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1 Institute of Structural Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH, Zurich, Switzerland,
2Department of Mechanical Engineering, University of Sheffield, Sheffield, United Kingdom

Hybrid simulation is an efficient method to obtain the response of an emulated

system subjected to dynamic excitation by combining loading-rate-sensitive numerical

and physical substructures. In such simulations, the interfaces between physical

and numerical substructures are usually implemented using transfer systems, i.e.,

an arrangement of actuators. To guarantee high fidelity of the simulation outcome,

conducting hybrid simulation in hard real-time is required. Albeit attractive, real-time

hybrid simulation comes with numerous challenges, such as the inherent dynamics of

the transfer system used, along with communication interrupts between numerical and

physical substructures, that introduce time delays to the overall hybrid model altering

the dynamic response of the system under consideration. Hence, implementation of

adequate control techniques to compensate for such delays is necessary. In this study,

a novel control strategy is proposed for time delay compensation of actuator dynamics

in hard real-time hybrid simulation applications. The method is based on designing a

transfer system controller consisting of a robust model predictive controller along with a

polynomial extrapolation algorithm and a Kalman filter. This paper presents a proposed

tracking controller first, followed by two virtual real-time hybrid simulation parametric case

studies, which serve to validate the performance and robustness of the novel control

strategy. Real-time hybrid simulation using the proposed control scheme is demonstrated

to be effective for structural performance assessment.

Keywords: real-time hybrid simulation, model predictive control, actuator dynamics, dynamic response,

polynomial extrapolation, Kalman filter, uncertainty propagation

1. INTRODUCTION

Hybrid simulation (HS), also known as hardware-in-the-loop (HIL), online computer-controlled
testing technique or model-based simulation, is a dynamic response simulation method. It
is based on a step-by-step numerical solution of the governing equations of motions for
a model that consolidates both numerical and physical substructures (Schellenberg et al.,
2009). It is an efficient technique, since it merges the advantages of numerical simulations
with the verisimilitude of experimental testing to form a high-fidelity tool for studying the
dynamic response of systems whose size and complexity exceed the capacity of typical testing
laboratories. Furthermore, substructures that are complex to model numerically can be tested
physically, allowing for real measurements of the output quantities of interest (QoI). Moreover,
substructures whose dynamic response is sensitive to the rate of loading can be tested in real-time,
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in the so-called real-time hybrid simulation (RTHS). In this way,
many assumptions and model distortions made in the process of
modeling complicated systems are avoided, increasing the fidelity
of and trust in simulation outcomes.

In every HS time step, the numerical substructure generates
a command that needs to be followed by the physical
substructure to maintain continuity of forces and displacements
at the interface. In control engineering, this is known as
reference tracking, since the output of the system under control
(control plant hereafter) should follow the reference signal (the
command). In HS the commanded signal is then transferred
to the physical substructure through a transfer system. In most
cases, this is an arrangement of linear hydraulic or linear
electric actuators. During the test, the dynamic response of the
physical substructure is measured and fed back to the numerical
substructure, completing the unknown terms of the governing
equations of motion of the hybrid model needed to compute the
following command for the next time step of the simulation. This
feedback loop continues until the end of the HS process. If the
command signal is displacement or force, then HS is conducted
under displacement or force control, respectively. In structural
RTHS applications, displacement and/or force command signals
are usually used. However, velocity or acceleration control can
also be employed, depending on the application needs.

HS is often conducted on a distorted time scale, with the rate
of physical substructure testing slowed down to accommodate
the power of the transfer system. Such HSs are the so-called
pseudodynamic test (Thewalt and Mahin, 1987). Real-time
hybrid simulation (RTHS) is an extension of HS, in which
the dynamic boundary conditions at the interfaces between
numerical and physical substructures are being synchronized
in real-time (Nakashima et al., 1992). Albeit attractive, RTHS
comes with numerous challenges. The inherent dynamics of
the transfer system used, along with interruptions to the
communication between numerical and physical substructures,
introduce time delays into the hybridmodel, altering the dynamic
response of the tested system (Gao and You, 2019). As a result,
implementation of adequate control techniques to compensate
for such time delays is necessary.

Recently, several control approaches have been proposed
to compensate for time delays in RTHS. A selection of
these approaches is highlighted below. Horiuchi developed
a compensation technique using a polynomial extrapolation
methodology to overcome time delays (Horiuchi, 1996), which
was later modified into an adaptive scheme (Wallace M. et al.,
2005; Wallace M. I. et al., 2005). Phase-lead compensators were
also proposed by several authors. These work by compensating
for the phase shift of the transfer system (Zhao et al., 2003;
Gawthrop et al., 2007; Jung et al., 2007). Another popular
compensation method was inverse compensation, in which an
inverse model of the transfer function is used as a feedforward
compensator—see, for example, Chen and Ricles (2009) and
references therein. Following the initial work ofWagg and Stoten
(2001) and Neild et al. (2005), adaptive compensation strategies
were employed to improve the robustness of RTHS by online
estimation of controller parameters (Chae et al., 2013; Chen et al.,
2015). Many authors adapted general control methods to RTHS.

For example, Carrion and Spencer developed a method using
model-based and LQG algorithms (Carrion and Spencer, 2007).
Phillips and Spencer further enhanced this method by adding
feedforward and feedback terms, accounting for multi-actuator
schemes as well (Phillips and Spencer, 2013a,b).H∞ loop shaping
controller designs were also proposed as an additional technique
to improve the performance and robustness of RTHS under the
presence of uncertainties in the experimental procedure (Gao
et al., 2013; Ou et al., 2015; Ning et al., 2019). Lately, a self-
tuning nonlinear controller based on a combined robust-adaptive
scheme was proposed, aiming at capturing nonlinearities of
the dynamic interaction between transfer systems and physical
substructures (Maghareh et al., 2020). Recently, Condori et al.
(2020) proposed a robust control approach with a nonlinear
Bayesian estimator to address uncertain nonlinear systems.

In this study, a novel control method is proposed, in which
the tracking controller consists of a robust model predictive
controller (MPC) along with a polynomial extrapolation
algorithm and a Kalman filter. One important advantage of MPC
is its capability to adapt the control law online, compensating
for time delays and uncertainties for a set of specific simulation
time steps. This is of significant importance for RTHS, since
experimental errors and actuator dynamics introduce arbitrarily
delays in the system, which need to be compensated for
online. Another significant advantage of MPC is the fact that
it can perform online optimization, handling at the same time
constraints of the system under consideration. Following the
design formulation of the proposed tracking controller, two
virtual RTHS (vRTHS) parametric case studies are examined
in order to validate the performance and robustness of the
proposed control scheme. Variations in the parameters of the
hybridmodel will prove the robustness of the proposed controller
to uncertainties introduced throughout the RTHS procedure.
RTHS using the proposed control scheme is demonstrated to be
effective for structural seismic performance assessment.

2. THE TRACKING CONTROLLER

In this section, the architecture of the proposed tracking
controller is explained. The controller consists of a robust MPC
along with a polynomial extrapolation algorithm and a Kalman
filter. In Figure 1, the tracking controller’s block diagram is
shown. In the following sections, the main parts of the controller
are described in detail. The control plant corresponds to the
system under consideration, namely the actuator in series with
the physical substructure used within the RTHS framework. The
subsequent vRTHS case studies will give more insight into the
control plant dynamics and architecture.

2.1. Model Predictive Control
Model Predictive Control (MPC) is a control strategy in which
the ongoing control law is adapted by computing, at every
control interval, a finite horizon optimization problem, applying
the ongoing state of the control plant as the initial state. The
optimization generates an optimal control sequence consisting
of a series of individual control laws, out of which the first
one is applied to the control plant for the current control
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FIGURE 1 | Architecture of the proposed tracking controller.

interval (Mayne et al., 2000). The control interval is defined as
a sampling instant or, in other words, as a set of continuous time
steps of the simulation, serving as an internal time step for the
MPC in to order to gather sufficient feedback measurements to
accurately predict future control plant outputs and to advance the
optimization to the next control sequence. In MPC, a standard
finite horizon optimal control problem is being solved similar to
H∞ and LQR control approaches. In H∞ and LQR control, the
optimal problem could be of infinite horizon as well, while that’s
not the case for MPC. What differs, nonetheless, is the fact that
in MPC new control laws are computed in each control interval,
whilst in classical control theory a single control law, which is
computed offline prior to the simulation, is used for the whole
duration of the simulation. This is the fundamental difference
between MPC and classical control theory. Online control law
derivation is also a feature of adaptive control theory. However,
in the latter, conducting system identification needed for the
adaptive controller can cause numerical delays, whilst in MPC
the model used in the controller remains the same and therefore
no identification is needed. Changing online the parameters of
the model used in MPC would result in the so-called adaptive
MPC, but this is not part of this study.

Every application imposes mandatory (hard) constraints. For
example: (i) actuators are of limited stroke/capacity meaning
that the produced displacement/force is limited; and/or (ii)
safety limits are applied in almost every experimental setup.
The problem of meeting hard constraints in control applications
is well established in the literature. MPC has proven to be
one of the few adequate control methodologies to suitably
satisfy constraints on the inputs, states and/or outputs of
the system under consideration, maintaining concurrently the
desired performance (Zafiriou, 1990).

The proposed tracking MPC controller consists of four
elements; (a) the prediction model, (b) the performance index or
cost function, (c) the constraints, and (d) a solver to derive the
control laws. The prediction model serves as the core of MPC
since it is responsible for the future predictions of the control
plant outputs, taking into account the past and present values of
the computed optimal control laws. The prediction model should

be as accurate as possible in order to be able to sufficiently capture
the control plant dynamics and its behavior. Therefore, a detailed
prediction model could improve MPC performance. However,
there is a trade-off between the complexity of the prediction
model and the computational power needed to compute it at
every control interval. Care must be taken in order not to
introduce delays due to numerical calculations, especially in
real-time applications, as RTHS, in which timing is crucial.

The MPC methodology used in this study is described below
and illustrated in Figure 2B. In Figure 2A, the structure of the
MPC controller is shown. At each control interval k, MPC
optimizes the control plant outputs yj. Namely, the future outputs
ŷ(k + i|k), for k = 0, . . . , P of a predefined prediction horizon
P are predicted at each control interval k using the prediction
model. The i-th prediction horizon step is a time instant of the
current control interval k. The latter depends on the known
values up to this k and on the future control laws u(k + i|k), for
k = 0, . . . , P − 1. The control sequence zT

k
= [u(k|k)T . . . u(k +

i|k)T . . . u(k + P − 1|k)T] consists of a sequence of control laws
u(k+ i|k). It is calculated by optimizing a quadratic cost function
at each k. The cost function embodies the tracking error, i.e., the
error between the reference trajectory and the predicted output
values of the control plant, and is expressed as follows:

J∗(r̂k, ŷk, zk) =

ny
∑

j=1

P
∑

i=1

{

wyj [r̂j(k+ i|k)− ŷj(k+ i|k)]
}2
+ (1)

nu
∑

j=1

P−1
∑

i=0

{

wuj [uj(k+ i|k)− uj(k+ i− 1|k)]
}2

where ny correspond to the number of control plant outputs, nu
the number of control plant inputs, r̂j(k+ i|k) the reference value
to be tracked at the i-th prediction horizon step from the j-th
control plant output, ŷj(k + i|k) the predicted value of the j-th
control plant output at the i-th prediction horizon step, uj(k+i|k)
the j-th control plant input at the i-th prediction horizon step,
wyj the tuning weight of the j-th control plant output and wuj the
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FIGURE 2 | (A) MPC structure of the tracking controller, (B) MPC methodology.

tuning weight of the j-th control plant input. (i|k) represents the
current step i of the prediction horizon P at the control interval k.

Additionally, in the proposed tracking controller an output
disturbance model w is used as described in Equation (2). The
input of the model uw, is assumed to be white noise and the
disturbance w is additive to the control plant outputs. The
disturbance model is used to include potential unmeasured noise
that could occur during RTHS, e.g., experimental measurement
errors. In the proposed design, the disturbance model follows:

xw(k+ 1) = Awxw(k)+ Bwuw(k) (2)

w(k) = Cwxw(k)+ Dwuw(k)

where Aw, Bw, Cw, and Dw are matrices associated with the
disturbance w.

The k, P,wyj , andwuj parameters from Equation (1) remain
constant for the entire RTHS. MPC constantly receives reference
trajectories, r̂j(k + i|k), for the whole prediction horizon P,
which in RTHS corresponds to the outputs of the numerical
substructure and uses the prediction model along with the
Kalman filter (see section 2.2) to predict the control plant
outputs, ŷj(k+ i|k), which depend on the control sequence zk, the
disturbance w(k) and the Kalman filter’s estimates. The control
sequence zk is computed in the optimizer (see Figure 2A), which
takes into account the cost function (and in essence the tracking
error, as it’s embedded in the cost) and the constraints. The
quadratic cost function of Equation (1) can be transformed into
a Quadratic Programming (QP) problem (Delbos and Gilbert,
2003; Tøndel et al., 2003) and this is what is essentially being
solved in the optimizer. The QP problem is formulated as follows:

min
x

(
1

2
xTHx+ f Tx) (3)

subject to Ax ≤ b (4)

where the Ax ≤ b inequality corresponds to the constraints
applied, x is the solution vector, H the Hessian matrix, A is a
matrix of linear constraints coefficients, b is a vector relevant with
the constraints, and f is a vector obtained by:

f = KxTxkf (k|k)+Kr(k|k)Tr(k|k)+Ku(k|k− 1)Tu(k|k− 1) (5)

where xT
kf

=
[

xTp xTw

]

is the vector corresponding to the states

of the Kalman filter (see section 2.2) and consists of the control
plant states xp and of the disturbance w states xw, r(k|k) is the
reference signal at the current control interval, u(k|k − 1) is the
control law applied to the control plant in the previous control
interval and K a weighting factor.

In the proposed tracking controller, an active-set solver
applying the KWIK algorithm (Schmid and Biegler, 1994) is used
for solving the QP problem. This is a built-in QP solver from
the Model Predictive Toolbox of MATLAB, used in this study to
derive the control law sequence.

The MPC algorithm used in the proposed tracking controller
can be summarized as follows:

1. Assuming the output disturbance model from Equation
(2), consider a discrete-time multiple-input-multiple-output
(MIMO), linear time invariant (LTI) system, representing a
linearized model of the control plant:

xp(k+ 1) = Apxp(k)+ Bpu(k) (6)

y(k) = Cpxp(k)+ Dpu(k)+ Dpww(k)

where Ap, Bp, Cp, Dp, and Dpw are matrices corresponding to
the control plant. This is the prediction model used along with
estimates from the Kalman filter (see section 2.2) to provide
MPC with predictions of future control plant outputs.
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2. MPC performs the optimization at every control interval k =

0, 1, . . .:

min
zk

J∗(r̂k, ŷk, zk) (7)

subject to ujmin ≤ uj ≤ ujmax and (8)

u̇jmin ≤ u̇j ≤ u̇jmax (9)

where the above constraints correspond to the physical
limitations of the actuator regarding displacement and
velocity capacity and J∗(r̂k, ŷk, zk) to the cost of Equation
(1). The above limitations/capacities of the actuator are
implemented as internal hard constraints of MPC. As a result,
MPC guarantees, for the case studies addressed in section 3,
that the performance of the controller is not affected by how
close the actuator is to its limits.

3. The control sequence zT
k
= [u(k|k)T . . . u(k + i|k)T . . . u(k +

P − 1|k)T] is obtained for every control interval k:

zk : = argmin J∗(r̂k, ŷk, zk) (10)

from the QP solver and it’s applied to the control plant.
4. Steps 1–3 are repeated until the end of the RTHS.

In RTHS, the uncertainties and experimental errors are neither
constant nor predictable. MPC enables computing a new control
law for every control interval within the simulation time, making
it possible to compensate specifically for the incurred time delays,
uncertainties and/or experimental errors that are introduced
in RTHS at each specific control interval. In contrast, classical
control techniques utilize a single pre-computed control law
that is robust enough to compensate for all the delays coming
into play in the entire simulation process. In addition, RTHS
always involves experimental equipment, which has physical
boundaries, e.g., limited actuator force capacity. Hence, the
command signals must be limited to satisfy these boundaries.
MPC can solve optimization problems and concurrently satisfy
hard constraints, which in the RTHS case, can be laboratory
limitations. The aforementioned points make MPC desirable and
suitable for RTHS applications. In the case studies presented in
the following sections, the selection of the control interval k,
the prediction horizon P, and the weights wyj and wuj is made
through trial and error as there exists a trade-off between optimal
controller performance and computational effort. Selection of the
above MPC parameters is case study dependent. However, for
control interval k and prediction horizon P, the following rules
may be applied as a first trial (Bemporad et al., 2020):

• obtain each k at a sampling rate Ts, between 10 and 25% of
the minimum desired closed-loop response time. A radical
decrease of Ts will result in computational effort increase. Ts

cannot be smaller than the sampling rate of RTHS.
• set P such that the desired closed-loop response time

T, is approximately equal to PTs, and the controller is
internally stable.

• further optimization of the controller should be done through
tuning of the weight coefficients w, but not through tuning
of P.

MPC theory is quite extensive, covering various subjects (e.g.,
convex optimization, optimal control theory, computational
solvers) that are taken into account during the design and
implementation process of MPC and are not described in full
detail in this paper. For a more comprehensive literature inMPC,
the reader is encouraged to consult (Bitsoris, 1988; Rossiter, 2003;
Boyd and Vandenberghe, 2004; Camacho and Bordons, 2007;
Rawlings et al., 2017).

2.2. Kalman Filter
Asmentioned above, good accuracy of the predicted control plant
outputs is significant as it affects the performance of MPC. In
order to improve the predictions’ accuracy, a Kalman filter is
implemented to estimate the future control plant output values.
The purpose of the Kalman filter is to estimate how the current
control law will alter the future control plant outputs and use
these estimations to optimize the control sequence. The Kalman
filter state-space formulation used in MPC follows:

xkf (k+ 1) = Akf xkf (k)+ Bkf ukf (k) (11)

ŷ(k) = Ckf xkf (k)+ Dkf ukf (k)

where

Akf =

[

Ap 0
0 Aw

]

, Bkf =

[

Bp 0
0 Bw

]

(12)

Ckf =
[

Cp Cw

]

, Dkf =
[

0 Dw

]

and

uTkf =
[

zT
k
uw(k)

T
]

The weighting coefficients for the Kalman filter are derived from
the following expectations:

Q = E
[

Bkf ukf u
T
kfB

T
kf

]

, R = E
[

Dkf ukf u
T
kfD

T
kf

]

,

N = E
[

Bkf ukf u
T
kfD

T
kf

]

(13)

In Figure 1 is illustrated how the Kalman filter is integrated
within the proposed tracking controller. More specifically, in the
beginning of each control interval k, the state of the Kalman filter,

xT
kf

=
[

xTp xTw

]

, is estimated for the next interval as follows:

• xkf (k|k) is updated based on the latest measurements:

xkf (k|k) = xkf (k|k− 1)+M
[

y(k)− Ckf xkf (k|k− 1)
]

(14)

• The state for the next, k+ 1, control interval is estimated as:

xkf (k+ 1|k) = Akf xkf (k|k− 1)+ Bpu(k)

+L
[

y(k)− Ckf xkf (k|k− 1)
]

(15)

where L,M are the Kalman filter gain matrices and u(k) the
optimal control law assumed to be used from the control
interval (k − 1) until k. y(k) is the measured control plant
output at the control interval k.
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Once the state for the k+ 1 interval is estimated, the values of the
control plant output at this interval can be predicted as follows:

• For any successive step, i = 1 : P, within the ongoing control
interval k, the next state is estimated as:

xkf (k+ i|k) = Akf xkf (k+ i− 1|k)+ Bpu(k+ i− 1|k) (16)

• Hence, the predicted control plant output value is
calculated as:

ŷ(k+ i|k) = Ckf xkf (k+ i|k), for i = 1, . . . , P (17)

where i corresponds to the prediction horizon step.

2.3. Polynomial Extrapolation
MPC can guarantee adequate tracking performance and
robustness under uncertainties and disturbances. However, since
in RTHS even small tracking errors can significantly alter the
simulation outcome, a fourth-order polynomial extrapolation
(Horiuchi, 1996; Wallace M. et al., 2005; Wallace M. I. et al.,
2005; Ning et al., 2019) is integrated in the tracking controller
as illustrated in Figure 1, in order to further compensate for
time delays and additionally improve the MPC performance. It’s
formulation follows:

r̂k = a0r(0,k) − a1r(1,k) + a2r(2,k) − a3r(3,k) + a4r(4,k) (18)

where r(i,k) = r(tk − iTd) is the discrete reference signal by
adding shifts of a pure time delay Td by integer values of i. The
polynomial coefficients a0 - a4 are obtained using the Lagrange
basis function by trial and error.

3. CASE STUDIES

The following two virtual RTHS parametric case studies (CS)
serve as validation for the performance and robustness of
the proposed tracking controller. The case studies are virtual
in that both the physical substructures of the hybrid models
are implemented numerically in software, not physically as
specimens in a laboratory. This was done to facilitate the
development and testing of the proposed MPC. For each case
study, the dynamics of the tested system are explained, then the
tracking controller design properties are addressed and finally,
results are presented. Since the goal of each case study is to
examine the behavior of the tracking controller, the outputs
of the hybrid models are exclusively related to the controller’s
performance. The outputs will be:

1. Tracking time-delay, defined as:

J1 =

(

argmax
k

(

Corr(r(i), y(i− k))
)

)

fRTHS [msec] (19)

where fRTHS is the sampling frequency of RTHS.

2. Normalized Root Mean Square (NRMS) of the tracking error,
defined as:

J2 =

√

√

√

√

√

√

∑N
i=1

[

y(i)− r(i)
]2

∑N
i=1

[

r(i)
]2

× 100 [%] (20)

3. Peak Tracking Error (PTE), defined as:

J3 =
max |y(i)− r(i)|

max |r(i)|
× 100 [%] (21)

J1 is established as the maximum cross-correlation between the
reference and the measured signal, multiplied by the sampling
frequency of RTHS. It is a metric of how different in time these
two signals are. The cross-correlation describes how many time
steps the measured signal should be shifted in order to match
the reference. When J1 > 0 the measured signal is delayed with
respect to the reference (tracking delay), whilst when J1 < 0,
the measured signal is leading the reference (overcompensation).
The desire is to have zero time tracking delay, meaning the value
of J1 to be as close to zero as possible, without overcompensating.
J2 represents how quantitatively different the reference and
measured signals are accounting for the whole simulation period,
whilst J3 accounts only for the maximum value of the tracking
error. The performance of the tracking controller is assessed by
how close to zero J1, J2, and J3 are (Silva et al., 2020).

3.1. CS1: vRTHS of a Structure With an
Attached Pendulum
3.1.1. Problem Formulation
The reference system under consideration for CS1 corresponds
to a vertical cantilever beam with mass concentrated at its top,
and a pendulum attached to the center of gravity of the cantilever
mass, as shown in Figure 3A. The numerical substructure is the
cantilever beam (Figure 3B), described by Equation (22), while
the virtual physical substructure is the pendulum (Figure 3C).

The Equation of Motion (EoM) for the reference
structure follows:

MN ẍ+ CN ẋ+ KNx = −MN ẍg + f P (22)

where ẍ, ẋ, and x correspond to acceleration, velocity and
displacement of the numerical substructure relative to the
ground, MN = 100 [Kg], CN = 100 [Nsm ], and KN = 10e4 [Nm ]
are mass, damping and stiffness of the numerical substructure
respectively, ẍg is the ground motion applied to the hybrid model
and f P the force measured from the virtual physical substructure.

The virtual physical substructure corresponds only to the
pendulum. However, to move the pendulum pivot point
horizontally in a lab, an actuator could be attached to a cart
mounted on a horizontal rail. Thus, the cart and the actuator
would be the transfer system. As a result, the cart dynamics and
its interaction with the pendulum are taking into account for
solving the equations for the virtual physical substructure. The
virtual physical substructure is described by the Equations (23)
and (24). Moreover, in order to reduce as much as possible the
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FIGURE 3 | Hybrid model of CS1: (A) Reference structure, (B) Numerical substructure, (C) Virtual physical substructure, (D) Control plant.

friction due to the cart movement µ, low friction linear bearings
are assumed to be implemented. The friction at the pendulum
pivot, b, is assumed to be small.

The EoM for the cart with the pendulum follows:

ẍ =
mL2θ̇2 sin(θ)+mLg sin(θ) cos(θ)+ θ̇b cos(θ)− µLẋ+ f PL

L(m sin2(θ)+M)
(23)

θ̈ =

−mL2θ̇2 sin(θ) cos(θ)− θ̇b(1+ M
m )

−gL(M +m) sin(θ)+ ẋLµ cos(θ)+ f PL cos(θ)

L2(m sin2(θ)+M)
(24)

where the parameters from Equations (23) and (24)
correspond to:

• Pendulum angle, angular velocity, angular acceleration →

θ , θ̇ , θ̈ , respectively
• Cart position, velocity, acceleration→ x, ẋ, ẍ, respectively
• Force generated from the pendulum→ f P

• Pendulum mass→ m = 0.15 [Kg]
• Cart mass→ M = 2[Kg]
• Rod length→ L = 0.7 [m]
• Cart friction coefficient→ µ = 0.001 [-]
• Pendulum friction coefficient→ b = 0.0001 [-]
• Acceleration of gravity→ g = 9.81[m

s2
].

Since this is a virtual simulation, an actuator model needs to
be implemented representing the dynamics of the real actuator.

For CS1, a linear hydraulic actuator was chosen. Its model
consists of three transfer functions; (i) Gsv represents the servo-
valve dynamics as in Equation (25), (ii) Ga the actual actuator
dynamics as in Equation (26), and (iii) GCSI the control-
structure-interaction (CSI) (Dyke et al., 1995) as in Equation
(27). The way these transfer functions are interconnected is
shown using a block diagram of the actuator model in Figure 4.
Taking the above into consideration, the control plant for CS1,
corresponds to the actuator model along with the cart and the
pendulum. A graphical representation of the control plant is
illustrated in Figure 3D and it’s block diagram in Figure 4. The
control plant is a single-input-multiple-output (SIMO) model
with input the displacement of the actuator z and four outputs;
x, ẋ, θ , and θ̇ . In the tracking controller, only the first output, the
cart position x is used, described by a single-input-single-output
(SISO) transfer system as in Equation (28).

Gsv =
2.128e13

s2 + 425s+ 99976
(25)

Ga =
1

s+ 3.3
(26)

GCSI = 7.26e5s (27)

Gcp =
0.5s2 + 0.0007823s+ 8.058

s4 + 0.001963s3 + 15.07s2 + 0.007s
(28)
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FIGURE 4 | Block diagram of the control plant in CS1.

The block diagram of the overall hybrid model is presented
in Figure 5A. It consists of the numerical and virtual physical
substructures, the proposed tracking controller and the control
plant. The RTHS is conducted in displacement control; in every
time step the measured displacement of the cart (same as the
horizontal displacement of the pendulum), x, is fed back in the
tracking controller, while the measured force generated from the
movement of the pendulum, f P is fed back to the numerical
substructure to compute the next displacement command r. The
coupling of the two substructures is achieved through force f P.
Furthermore, apart from the disturbance described in Equation
(2), in order to capture even more realistic results, additional
white noise v is added in the calculated displacement x and
force f P, representing measurement noise from the displacement
and force sensors, respectively. The displacement and force
sensor noise is modeled with two correlated standard Gaussian
distributions, generated at the same frequency as the sampling of
RTHS and amplified each by 1.5e-7 m and 6e-5 N, respectively,
which approximately equals to 0.01% of the respective full spans.
The sampling frequency of RTHS was set to fRTHS = 4, 096 Hz.
For the numerical integration scheme, the RK4 (fourth-order
Runge–Kutta) method is used with a fixed time step of 1/4, 096 s.
The reference ground motion of the hybrid model ẍg is a
historical acceleration record from the El Centro 1940 earthquake
downscaled by 0.4, as shown in Figure 6A. In Figure 6B, the
power spectral density of the respective record is illustrated.

3.1.2. Tracking Controller Design Properties
The prediction model used in MPC for CS1 is a linearized model
of the control plant. Since MPC functions in discrete time, the
linearized model of the control plant is discretized with the
sampling frequency of RTHS, fRTHS. Essentially it’s a discrete
LTI SISO model described using the state-space formulation
as follows:

x(k+ 1) = Apx(k)+ Bpu(k) (29)

y(k) = Cpx(k)+ Dpu(k)+ Dpww(k)

where Ap, Bp, Cp, Dp, and Dpw = 1 are the prediction model
matrices, equal to:

Ap =





















0.4762 -0.3993 -0.2475 -0.2307 -0.2279 -0.0009 -0.0143

0.7532 0.7912 -0.1315 -0.1222 -0.1272 -0.0005 -0.008

0.2103 0.4645 0.9775 -0.0209 -0.0223 0 -0.0014

0.0184 0.0603 0.2486 0.9987 -0.0014 0 0

0.0012 0.0051 0.0312 0.2499 1 0 0

0 0 0.0002 0.002 0.0156 1 0

0 0 0 0 0.0001 0.0156 1





















,

Bp =





















0.0118

0.0066

0.0012

0

0

0

0





















(30)

Cp =
[

0 0 0 0 19.86 0.002 1.25
]

,Dp =
[

0
]

The disturbance model used, expressed by Equation (2), is added
to the control plant output and its model follows:

xw(k+ 1) = xw(k)+ 0.0009766uw(k) (31)

w(k) = xw(k)

with Aw = 1, Bw = 0.0009766, Cw = 1, and Dw = 0.
The Kalman filter gain matrices follow:

L =
[

0.0096 -0.0062 -0.0269 0.0021 0.0148 0.0004 -0.0003 0.0008
]T

(32)

M =
[

0.0071 -0.0147 -0.0215 0.0082 0.0135 0.0002 -0.0003 0.0008
]T

Starting with Equations (30), (31), and (32) the derivation of the
Kalman filter formulation in Equation (11) is straightforward.
The MPC weight coefficients used in Equation (1) are selected
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FIGURE 5 | Block diagrams of hybrid models: (A) CS1, (B) CS2.

FIGURE 6 | Reference ground motion used in CS1 & CS2; El Centro 1940 earthquake North-South ground motion record, downscaled by 0.4: (A) Time-series and

(B) Power spectral density of the respective record.

to be wy = 15.26 and wu = 0.63. The number of
control plant outputs ny is 1 and the number of control plant
inputs nu, is also 1. The prediction horizon was set to P =

8 and each control interval k was obtained at a sampling
frequency of 1, 024Hz, one fourth of the RTHS sampling rate.
The constraints applied represent the physical limitations of
the actuator to provide bounded displacements and velocity.
It’s assumed that the virtual actuator has a maximum stroke
of ±250 [mm] and maximum velocity of ±100 [mm

sec ]. So the

constraints follow:

−250 ≤ẑ(k+ i|k) ≤ 250,
[

mm
]

for i = 1, . . . , P (33)

−100 ≤˙̂z(k+ i|k) ≤ 100,
[mm

sec

]

for i = 1, . . . , P

The polynomial extrapolation coefficients used in CS1 for the
proposed tracking controller follow:

r̂k = 5r(0,k) − 10r(1,k) + 10r(2,k) − 5r(3,k) + r(4,k) (34)
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TABLE 1 | CS1: Variation of the random parameters in the hybrid model.

Input variable Probability distribution Mean value (µ) Stand. dev. (σ ) Coeff. of variat. (CV) (%) Parameter description Units

M Lognormal 2 0.4 20 Cart mass Kg

m Lognormal 0.15 0.03 20 Pendulum mass Kg

L Lognormal 0.7 0.21 30 Rod length m

MN Lognormal 100 20 20 Cantilever beam

mass

Kg

CN Lognormal 100 30 30 Cantilever beam

damping

Ns/m

KN Lognormal 10e4 3e4 30 Cantilever beam

stiffness

N/m

3.1.3. CS1 Results
In order to test the robustness of the proposed tracking
controller, six dominant parameters of the hybrid model were
chosen to vary. The first three parameters originate from the
control plant and correspond to its M,m, and L, while the
remaining three originate from the numerical substructure
and correspond to its MN , CN , and KN . These parameters are
treated as random with known probability distributions. Their
distribution characteristics are described in Table 1.

Using the Latin Hypercube Sampling (LHS)methodology, 200
samples were generated from all six parameters and 200 runs of
the vRTHS were conducted using combinations of all parameters
in each iteration. The tracking controller was kept the same for
each one of the 200 runs. The simulation of the 200 vRTHS
runs is referred as stochastic vRTHS hereafter. The resulting
J1, J2, and J3 outputs of the nominal and the stochastic vRTHS are
shown in Table 2 for both CS1 and CS2 for brevity. The nominal
values correspond to the parameters used in Equations (22), (23),
and (24). The normalized histograms of the J1, J2, and J3 out
of the 200 vRTHS are shown in Figure 7. The aforementioned
histograms are a more comprehensive, graphical representation
of the values presented in Table 2, illustrating the mean values as
well as the deviations from them. It is also a metric of robustness;
more robust tracking controllers would result in lower deviations
in the histograms.

Analysis of the results using uncertainty quantification
techniques indicated that 200 runs were sufficient to unveil how
the tracking controller performance is affected by parameter
variations. Specifically, surrogate models were developed to
replicate the response of the CS as the number of runs (in the
surrogate training data set) was increasing. With a training data
set of 200 samples, validation errors of the surrogate models were
<5%. No new runs were added to the data set as this error was
deemed to be sufficiently small.

To check if the proposed tracking controller remains stable as
the hybrid model parameters vary, vRTHS simulations using the
minimum and themaximum values of the random variables were
conducted first. No instabilities were observed. Furthermore,
none of the conducted 200 simulations was unstable. The same
holds for CS2.

The reference, command and measured signals of the hybrid
model in the nominal vRTHS are illustrated in Figure 8.
The reference signal corresponds to the displacement response
of the reference model (one with integrated physical and

TABLE 2 | Tracking controller performance and robustness results for CS1 and

CS2.

CS1 CS2

Nominal Stochastic Nominal Stochastic

Mean

values

Stand. dev. Mean

values

Stand. dev.

J1 [msec] 0.24 0.21 0.21 0 0 0

J2 [%] 1.88 2.04 0.67 1.89 2.95 0.65

J3 [%] 1.86 2.01 0.57 2.29 3.04 0.63

CS2 is addressed in the next section 3.2. CS2 results are presented here for brevity and

for simpler comparison with results from CS1.

numerical substructures). The command signal corresponds to
the displacement response r computed from the numerical
substructure at each given time step of vRTHS and is the one that
should be followed from the control plant. Finally, the measured
signal corresponds to the measured displacement response x of
the virtual physical substructure. An ideal tracking controller
should be able to compensate the hybrid model in such a way
that the command r and measured x to be identical. As it’s
shown from Figure 8, those two signals are, indeed, very close.
The comparison with the reference signal is provided in order
to validate the fidelity of the hybrid model with respect to the
reference structure.

In Figure 9, the performance index of the MPC versus time
for the nominal case is displayed. This graph illustrates how well
MPC managed to minimize the given objective cost function of
Equation (1) in every time step of the simulation. A zero value
would mean that the cost function was minimized as desired and
the “best” optimal control sequence was computed for the given
time step. From Figure 9, we can observe that the performance
index is almost zero during the entire vRTHS, while it is not zero
in the time steps in which the highest peaks of the reference signal
are attained. This is expected, as the peaks of the command signal
are approached, the controller is challenged more and more and
has to adapt.

Since the performance of the tracking controller is assessed
by how close to zero J1, J2, and J3 are, it’s clear from Table 2

and Figures 7–9 that the proposed tracking controller can
provide the desired performance under the presence of any
combination of all six random parameters of the hybrid model
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FIGURE 7 | Normalized histograms of J1, J2, and J3 for CS1 and CS2, obtained from 200 vRTHS runs.

chosen here, which also demonstrates its robustness. The effects
of these stochastic parameters could represent the effect of
potential uncertainties (aleatory and/or epistemic) that could be
introduced during RTHS. On top of that, it should be pointed
out that the controller maintains its performance even in the
presence of the additional noise v and disturbance w that were
added in the hybrid model.

3.2. CS2: vRTHS of a Magnetorheological
Damper Attached to a 3-Story Structure
3.2.1. Problem Formulation
The reference structure in CS2 corresponds to a 3-story structure
equipped with a magnetorheological damper (MRD), installed
between the ground and first floor (Dyke et al., 1998) as shown
in Figure 10A. The numerical substructure corresponds to the
3-story structure (Figure 10B), while the virtual physical to the
MRD (Figure 10C).

The EoM of the reference model reads:

MN ẍ+ CN ẋ+ KNx = −M3ẍg + Ŵf P (35)

where x = [x1, x2, x3]
T , ẋ = [ẋ1, ẋ2, ẋ3]

T , and ẍ =

[ẍ1, ẍ2, ẍ3]
T correspond to the displacement, velocity, and

acceleration relative to the ground, ẍg is the ground motion
and f P corresponds to the force generated from the MRD. The
MN ,CN ,KN matrices represent the mass, damping and stiffness
of the 3-story structure, respectively, as follows:

MN =





1, 000 0 0
0 1, 000 0
0 0 1, 000



 [Kg],

CN = 1e4 ∗





1.408 -0.787 0.044
-0.787 1.494 -0.635
0.044 -0.635 0.722



 [
Ns

m
],

(36)
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FIGURE 8 | Displacement responses of the reference model and of the numerical and physical vRTHS substructures in CS1.

FIGURE 9 | MPC optimization performance index for CS1 and CS2.
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FIGURE 10 | Hybrid model of CS2: (A) Reference structure, (B) Numerical substructure, (C) Virtual physical substructure.

KN = 1e7 ∗





2.605 -2.313 0.594
-2.313 3.256 -1.442
0.594 -1.442 0.927



 [
N

m
]

Vector 3 =
[

1 1 1
]T

is the ground motion influence vector,

while vector Ŵ =
[

1 0 0
]T

represents the effect of the MRD
on the structure. In RTHS, a state-space representation of the
Equation (35) is used, which follows:

ẋ = Ax+ Bu (37)

y = Cx+ Du

where x = [x1, x2, x3, ẋ1, ẋ2, ẋ3]
T , u = [ẍg , f

P]T , y =

[x1, x2, x3, ẋ1, ẋ2, ẋ3, ẍ1, ẍ2, ẍ3]
T , and

A =

[

0 I

−MN−1
KN −MN−1

CN

]

, B =

[

0 0

−3 −MN−1
Ŵ

]

(38)

C =





I 0

0 I

−MN−1
KN −MN−1

CN



 , D =





0 0

0 0

−3 −MN−1
Ŵ





The block diagram of the hybrid model of CS2 is shown in
Figure 5B. The reference signal r, in Figure 5B, corresponds to
the displacement of the first story x1. Respectively, ṙ = ẋ1. RTHS
is conducted in displacement control, as in CS1. The ground
motion applied to the hybrid model is the same as in CS1, a
historical acceleration record from the El Centro 1940 earthquake
downscaled by 0.4. As in CS1, apart from the additive disturbance
described in Equation (2), additional white noise v is added in the
calculated force from MRD f P, which represents measurement
noise from the load cell. The load cell measurement noise is
modeled with a standard Gaussian distribution, generated at the
same frequency as the sampling of RTHS and amplified by 0.15
N, which approximately equals to 0.01% of the load cell full span.
The sampling frequency of RTHS was set to fRTHS = 4, 096 Hz.

For the numerical integration scheme, the RK4 method is used
with a fixed time step of 1/4, 096 s.

To model the virtual physical substructure, the MRD in CS2,
the Viscous + Dahl model (Ikhouane and Dyke, 2007) was
employed. It’s dynamics are described as follows:

f P(t) =
[

kxa + kxbV(t)
]

ẋ(t)+
[

kwa + kwb
V(t)

]

W(t) (39)

Ẇ(t) = ρ
(

ẋ(t)− |ẋ|W(t)
)

W(0) =
f P(0)−

[

kxa + kxbV(0)
]

ẋ(0)

kwa + kwb
V(0)

where ẋ(t) denotes the MRD piston velocity, V(t) the
voltage input command, f P(t) the damping force, W the
damper’s nonlinear behavior, kxa and kxb the viscous friction
coefficient, kwa and kwb

the dry friction coefficient and t
refers to the simulation time. The parameter ρ is calculated
as in Tsouroukdissian et al. (2008) and selected to be
ρ = 4, 795 (m−1). The friction parameters are calculated
from linear regression as kxa = 978 (Nsm−1), kxb =

4, 075 (Nsm−1V−1), kwa = 160.11 (N), and kwb
=

500.78 (NV−1). The inputs of the MRD model are the
displacement x(t) and the voltage V(t), while the output
is the force f P. The latter is the variable that couples the
two substructures.

In a MRD, a relatively small electric current applied to the
MR valve can change the behavior from very high to very low
resistance to motion over a very short time period. In order
to ensure optimal response, a bang-bang voltage controller is
designed and implemented as illustrated in Figure 5B. More
specific, when sgn(r(t)) = sgn(ṙ(t)) then the controller
provides the MRD with the maximum input voltage, resulting
in maximum MRD force f P. Otherwise, the MRD force is
minimum. This bang-bang controller is part of the MRD and it’s
exclusively responsible for the internal behavior of the MRD.

In CS2, a different approach of the control plant is investigated
compared to CS1, since in this case the control plant corresponds
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TABLE 3 | CS2: Variation of the random parameters in the hybrid model.

Input variable Probability distribution Mean value (µ) Stand. dev. (σ ) Coeff. of variat. (CV) (%) Parameter description Units

Lb Lognormal 0.762 0.1524 20 Beam length m

Lc Lognormal 0.635 0.127 20 Column length m

MN Lognormal 1,000 200 20 Floor mass kg

Z Lognormal 0.05 0.01 20 Damping ratio –

Kxa Lognormal 978 195.6 20 Viscous friction

coef. of MR

Ns/m

Kwa Lognormal 160.11 32.022 20 Dry friction

coef. of MR

N

FIGURE 11 | MRD generated force in the reference model and in vRTHS in CS2.

only to the actuator model. In contrast with the control plant
represented the actuator model in series with the virtual physical
substructure in CS1. Results presented later on prove that the
compensation of time delays is sufficient and the performance
of RTHS is as desired, when this approach is followed. Moreover,
in this way, the dynamics of the control plant are much simpler.
Hence, the complexity of the tracking controller is reduced
significantly as well. This can be observed by comparing the
prediction models used in the two case studies (Equations
30, 40). Therefore, in CS2 the control plant is a SISO model
described by Equation (40) with input the desired displacement
of the actuator z and output x, the achieved displacement
of the actuator. So, in the J1, J2, and J3 criteria the measured
signal y(i) of Equations (19), (20), and (21) corresponds to
the actuator achieved displacement x. Furthermore, in order to
try the proposed tracking controller under different actuator
scenarios, the actuator model used in CS2 corresponds to an

electric actuator, represented by a second-order transfer function,
Gae, described by the dynamics of Equation (40).

Gae =
3060

s2 + 267s+ 3060
(40)

3.2.2. Tracking Controller Design Properties
As in CS1, the prediction model used inMPC is the control plant,
discretized by the sampling frequency of RTHS. The state-space
formulation of the discretized model follows (Equation 29) with:

Ap =

[

0.7693 -0.0411
0.055 1

]

,Bp =

[

0.0069
0.0002

]

,Cp =
[

0 5.98
]

,Dp = 0

(41)
The disturbance model is the same as in Equation (31). The
Kalman filter gain matrices in this case are:

L =
[

-0.001 0.723 0.974
]T

∗ 1e(−3) (42)
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FIGURE 12 | Displacement responses of the reference model, the numerical substructure, and control plant in CS2.

M =
[

0.037 0.721 0.974
]T

∗ 1e(−3)

In CS2, the MPC parameters are selected as follows:

• ny = 1 and nu = 1
• wy = 64.073 and wu = 0.002
• P = 10
• Each control interval k is obtained on a sampling frequency of

1, 024Hz
• The constraints remain the same with Equation (33).

The polynomial extrapolation coefficients are the same as in
Equation (34).

3.2.3. CS2 Results
As in CS1, in order to test the robustness of the tracking
controller, six dominant parameters are selected to be random
variables with known probability distributions. The first four
originate from the numerical substructure:

• Beam length→ Lb
• Column length→ Lc
• Floor mass→ MN

• Damping ratio→ Z.

The remaining two parameters correspond to the virtual
physical substructure and more specific to Kxa and Kwa .
These parameters are of particular importance for the MRD
model since they are responsible for its nonlinear behavior.
All six parameters along with their distribution characteristics
are displayed in Table 3. As in the previous case study,
200 samples are generated with the LHS method from

the six parameters, and 200 vRTHS runs are conducted
accounting for the variability of all parameters in each run.
Again the tracking controller was kept the same in all
vRTHSs. The nominal case for CS2 are the parameter values
from Equations (37) and (39). The arithmetic results for
J1, J2, and J3 can be found in Table 2. Their corresponding
normalized histograms for the stochastic vRTHS are illustrated
in Figure 7.

In Figure 11, the force generated by the MRD in the reference
model is compared against the one obtained from the vRTHS
framework. We can observe that the forces are almost identical.
This serves as a demonstration that, although the virtual physical
substructure was not included in the control plant, since the latter
consists only of the actuator model, its response is compensated
sufficiently from time delays and tracking errors. In Figure 12, a
comparison between three displacement responses is shown; the
displacement response of the reference model, the displacement
response of the first floor of the numerical substructure r (this is
the command signal to the control plant), and the displacement
response x, measured from the control plant [this should track
r]. The latter two signals prove that the performance of the
tracking controller is as desired, as Figure 12 serves as a graphical
illustration of the nominal results shown in Table 2. We can
observe that due to the proposed controller, x follows the
commanded r with minimum delay and tracking error. Finally,
in Figure 9, the performance index of MPC for CS2 is illustrated.

As in the previous case study, from the Table 2, Figures 7, 12,
it’s shown that the controller performance does not get affected by
the presence of the introduced random variables, and it provides
the requested performance in all considered cases.
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4. CONCLUSIONS

In this study, a novel control method to develop a time delay and
experimental error compensation strategy in RTHS is presented.
The proposed tracking controller aims to conduct RTHS in
hard-real time while compensating for potential time delays and
tracking errors, under the uncertainties that may arise during
RTHS. The tracking controller consists of a robust MPC along
with a polynomial extrapolation algorithm and a Kalman filter.
The fact that MPC can solve optimization problems online,
adapt the new control laws during RTHS using the same model
of the system, and simultaneously handle constraints for the
system under consideration, indicates that the proposed novel
control method is promising for RTHS applications. Polynomial
extrapolation was employed to further assist MPC performance,
as even small tracking errors can alter the hybridmodel’s dynamic
response. A Kalman filter was used so as to provide MPC with
future estimations of the system, in order to derive optimal
control laws.

In this paper, the proposed tracking controller formulation
was addressed first, followed by two virtual RTHS parametric
case studies to assess the performance and robustness of
the tracking controller. Dominant parameters of the hybrid
model in both case studies were selected and given random
perturbations via prescribed probability distributions, varied
with at least a 20% coefficient of variation. In each case study,
200 samples were generated from the random parameters and
200 RTHS runs were conducted in order to verify if the proposed
tracking controller was robust enough to maintain the desired
performance under the introduced uncertainties. Such parameter
variations represent potential uncertainties that could be present
in real RTHSs. Furthermore, a random disturbance was added
in the hybrid model loop along with additional white noise
additive to the measured signals. The added disturbance and
noise represent systematic or random errors occurring in a real
experiment. Since the two case studies were virtual, actuator

models had to be developed in order to simulate actuator
dynamics. Two different actuators models were employed in

order to assess the tracking controller performance in a wider
range of potential experimental equipment. Results from the
two case studies illustrate that the proposed tracking controller
can guarantee very small time delays and tracking errors
under uncertainties that may be introduced in RTHS. Notably,
the delays and errors were very close to zero in both case
study reference models. Therefore, RTHS using the proposed
tracking controller scheme is demonstrated to be effective for
structural performance assessment. Ongoing work is focused on
implementing the presented case studies in a laboratory and
conducting real RTHS using the proposed tracking controller.
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