
fully designed in terms of sizing of the structural members and
it is subjected to a given loading condition. We distinguish the
following three macrostructural elements: the arch structure E1,
the deck E2, and the stays E3. The reference configuration C0
of the bridge, in absence of cable pretensions, is obtained by
assembling such macro-elements. The arch E1 shows pinned
supports at both ends, while the deck E2 features a pinned

support at one end and a roller support at the other end
(Figure 1B). Such boundary conditions imply that the deck
can be regarded as a statically determinate structure, when one
knows the tension forces N1, . . . , Nn acting in the stays. The
vector N0 collects the forces acting in the cables for the reference
configuration C0.

We aim at identifying convenient values of the pretension
forces to be applied to the stays that lead us to obtain a
desired bending moment distribution (BMD) over the deck.
A convenient BMD is that corresponding to a deck responding
as a continuous beam supported over the hanging points of the
stays (continuous-beam deck configuration). One could obtain this
TBMD through a material stiffening procedure, by significantly
increasing the size of the cross-section of the stays and the
arch, and/or using a very stiff material for such members. Let
E∗i denote a fictitious configuration of the i-th macro-element,
which corresponds to assuming the Young modulus of the
material 1000 times larger than the real value. We introduce the
virtual configuration V0 of the bridge, which is formed by the
assembling of E∗1, E2 and E∗3 , which is a good approximation
of the desired continuous-beam deck configuration (Figure 2).
The vector Nd collects the cable forces for configuration V0.
We refer to such forces as the “optimal pretension forces” in the
remainder of the paper.

A geometric-stiffening approach to the TBMD consists of
applying a suitable state of self-stress to C0, while leaving
material properties and member sizing unchanged (Skelton and
de Oliveira, 2010). The state of self-stress to be applied follows
from the application of suitable axial forces to the stays, so that

FIGURE 3 | Transverse section of the bridge (unit: cm).

TABLE 2 | Mechanical properties of the employed finite element model of the bridge.

Structural member Cross-section Steel-Type E (Nmm-1) A (m2) Iy (m4)

Arch Tubular S355 2,10E + 05 8,16E-02 2,68E-02

Deck 2-Cell Box S355 2,10E + 05 6,96E-01 6,00E-01

Cables Circular fyd = 772 MPa 2,10E + 05 5.027 E-3 2.011 E-6
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TABLE 3 | Influence matrix of the analyzed finite element model (unit: kN).

N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8 N 9 N 10 N 11 N 12 N 13 N 14 N 15 N 16 N 17 N 18 N 19 N 20

CABLE 1 1,000 −0,898 −0,201 0,115 0,016 0,039 −0,017 0,015 −0,014 0,009 −0,008 0,005 −0,004 0,003 −0,002 0,001 −0,001 0,001 0,000 0,001

CABLE 2 −0,469 1,000 −0,282 −0,035 0,016 0,002 0,012 −0,004 0,003 −0,003 0,002 −0,001 0,001 −0,001 0,001 0,000 0,000 0,000 0,000 0,000

CABLE 3 −0,228 −0,611 1,000 −0,380 −0,249 0,098 0,006 0,038 −0,016 0,014 −0,015 0,008 −0,008 0,005 −0,004 0,002 −0,002 0,001 −0,001 0,001

CABLE 4 0,105 −0,061 −0,306 1,000 −0,434 −0,127 0,016 −0,017 0,044 −0,017 0,017 −0,011 0,009 −0,005 0,005 −0,003 0,002 −0,002 0,001 −0,001

CABLE 5 0,020 0,040 −0,277 −0,601 1,000 −0,186 −0,274 0,100 −0,011 0,042 −0,022 0,016 −0,018 0,009 −0,009 0,005 −0,004 0,003 −0,001 0,002

CABLE 6 0,046 0,005 0,103 −0,166 −0,176 1,000 −0,493 −0,207 0,003 −0,032 0,072 −0,026 0,031 −0,017 0,014 −0,009 0,007 −0,004 0,002 −0,003

CABLE 7 −0,023 0,032 0,007 0,024 −0,298 −0,569 1,000 −0,092 −0,286 0,105 −0,027 0,046 −0,028 0,018 −0,020 0,010 −0,008 0,006 −0,002 0,004

CABLE 8 0,021 −0,011 0,046 −0,026 0,108 −0,238 −0,092 1,000 −0,509 −0,259 −0,009 −0,036 0,087 −0,028 0,036 −0,020 0,013 −0,010 0,003 −0,006

CABLE 9 −0,021 0,008 −0,021 0,069 −0,012 0,004 −0,301 −0,538 1,000 −0,054 −0,287 0,109 −0,038 0,049 −0,032 0,019 −0,017 0,010 −0,004 0,007

CABLE 10 0,013 −0,007 0,018 −0,027 0,048 −0,040 0,111 −0,274 −0,054 1,000 −0,518 −0,288 −0,010 −0,029 0,088 −0,025 0,028 −0,020 0,005 −0,011

CABLE 11 −0,011 0,005 −0,020 0,028 −0,025 0,088 −0,029 −0,010 −0,288 −0,518 1,000 −0,054 −0,274 0,111 −0,040 0,048 −0,027 0,018 −0,007 0,013

CABLE 12 0,007 −0,004 0,010 −0,017 0,019 −0,032 0,049 −0,038 0,109 −0,287 −0,054 1,000 −0,538 −0,301 0,004 −0,012 0,069 −0,021 0,008 −0,021

CABLE 13 −0,006 0,003 −0,010 0,013 −0,020 0,036 −0,028 0,087 −0,036 −0,009 −0,259 −0,509 1,000 −0,092 −0,238 0,108 −0,026 0,046 −0,011 0,021

CABLE 14 0,004 −0,002 0,006 −0,008 0,010 −0,020 0,018 −0,028 0,046 −0,027 0,105 −0,286 −0,092 1,000 −0,569 −0,298 0,024 0,007 0,032 −0,023

CABLE 15 −0,003 0,002 −0,004 0,006 −0,009 0,014 −0,017 0,031 −0,026 0,072 −0,032 0,003 −0,207 −0,493 1,000 −0,175 −0,166 0,103 0,005 0,046

CABLE 16 0,002 −0,001 0,003 −0,004 0,005 −0,009 0,009 −0,018 0,016 −0,022 0,042 −0,011 0,100 −0,274 −0,186 1,000 −0,601 −0,277 0,040 0,020

CABLE 17 −0,001 0,001 −0,002 0,002 −0,003 0,005 −0,005 0,009 −0,011 0,017 −0,017 0,044 −0,017 0,016 −0,127 −0,434 1,000 −0,305 −0,060 0,105

CABLE 18 0,001 −0,001 0,001 −0,002 0,002 −0,004 0,005 −0,008 0,008 −0,015 0,014 −0,016 0,038 0,006 0,098 −0,249 −0,379 1,000 −0,612 −0,228

CABLE 19 0,000 0,000 0,000 0,000 0,000 0,001 −0,001 0,001 −0,001 0,002 −0,003 0,003 −0,004 0,012 0,002 0,016 −0,035 −0,282 1,000 −0,469

CABLE 20 0,001 0,000 0,001 −0,001 0,001 −0,002 0,003 −0,004 0,005 −0,008 0,009 −0,014 0,015 −0,017 0,039 0,016 0,116 −0,201 −0,898 1,000
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FIGURE 4 | Diagrams of the axial forces acting in all the cables when a selected cable is subject to a unit pre-tension. (A) Effects of a unit pre-tension of cable # 1.
(B) Effects of a unit pre-tension of cable # 3. (C) Effects of a unit pre-tension of cable # 5. (D) Effects of a unit pre-tension of cable # 7. (E) Effects of a unit
pre-tension of cable # 9.

FIGURE 5 | Illustration of load case 1. (A) Load distribution. (B) Bending moment distribution over the deck and the arch in absence of cable pre-tension.

the final forces acting in such members will be equal to Nd. Due
to the above mentioned static determinacy of E2 (when the forces
acting in the stays are known), the action of the forces Nd ensures
that the BMD over the deck closely approximates the TBMD.

We determine the optimal pretension forces by solving a set
of n elementary elastic problems, each of which corresponds to
the application of a unit force in a single stay. Let us introduce
the n× n influence matrix A whose entry Aij is equal to the axial
force acting in the j-th cable of C0 when the i-th cable is subject to

a unit pretension force, and no external loads are applied to the
bridge. It is an easy task to verify that it results

ATx = Nd − N0 (1)

Equation (1) rules the cable pretension algorithm adopted in
the present study, which returns the desired optimal pretension
factors x̄. It is worth observing that the influence matrix A is an
intrinsic property of the bridge. As a consequence, the application
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of Eqn. (1) to different loading conditions is an easy task, once
the vectors N0 and Nd have been computed through an elastic
analysis of C0 and V0, respectively. The linear nature of Eqn.
(1), and the limited number of cables that characterize real-life
suspended bridges, allow us to conclude that, in most cases, it
possible to solve such an equation with running time less than 1 s.

We have already observed that the deck is a statically
determinate structure when the forces in the stays N are known.
One can therefore easily obtain the vector M collecting all the
deck bending moments at the cables’ hanging points through the
following linear equation

M = B N (2)

where B is a suitable n× n equilibrium matrix. Let us consider
now the following quadratic programming problem

min
NRn

NTBTB N, subject to N ≤ Ny (3)

where Ny denotes the vector of the yielding forces of the stays.
Such a problem searches for the cable forces that minimize the
sum of squares of the deck bending moments M. Its solution
requires the adoption of iterative solution procedures (refer,
e.g., to Gill et al., 1981). Assuming that it results Nd ≤ Ny, the
vector Nd lead us to an approximate solution of problem (3).
The accuracy of the approximation scheme based on setting
N = Nd is highlighted by the numerical results presented in
Section “Numerical Results.” Such results indeed show that the
pretension forces obtained through the linear system (1) induce a

significant reduction of the bending moments acting on the deck,
as compared to the BMD in absence of cable pre-tension. We let
Cd denote the configuration of the bridge that features N = N d .

FINITE ELEMENT MODEL

This section presents the numerical implementation of the
analytical method given in Section “Computation of Cable
Pretension Forces” with reference to a case study of a Nielsen arch
bridge featuring a span of 140.8 m and an aerodynamic shape.
The deck is suspended to a steel arch by 20 cables, which form ten
V-shaped elements made of steel, as it is shown in Figure 1 (refer
to Table 1 for the main geometric parameters). The deck rests on
a two-cell box girder made of steel, which is locally reinforced to
avoid local instability, and has a total width of 8.0 m and height of
1.8 m. The deck houses a 7.5 m wide roadway, two side platforms
of 1.50 m each, and two pedestrian walkways of 1.70 m each
(Figure 3). The latter are made with a metal grating that rests
on cantilevered steel beams. The arch has a tubular section with
a diameter of 1.50 m and it is constrained by hinge connections
at its ends. Local stiffeners secure the cables (or tie rods) to the
arch during the construction phase. The deck can be described as
a beam on continuous supports with a pitch of 12.80 m, which is
the distance between two consecutive suspension cables.

The static indeterminacy of the overall bridge structure is
equal to the number of cables + 1 (i.e., 21). We refer the reader
to Falanga (2019) for an in-depth description of the bridge
model under examination. A two-dimensional finite element

FIGURE 6 | Bending moment distributions for load case 1. (A) BMD produced by the action of the optimal cable pre-tension forces alone. (B) TBMD produced by
the combined action of self-weight + optimal cable pre-tension forces.
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model featuring the properties described in Table 2 is employed
to predict the response of the bridge under assigned loading
conditions. It is worth observing that the adopted cross-section of
the arch carries a maximum bending moment of 3,16× 104 kNm
in the fully elastic regime; the cross-section of the deck carries
a maximum elastic bending moment of 2,25 × 105 kNm;
and the cables can carry a maximum elastic tensile force of
Ny =3,88 × 103 kN. The influence matrix associated with the
present bridge model is given in Table 3, and one observes that
such a matrix is dense. A graphical illustration of the effects
produced in all cables by the application of a unit pretension
of selected cables is given in Figure 4. The results presented in
Table 3 highlight that the influence matrix has leading diagonal
terms, which implies that problem (1) is well conditioned.

NUMERICAL RESULTS

The following sections illustrate a collection of numerical results,
which examine the effects of different loading conditions on
the bridge model described in the previous section. The first

example deals with a uniformly distributed load (UDL) that
corresponds to the self-weight of the structure (Section “Load
Case 1”), while the second and third examples analyze the action
of a partially distributed uniform load (PUDL) in proximity to
the middle span (Section “Load Case 2”), and over one half of
the span of the deck (Section “Load Case 3”), respectively. The
4th loading condition refers to a moving UDL superimposed
to permanent loads (Section “Load Case 4”). Such a condition
simulates the effects of traffic due to moving cars and lorries,
assuming that dynamic amplification effects can be ignored (refer,
e.g., to variable Load Model 1 of the European Standards EN
1991-2, 2003).

Load Case 1
The first example refers to the application of UDL with
a magnitude of 70 kN/m over the deck (see Figure 5).
The procedure described in Section “Computation of Cable
Pretension Forces” results in the cable pretension forces given
in Figure 6A, and the TBMD illustrated in Figure 6B. The
increases of the bending moments carried by the arch, which are
produced by the optimal pre-tensioning of the cables (compare

FIGURE 7 | Numerical results for load case 2. (A) Load case 2: action of a PUDL over three central segments of the deck. (B) BMD over the deck and the arch
under zero cable pre-tension forces. (C) TBMD produced by the optimal cable pre-tension forces.

Frontiers in Built Environment | www.frontiersin.org 7 July 2020 | Volume 6 | Article 114

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/
https://www.frontiersin.org/journals/built-environment#articles


fbuil-06-00114 July 16, 2020 Time: 11:6 # 8

Modano et al. Optimal Pretension Suspended Arch Bridges

Figure 6B with Figure 5B), can be safely supported by the cross-
section adopted for this member (cf. Table 2), since the maximum
bending moment that the arch can carry in the fully elastic phase
is equal to 3,16× 104 kN m (cf. Section “Finite Element Model”).
The maximum force in the stays Nd,max is equal to 1.14× 103 kN
(cable #6). Such a force is significantly lower than the yielding
force Ny =3,88× 103 kN (cf. Section “Finite Element Model”).

Load Case 2
Load case 2 is a PUDL of 70 kN/m applied to the three
central segments of the deck. The application of an optimization
procedure similar to that presented with reference to load case
1 leads to the results illustrated in Figure 7. One observes that
the BMD produced by the optimal pre-tension of the cables
(Figure 7C) features peak values whose intensity is reduced by
approximately 10 times, for both positive and negative values,
as compared to the BMD associated with zero pre-tension
forces (Figure 7B). Conversely, the bending moments in the
arch increase in magnitude under optimal pretension forces,
comparing with the case with zero pre-tensions. This is not a
concern for the current design strategy, since the final bending
moments in the arch are not dramatically high (peaks of the
order of 2500 kNm), and can be safely sustained by this member

in the elastic regime (maximum elastic bending moment equal
to 3,16 × 104 kNm, cf. Section “Finite Element Model”). In the
present case, we observe Nd,max = 1.31× 103 kN in cable #11.

Load Case 3
Load case 3 is a PUDL of 70 kN/m applied on one
half of the deck. The results of the optimization procedure
referred to such a loading condition is illustrated in Figure 8
(Nd,max =0.93 × 103 kN in cable #18). The TBMD produced
by the optimal pre-tensioning of the cables shows peaks at
the hanging points of the cables (Figure 8C), which are about
1/10 of the analogous peaks of the BMD corresponding to zero
pre-tension forces (Figure 8B). The bending moment carried
out by the arch increases moderately when pre-tension forces
are applied.

Load Case 4
Load case 4 simulates vertical loads caused by vehicular traffic
and lorries through a PUDL qa = 70 kN/m that moves from left
to right, and covers the entire span of the bridge. Such a load
is superimposed to a UDL qp = 80 kN/m corresponding to the
summation of all the permanent loads.

FIGURE 8 | Numerical results for load case 3. (A) Load case 3: action of a PUDL over one half of the deck. (B) BMD over the deck and the arch under zero cable
pre-tensioning. (C) TBMD produced by the optimal cable pre-tensioning.
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FIGURE 9 | Numerical results for load case 4. (A): current load distribution; (B): BMD over the deck and the arch under zero cable pre-tensioning; (C) TBMD
produced by the optimal cable pre-tension forces.

Figure 9 illustrates the TBMDs induced by the optimal
pretension forces that are associated with the three different
positions of the moving load. Labels 4.1, 4.2, and 4.3 indicate
loading scenarios which feature qa distributed over 1/3, 2/3
and the entire span of the bridge, respectively. The TBMD
bending moment peaks reduce by approximately 1/10 with
respect to the case where no cable pretension is applied
(BMD). One again observes that the peaks of the TBMDs
exhibit the peaks of the bending moments that are reduced
by ≈1/10 with respect to those of the BMD without cable
pretensioning, for each examined loading scheme. Table 4
reports the optimal pretension factors corresponding to the
TBMDs in Figure 9. We observe values of Nd,max equal to
1.67 × 103 kN (cable #1), 1.98 × 103 kN (cable #13) and

1.86 × 103 kN (cable #18) in the load conditions 4.1, 4.2, and
4.3, respectively.

The results in Figure 9 suggest that Eqn. (1) can be usefully
employed within a closed loop active control system of the bridge
under examination. Let us assume that the road pavement has
been equipped with a WIM technology that allows the vehicles to
be continuously weighed during traffic flow (refer, e.g., to Jacob
and Feypell-de La Beaumelle, 2010 for an overview of available
WIM technologies). In addition, let us suppose that all the stays
have been equipped with hydraulic actuators, so as to behave
as active tendons (Preumont, 2011; Coelho et al., 2015). One
could design an active control system that operates according
to the following methodology: (i) WIM sensors measure the
variations of the moving loads on selected sections of the bridge
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TABLE 4 | Optimal pretension factors corresponding to the TBMDs in Figure 9.

4.1 4.2 4.3

x̄1 16,42 9,47 −4,77

x̄2 10,98 7,13 −1,38

x̄3 15,56 12,46 1,42

x̄4 10,85 9,84 3,28

x̄5 13,69 14,10 5,92

x̄6 9,52 11,27 6,78

x̄7 10,38 13,84 8,18

x̄8 6,88 11,09 8,59

x̄9 7,18 12,59 9,30

x̄10 3,97 9,61 9,39

x̄11 4,44 10,09 9,42

x̄12 1,36 6,78 9,31

x̄13 1,80 6,01 8,61

x̄14 −1,56 1,91 8,20

x̄15 −1,10 0,65 6,79

x̄16 −5,21 −4,80 5,94

x̄17 −4,91 −5,92 3,29

x̄18 −10,32 −13,41 1,44

x̄19 −9,19 −13,03 −1,36

x̄20 −16,61 −23,56 −4,75

and send the data to a controller; (ii) the controller solves Eqn.
(1), determining the optimal pretension forces to be applied to
the stays, and sends this information to the hydraulics actuators
mounted on the stays; (iii) the actuators apply the optimal
pretension forces to all the stays, determining the achievement
of the TBMD over the deck. Additional mechanical and optical
sensors measuring the forces in the stays and the deflections
of the deck should also be integrated to ensure the system
operates within required limit states. Assuming that dynamic
effects as well as errors between the model and the real physical
structure are compensated by other means, the proposed control
strategy could be employed to mitigate the effect of loading
on arch bridges with suspended deck. Time delay due to data
transmission from the WIM sensors to the controller and from
the controller to the actuators could be reduced by predicting the
load distribution from previous measurements through vehicle
speed estimation methods (Lu et al., 2020).

CONCLUSION

This paper has developed a linear elastic analysis for suspended
deck arch bridges, which generalizes the studies presented
in Fabbrocino et al. (2017) and Mascolo and Modano
(2020) for beam bridges. By employing an engineering
approximation to the mathematical optimization problem
of the cable-pretension forces, an IMM has been formulated
to determine a TBMD along the deck, which mimics a
continuous-beam-type of response. Since the IMM is a linear
system of equations with a reduced number of unknowns
with respect to the full optimization problem, it could be
suitable to be employed as part of a strategy for real-time

control. Assuming a linear behavior, the coefficient matrix
of such a system is an intrinsic property of the bridge, and
therefore it does not need to be modified when dealing with
moving loads.

The results given in Section “Numerical Results” allow us
to conclude that the cable pre-tensioning procedure presented
in this study can be usefully employed within active control
systems of cable-stayed bridges subject to moving vertical loads,
when dynamic amplification effects can be neglected. It is aimed
at controlling the response of the structure under ordinary
service conditions, leading to the following key results: (a)
to effectively “correct” the configuration of the bridge after
completion of the construction process (Van Bogaert and De
Backer, 2019); (b) to increase the load-bearing capacity when
significant variations in mobile loads are to be expected, new
vehicles are put into circulation or new technical regulations
are enforced; (c) to strengthen new and existing structures
by suitably reducing the peaks of the BMDs through an
optimized cable pre-tensioning. We address such applications
of the current research to future work, through analytical
and experimental studies (Reksowardojo et al., 2018, 2019;
Senatore et al., 2018a,b, 2019). Additional future research
lines may include an iterative, incremental formulation of the
optimization procedure presented in Section “Computation of
Cable Pretension Forces,” to be aimed at handling dynamic
effects (such as wind- or accidental-load-induced vibrations);
time-dependent phenomena (viscous response of the materials
of the arch and the deck, relaxation of the pre-stress of the
tendons, etc.); and/or geometric non-linearities. Finally, we plan
to compare different engineering strategies for the choice of
the TBMD in future studies dealing with different typologies of
suspended beam and arch bridges.
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