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One of the main problems in data-based Structural Health Monitoring (SHM), is

the scarcity of measured data corresponding to damage states in the structures

of interest. One approach to solving this problem is to develop methods of

transferring health inferences and information between structures in an identified

population—Population-based SHM (PBSHM). In the case of homogenous populations

(sets of nominally-identical structures, like in a wind farm), the idea of the form has

been proposed which encodes information about the ideal or typical structure together

with information about variations across the population. In the case of sets of disparate

structures—heterogeneous populations—transfer learning appears to be a powerful

tool for sharing inferences, and is also applicable in the homogenous case. In order

to assess the likelihood of transference being meaningful, it has proved useful to

develop an abstract representation framework for spaces of structures, so that similarities

between structures can formally be assessed; this framework exploits tools from graph

theory. The current paper discusses all of these very recent developments and provides

illustrative examples.

Keywords: machine learning, graph theory, complex networks, transfer learning, semi-supervised learning,

population-based structural health monitoring (PBSHM)

1. INTRODUCTION

Structural health monitoring (SHM) has been an active branch of structural engineering and
structural integrity for the last three decades, and has accumulated a number of critical advances
over that period (the literature is extensive, the reader is referred to Farrar and Worden,
2012; Worden et al., 2015 and the references therein for background). Although SHM can be
accomplished using both model-based and data-based approaches, it is probably fair to say that the
dominant paradigm at this time is data-based SHM. Until recently, the way the research community
and industry have addressed the problem has mainly been on an individual structure or component
basis. However, it is true to say that SHM is still facing challenges on this individual basis due to
a paucity of damage-state data, missing labels, operational and environmental fluctuations and/or
computational costs. Consequently, Population-based SHM (PBSHM) has recently been proposed
as a means of facing some of these challenges.

PBSHM is a very recent development in the SHM research community. This is not the case in
the condition monitoring (CM) community, which has long entertained the ambition to transfer
health inferences between nominally-identical machines; however, it is fair to say that limited
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progress has been made even there. The situation in the SHM
community is much more limited. Although there have been
precursors in population-based SHM, it is only in the recent
work of the current authors that any holistic framework has
been proposed. Arguably, the first discussion on population-
based SHM came in Deering et al. (2008), in which the authors
suggested that the syndromic surveillance (SS) concept might
provide a unifying framework. SS is a discipline within the
healthcare informatics and epidemiology communities which
seeks to monitor human populations in order to quickly identify
spatial locations of potential disease outbreaks. While SS did
provide some useful ideas relating to spatio-temporal novelty
detection (Hensman et al., 2011), it did not provide a rich
enough framework for diagnostics in general populations of
structures. Such a general framework was first outlined in the
sequence of papers (Bull et al., 2020b; Gardner and Worden,
2020; Gosliga et al., 2020b,c; Lin et al., 2020; Worden, 2020),
which were subsequently refined and consolidated into the
series: (Bull et al., 2020a; Gardner et al., 2020a; Gosliga et al.,
2020a). These papers pointed out that there are differing
requirements for population-based SHM, depending on whether
the populations are homogenous (i.e., composed of nominally-
identical structures) or heterogeneous. The first progress in
PBSHM was in terms of homogenous populations—which
include the practically and economically important case of
wind farms: (Papatheou et al., 2014, 2015, 2017). Alternative
approaches to SHM in homogeneous populations were also
presented in Vamvoudakis-Stefanou et al. (2014), Vamvoudakis-
Stefanou and Fassois (2017), and Vamvoudakis-Stefanou et al.
(2018). Furthermore, some of the ideas of PBSHM have already
been articulated in terms of systems of systems (Worden et al.,
2015). Given that the subject of PBSHM is so new, and the
literature is so sparse, a literature survey is not possible; instead
this paper will present an overview of the main ideas covered in
the recent work of the authors in terms of their proposed general
framework. There are several technical aspects of the proposed
framework that arguably deserve attention, but this paper will
concentrate on two. In the first place, the idea of transferring
inferences between structures is covered; this is based here on
the idea of the form, in the case of homogeneous populations,
and on the methods of tranfer learning in the heterogenous case.
The second idea discussed in some detail relates to the question
of when it is sensible or possible to transfer information; in
order to answer this, some notion of similarity between structures
is needed. In the PBSHM framework, the problem is solved
by introducing an abstract metric space of structures based on
Irreducible Element (IE) models of structures and their associated
Attributed Graphs (AGs).

This paper will assume that the reader is familiar with general
SHM concepts and conventions, basic signal processing and
machine learning and pattern recondition processes andmethods
at the sort of level that can be found in Farrar and Worden
(2012). Briefly, in conventional SHM, a predictive model – either
deterministic or probabilistic—is learnt using data recorded from
an individual structure (or system) of interest, as stated above. An
important consideration is that the constructedmodel is expected
to generalize to future data collected from that same structure.

At the most basic level of diagnostics, these models should be
able to capture deviations of the structure from the normal
operational condition. This level can be accomplished using only
data from the structure when undamaged; the machine learning
technology concerned is referred to as unsupervised learning,
and the problem is cast as one of anomaly or novelty detection.
At higher levels of diagnostics, the model/algorithm may be
required to capture not only the presence of damage but also
to assess the location or progression of damage. Furthermore,
the algorithms may be used in order to help in prognosis
and decision making about the possible future states of the
structure, in order to direct maintenance actions. At these higher
levels, supervised learning is required where the machine learning
algorithms require data from any of the damage-states which
are to be identified. This approach to SHM has proved very
effective under conditions where the necessary data are available
for the given structure or system of interest (Farrar and Worden,
2012).

Unfortunately, SHM still faces several drawbacks; there are
two significant problems. The first problem occurs when one
applies unsupervised learning; under these circumstances, the
algorithms can only be applied to detect change. The issue is
that structures can change their behavior for entirely benign
reasons e.g., the dynamics of bridge behavior can change because
of wind or traffic loading; neither of these changes are cause
for alarm. Such confounding influences or environmental and
operational variations must be removed from measured data
and any extracted damage-sensitive features before novelty
detection is applied, or false alarms will arise. The process of
removing benign variations in behavior is referred to as data
normalization; this topic is not discussed in any detail here,
the curious reader is directed to the overviews in Sohn (2007),
Farrar and Worden (2012), and Worden et al. (2015). The
second major problem—which is discussed here—concerns the
scarcity of damage-state data for supervised learning. For a given
structure, the measured signals will usually be (very) limited,
corresponding to only a fraction of the potential operational,
environmental and damage conditions. Additionally, the label
set (which describes what the measurements represent, and is
the foundation of supervised learning) might be incomplete
or absent altogether. If a generalized framework were able to
transfer knowledge from one structure within a population
to another structure for which data are missing, this would
potentially allow higher-level diagnostic evaluation of different
structures within the population or even across populations; it
would bring significant power and insight to SHM and boost
its applicability. This is the motivation for population-based
SHM (PBSHM).

To reiterate, the aim of this short paper is not to give
an overview of SHM in general, or even PBSHM in
particular, as there is not enough space; more extensive
and detailed discussions can be found in Bull et al. (2020a),
Gosliga et al. (2020a), and Gardner et al. (2020a), including
a range of challenging case studies and experimental
investigations. Furthermore, the emphasis of the work
presented here is on the general concepts, emphasizing
and illustrating the practical benefits of PBSHM, explaining
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why it is needed in non-expert terms as far as possible.
As mentioned earlier, the discussion is quite parochial,
emphasizing the recent work of the current authors and
their collaborators.

The layout of this paper is as follows. First an introduction
to PBSHM is given; then an overview of an early attempt at
PBSHM on an offshore wind farm is described. Next, the general
extension to knowledge transfer in SHM and some state-of-the-
art tools for PBSHM are described. The final section concludes
the paper and summarizes the main findings.

2. THE POTENTIAL ADVANTAGES OF
PBSHM; WHY IT IS NEEDED

PBSHM can potentially be described in a variety of ways,
but the main motivation is simple: in a population (set) of
structures, what can one learn from a subset of structures
that is applicable to the whole population? As discussed above,
this is the key question, as critical data may only be available
for a subset—perhaps only a single individual. Sometimes
the populations will share common characteristics e.g., in the
wind farm example, the question is of how much diagnostic
information can be transferred from a few turbines to the
whole farm. In a fleet of Airbus 380 airplanes, how can SHM
data from one airplane be applied to the other aircraft in
the fleet? The more ambitious aims of PBSHM are concerned
with populations of disparate structures; given data from a
five-story building, how might one improve diagnostics for a
three- or seven-story building? Given data from an Airbus 380,
what can one usefully say about the health state of a Boeing
747, or even a bridge? All these questions, on populations of
similar or very different structures, reduce to generic ones:
can one transfer knowledge between structures in a population;
can one remove benign variations across the population; can
confidence in individual diagnoses be increased using population
data; can one reduce the burden of data collection and
computational costs?

In order to clarify these questions and their potential answers,
it will be useful to introduce some terminology to guide the reader
through the remainder of the paper without the mathematical
complexities that can be found in the general framework
described in Bull et al. (2020a), Gosliga et al. (2020a), and
Gardner et al. (2020a).

Consider a population of wind turbines found in an offshore

wind farm, where each turbine is of the same model; in theory,
these structures should be nominally identical. One can term
such a population as homogeneous. Suppose each turbine is the
same model with exactly the same ISO-standards, materials,
structural and aerodynamic design etc. In such a case, the aim
of the PBSHM approach would be to facilitate the transfer
of valuable SHM inferences between very similar structures—
nominally-identical structures. The vague description very
similar is interesting here (although not very scientific); it allows
that there might be some variations in the population e.g.,
inherited defects or minor imperfections due to manufacturing
processes or transport of the components.

Homogeneous populations may also admit variations between
identical structures as a result of their differing environments.
Consider again the wind farm: offshore wind turbines might
experience different geotechnical conditions when monopiles
are deployed in the sea bed; this critical boundary condition
would modify the behavior and data of these nominally-
identical structures to some extent. Furthermore, the loading
environment may change across the farm; aerodynamic forces
on turbines will depend on whether they are in the wake
of other turbines. Different turbines may experience different
temperature variations. The implications of this are that
confounding influences will now become spatiotemporal, and
this in turn means that data normalization can only be
accomplished on a population-wide basis. It will be important
to distinguish between variations between nominally-identical
structures arising from their embodiment, and those arising from
their environment; the former might be considered constant (or
quasi-constant), while the latter must be considered dynamic
or time-varying.

Within the PBSHM framework, this type of population
is very important, and in some cases critical, as will be
seen later; it will define what knowledge can be transferred
and by what methods. The type is not general enough
though; one also needs to address more general families of
populations, which will be named heterogeneous populations.
In a nutshell, these are the opposite of the homogeneous class.
Heterogeneous populations will contain more disparate and
different members e.g., different designs of suspension bridge,
or as mentioned before, different types of aircraft or buildings.
These structures may still be similar in some senses, but are not
nominally identical.

Returning to the head of this section; it is possible to see what
PBSHM offers, what sort of questions it can address that standard
individual-based SHM can not:

• If a new structure is introduced into a population; what can
one say in terms of SHM, in terms of population performance,
structure interaction/inferences and scalability?

• How will SHM approaches work from one structure to
another, both inside the population, and across populations:
can one optimize inferences, not only between turbines in
a given wind farm, but across different wind farms around
the world?

• How can one reduce uncertainty in modeling of individuals
within a population by exchanging data and information and
updating the models (black/white or gray)? How might one
define or create compact performance metrics for wind farms
and establish robust models?

• How might one propagate labels of data in order to inform
models and SHM/CM systems: e.g., if damage type A occurs in
one wind turbine, how can this label can be used for other wind
turbines of the population that have not experienced damage
type A yet?

• How might one study the effect of the spatial and temporal
changes in environmental and operational variables (EOVs)
on structural response and use the knowledge to normalize out
such spatial-temporal effects?
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3. KNOWLEDGE TRANSFER IN PBSHM

One can think of knowledge transfer in PBSHM in simple terms
from another perspective. Humans have an inherent ability to
transfer knowledge across tasks, both similar and different. What
humans do, is acquire knowledge about one task, and then
generalize that learning in order to address directly related tasks
or form a basis of background knowledge that allows inferences
for other, less similar, tasks.

The more related the tasks are, the easier it is for humans
to transfer knowledge and make inferences (this is analogous
to the case of homogeneous populations in PBSHM) or cross-
utilize the obtained knowledge across other tasks (heterogeneous
populations). As a simple example, if one learns how to ride a
bicycle, one can more easily learn to ride a motorcycle. If one
learns how to ride a motorcycle, one can more easily learn to
drive a car. In this latter case, the tasks are less related, and the
transfer is not in terms of direct motor skills like balance, but
more related to the fact that motorcyclists are road users and
will be aware of the highway code, and also better understand
how traffic moves in general. If one learns how to play the
classical guitar, the easier it will be to learn an electric guitar;
if one knows mathematics and statistics, the easier it will be to
transfer knowledge to machine learning. In the same way, if one
earns SHM knowledge for one of a group of nominally-identical
structure, one can potentially learn about the whole population,
and infer knowledge and labels; one might even cross-utilize the
obtained knowledge for different structures.

It is very interesting that in each of the above examples, one
need not learn everything from scratch when one learns new tasks
or labels. Information is transferred and knowledge is leveraged
from what has already been learnt. As the readers will see later,
one can utilize the powers of transfer learning for PBSHM.

4. FIRST STEPS IN PBSHM

The first attempt at PBSHM by (a subset of) the current authors
was published in Papatheou et al. (2015). The paper considered
an offshore wind farm in terms of performance analysis and
macro-scale SHM monitoring. The work explored the potential
of using supervisory control and data acquisition (SCADA)
measurements for the monitoring of individual turbines, and of
the whole farm, by constructing power curves for each turbine
and then comparing how well they predicted power usage for
other turbines. Power curves are a non-linear mapping between
wind loading/velocity and power output of a wind turbine
generator, and can be used as a feature for novelty detection.

The modeling was carried out using Gaussian processes
(GPs) (Rasmussen and Williams, 2005; Tay and Laugier, 2008;
Murphy, 2012). The GP is a stochastic non-parametric Bayesian
approach to regression and classification problems, and non-
linear regression is relatively straightforward. Regression with
the algorithm takes into account all possible functions that are
statistically consistent with the given training data set and gives a
whole Gaussian predictive distribution for any given (training or
testing) input vector. Amean prediction together with confidence
intervals can then be calculated from this predictive distribution.
The basic step in applying GP regression is to specify prior (in

the Bayesian sense) mean and covariance functions. These prior
functions are specified in terms of their functional form and
a set of parameters called hyperparameters. The functions are
then updated to conform with the training data to produce the
posterior predictive distribution. The hyperparameters can also be
optimized using only the training data, by maximization of the
marginal likelihood of the data (Rasmussen and Williams, 2005).

The PBSHM approach in this early work was applied to the
Lillegrund offshore wind farm (Papatheou et al., 2015), which
consists of 48 offshore wind turbines. The GP approach was
applied in order to produce individual and population-based
power curves and then predict measurements of the power
produced from each wind turbine (WT) from the measurements
of the otherWTs in the farm. This strategy allowed an assessment
of how closely the individual turbines resembled each other; the
analysis implicitly assumed a homogeneous population. The data
mining and machine learning also proved to be a promising
approach for modeling aspects of wind energy, such as power
prediction or wind load forecasting.

Regression model error was used as an index to capture the
response prediction deviation across the population of the wind
turbines and also allowed a strong visualization that indicates
when individuals within the populations follow, or do not follow,
the assumption of a homogeneous population.

In total, 48 different GPs (one for each turbine) were trained
to create power reference curves for the turbines. Following that,
each GP was provided with wind speed data from the rest of the
turbines and was asked to predict the power produced from them
(see Figure 1).

Figure 2 shows the average MSE errors represented in a form
of confusion matrix. The figure shows how well each trained
(reference) power curve predicts the power produced in the rest
of the turbines on average, and also how well the power produced
in each turbine is predicted by the rest of the trained curves
(corresponding to the rest of the turbines). The y-axis of the
confusion matrix shown in Figure 2 corresponds the index (1–
48) of the training turbine and the x-axis to the index of the tested
turbine. In general, with the normalization of the error adopted
here, an MSE error below 5 is considered to show a good fit and
below 1 would be considered excellent.

The results of the paper showed that nearly all the models
were very robust, with the highest MSE error occurring
when the model trained on Turbine 4 was predicting power
from Turbine 3. Both Turbines 3 and 4 are located in
the outside row of the wind farm. However, the paper was
limited in terms of SHM, as it was more of a performance
monitoring study and many of the concepts described in
earlier sections of this paper were not addressed in this
work. A much more sophisticated framework for PBSHM
is outlined in the next section; foundations that form the
basis for a state-of-art conceptualization and implementation
of PBSHM.

5. A GENERAL FRAMEWORK FOR PBSHM

This section will now focus on newer developments in PBSHM,
which to the authors’ knowledge are the first serious attempt
to form a general theoretical and computational framework
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FIGURE 1 | An outline of the steps for the offshore wind farm PBSHM. For each of the 48 wind turbines, a Gaussian process was trained to represent the individual

power curve; this could then be used to predict power for all other turbines.

FIGURE 2 | Confusion matrix of mean-square errors (MSEs) created from the GPs: testing set. The MSE is normalized here such that, if the mean of the training data

is used as a minimal model, the value of the MSE is 100, and can be interpreted as a percentage. Any value less than 100% thus represents captured correlation.

for the problem. The basic concepts in the framework will be
summarized here in a compact and comprehensive manner.
Following the first steps discussed in the last section, many of
the ideas were published in Bull et al. (2020b), Gosliga et al.
(2020b), Gosliga et al. (2020c), Gardner and Worden (2020),
Worden (2020), and Lin et al. (2020), and were then consolidated
into (Bull et al., 2020a; Gardner et al., 2020a; Gosliga et al.,
2020a).

5.1. Homogeneous Populations
The first step, as outlined before, in approaching PBSHM is to
address the homogeneous population case, which is the simplest
one, in which all members of the population can be considered to
be nominally-identical; e.g., wind turbines within a wind farm.

To approach the problem, a general model—called a form)—
is employed to represent the overall behavior of the entire
group, and can then be used to infer the presence of anomalous
variations in individual members.

In general terms, the form is some model (or unified
functional representation) that can be used to signify a
homogeneous population of structures or systems. The model
must thus capture the “essential” nature of the structure, but
also represent the extent and nature of any variations between
the members of the population, like manufacturing variations
or other differences in embodiment. Machine learning is used
to learn the form from some subset of the population; the
training data are acquired from this subset when it is known
to be in its undamaged conditions. Future (test) measurements
can be assessed via the form, and then the robust generalized
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FIGURE 3 | Eight degree-of-freedom experimental rig which is the basis of the form case study here.

FIGURE 4 | Gaussian process regression of the FRF as the population-form. Black markers indicate the training-set. The blue line indicates the posterior predictive

mean and the shaded area indicates a 3-σ credible region, corresponding to the variance. The black line plots the mean function of the GP prior.

population model can be used for novelty detection across the
entire population to check the condition of each structure. The
point is that normality is assessed not only in terms of the
variability of feature data from an individual structure, but

also in terms of the likely variations across the population.
An appropriate regression tool for establishing the form, is
the previously mentioned Gaussian Process (Rasmussen and
Williams, 2005; Murphy, 2012). The predictive mean of the GP
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FIGURE 5 | MSD novelty index for the test-data FRFs, comparing members 11–20. These members did not contribute training data to learn the form. The dot

markers are used for simulated members 11–19, while triangle markers are used for the test-rig, member 20.

is assumed to capture the “essence” of the structure, while the
predictive variance provides a characterization of the variability
across the population.

In order to demonstrate the power of the form concept, an
example shall be given; for more complete definitions and more
challenging examples of use, the reader is referred to Bull et al.
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FIGURE 6 | Source and Target domain features for the heterogeneous population case study with geometric and material differences (where damped natural

frequencies are in Hz).
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FIGURE 7 | Transfer components for the source and target domains in the heterogeneous population case study with geometric and material differences. The source

domain transfer components are denoted by dot markers, the target-domain training and testing transfer components are denoted by cross-markers and circle

markets respectively.

(2020a). In this case study, a homogeneous population of 19
structurally-equivalent (8-DOF) systems was simulated, leading
to a population of 19 members. Each individual is a model
realization of an experimental rig, designed and constructed at
the Los Alamos National laboratory (Bull et al., 2020a). The
structure of interest is formed from eight very substantial masses
connected by helical springs (Figure 3); it is as close to a lumped-
mass system as one can construct, so the model division into
eight masses and nine joints (springs) is entirely natural. The
test-rig itself acts as the 20th member in the group, such that
the total population is of 20 systems. The damage-sensitive
features chosen to represent the systemwere Frequency Response
Functions (FRFs). In order to construct the form, FRFs were
estimated from the first ten members of the population; the
resulting form is represented in Figure 4. The damage cases
were simulated by reducing the stiffness of one of the springs
in the structure, with three levels of severity; however, only
the most severe case was represented in the experimental data.
Again, for more details, the reader is referred to Bull et al.
(2020a).

In order to test the form, the FRFs from the remaining ten
members of the population were compared using a multivariate
outlier statistic—the Mahalanobis squared-distance (MSD) (it
is important to note that the covariance matrix for the MSD
is not a sample estimate as in standard SHM outlier analysis
(Worden et al., 1999), but is the full covariance matrix from
the Gaussian process form). The results, as shown in Figure 5,
are good; there are a minimum of false positives on the normal
condition data; however, the variations across the population do
tend to mask the lowest level of damage. This latter observation
is going to be in the nature of PBSHM generally; variations
across a population will tend to reduce sensitivity to damage.
The answer to this problem is to adopt a strategy similar to data
normalization for confounding influences; one needs to select
appropriate features or to project out population variations, and
this is amatter for further research. In this particular case, matters
are not helped by the fact that natural frequencies are not always
the most damage-sensitive features; they have been chosen here
to facilitate comparison with previous work on this experimental
system. On a positive note, the highest levels of damage are
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TABLE 1 | Classification results for the heterogeneous population case study with

geometric and material differences, trained on the labeled source domain and

applied to unlabeled target domain (Gardner et al., 2020a,b).

k-NN (%) k-NN + JDA (%)

Training data accuracy 16.7 100

Testing data accuracy 16.7 100

always detected, even for the experimental structure which was
not included in the training set.

5.2. Heterogeneous Populations
The paper now considers the more challenging general case of
heterogeneous populations of non-identical structures. The main
machine learning tool that will be applied to this difficult task
is transfer learning. Before describing an example that shows the
benefits of transfer learning to PBSHM, some matters will first
be clarified.

Firstly, it is important to confront the “myth” that one cannot
utilize machine learning for SHM problems like localization,
or classification of damage unless one always has millions of
labeled examples for supervised learning. To dispel this idea, the
reader is referred to Bull et al. (2019) and Bull et al. (2020c),
where techniques like active and semi-supervised learning are
demonstrated on SHM problems. This is an important point,
because one of the major problems for SHM is the scarcity of
labeled data. The fortunate reality is that one can learn useful
representations from unlabeled data, domains or distributions
with regard to heterogeneous populations, and can either train
nearby surrogate objectives (where it is easier to generate
matching label spaces), or use transfer learning to produce
representations from related or even largely-unrelated tasks (Pan
and Yang, 2009; Pan et al., 2010; Long et al., 2013; Wang et al.,
2019; Gardner et al., 2020a,b).

Transfer learning provides the ability to utilize existing
knowledge from a source task, in order to improve knowledge
on/of a target task. The application to PBSHM is clear;
where the source task is an SHM problem for a structure
where data exist, and the target task is another structure
where data are incomplete or absent. However, before
attempting transfer, some important questions need to
be addressed.

What to transfer: This is the most important question in the
whole process. The engineer and learner seek to identify which
part of the knowledge can be or should be transferred from the
source to the target in order to improve the performance of the
target task. It is important to identify which part of the knowledge
is source-specific and which is likely to be common between the
source and the target.

When to transfer: This is another critical question (which will
be answered later through graph theory), as there are scenarios
where transferring knowledge may make learning and SHM
diagnostics worse rather than better (a phenomenon known as
negative transfer). One must aim in SHM at utilizing transfer
learning to improve target task performance and not simply

to make a “tower of Babel” of learning outcomes that degrade
the performance.

How to transfer: Once the previous questions are answered
satisfactorily, one can proceed toward choice of algorithms that
can actually transfer knowledge across domains/tasks. There are
different transfer learning strategies and techniques for SHM
purposes; the ones discussed here are mainly based on the idea
of domain adoption.

Domain adaptation is one form of transfer learning that seeks
to transfer feature spaces between source and target domains,
assuming that their marginal distributions over source and
task feature spaces are not equal (and often that the joint
distributions between features and labels are different). One
approach that is used, and will be the one illustrated here, is
Joint Domain Adaption (JDA) (Pan and Yang, 2009; Pan et al.,
2010; Long et al., 2013; Wang et al., 2019; Gardner et al.,
2020a,b). A number of other algorithms are applicable to SHM
algorithms, and some of the others are illustrated in Gardner
et al. (2020b) and Gardner et al. (2020a). JDA is one of the
techniques that assumes the joint distributions between feature
and label spaces are different; it works by mapping the source
and target features into a latent space where the distributions
of data are harmonized. Harmony is enforced by minimizing
the empirical form of the Maximum Mean Discrepancy (MMD)
distance between the two distributions; this is the difference
between two mean embeddings in a Reproducing Kernel Hilbert
Space (RKHS).

The heterogeneous population case study used for illustration
here, considers a population with geometry and material
differences where the label spaces between the source and target
domain are consistent (i.e., there are the same types of damage
to classify). The two structures in the population here are both
models of five-story shear structures (5-MDOF) with material
differences (the first structure is steel and the other is aluminum),
and with some geometric dissimilarities due to differences in the
dimensions of the structures. The SHM problem is a six-class
location problem where the damage scenarios are simulated for
each of the degrees-of-freedom by simulating open cracks in the
column members between floors. There are six labeled scenarios
in total: one undamaged state and five damage states where
damage is introduced between floors. The features for transfer
are the five natural frequencies of the structures; because of the
material and geometrical differences between the structures, their
natural frequencies are quite different.

Figure 6 shows projections of the source and target domain
features; the magnitudes of the natural frequencies are indeed
very different, highlighting the need for transfer learning.
Figure 7 shows projections of the identified transfer components
from the JDA mapping into the latent space; the mapping
has grouped the source and target domain clusters correctly
together. Figures 6, 7 adopt a standard (and simple) strategy
for visualizing data in high-dimensional spaces; the sub-
figure at position (i, j) in the array shows a plot of variable
i against variable j; the diagonal figures in the array (i, i)
show the estimated densities (histograms) for the ith variable.
Although this strategy is not perfect, one is limited by
human physiology.
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FIGURE 8 | An expanded IE representation of a wind turbine with the elements labeled A to I and the connections labeled 1–9. The shaded node is a special element

representing the ground, where the boundary condition is defined in the attributes for Joint 9.

FIGURE 9 | Graphical representations of structures, ground nodes are shaded. (A,B): Two topologically-equivalent graphs, used to represent structurally-equivalent

wind turbines, that have simply been drawn differently. (C): A graph that is topologically equivalent to (A,B) but not structurally, due to inconsistency in ground nodes.

(D) a graph used to represent a three-span bridge, that is topologically and structurally inequivalent to (A–C).

A classifier in the latent space which correctly separates

the source data, will also correctly identify the target data.

In this case, a simple k-NN classifier was used, and the
results are summarized in Table 1. Training on the source

data and directly applying the classifier to the target gave
results no better than random guessing, while JDA produced a
perfect classification.

5.3. Irreducible Elements and Attributed
Graphs
As demonstrated, transfer learning has immense potential for
SHM tasks. However, there are certain important issues related
to transfer learning that need more careful exploration; in
particular, it is critical to avoid negative transfer. One way to
avoid this problem is to only attempt transfer if the source and
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FIGURE 10 | Graph models for two structures: a wind turbine (left) and an

airplane (right).

target tasks are similar to each other; one way to achieve this
for PBSHM is to try and ensure that the structures of interest
are sufficiently similar in some sense. The question is then: how
does one measure the similarity of structures? One way to do
this would be to abstract a representation of structures that could
be embodied in a metric space of some sort; the metric would
then provide the required measure of similarity. For this reason,
the PBSHM framework presented here is based on an abstract
representation theory for structures. The metric space needed is
constructed via two stages: in the first, irreducible element (IE)
models of the structures are constructed; in the second stage,
the IE models are converted to attributed graphs (AGs). As the
space of attributed graphs is ametric space, it provides the desired
comparison measure between structures.

In order to create an irreducible element (IE) model, the
structure of interest is decomposed into components which
have a well-established dynamic behavior e.g., beams, plates and
shells. The model is not designed for dynamic prediction, but
rather to identify the essential elements that define the nature
of the structure. The process is illustrated in Figure 8. The
representation associates a parameter vector with each IE, which
stores the material properties and dimensions of the IE. The
process is described in much more detail in Gosliga et al. (2020a)

The IEmodel is then converted into the attributed graph (AG)
model. This step is carried out by associating a graph node with
each IE; the parameter vector from the IE is attached to the node,
thus creating an attributed graph. If two IEs are connected in
the structure, the two corresponding AG nodes are joined by an
edge; the edge will also carry attributes i.e., a parameter vector
specifying the type and parametric description of the joint. The
IE model and the AG are thus in one-to-one correspondence.
Because of this, the metric on the space of AGs carries over to
the “space” of IE models and provides a measure of similarity
between structures. This measure can then be used to inform
the level of inference that can (potentially) be made between
structures within a population. This framework also allows a
precise definition of population types as follows. One defines two

FIGURE 11 | Maximum common subgraph between the two AG models

illustrated in Figure 10.

structures to be topologically equivalent if their induced AGs are
topologically equivalent i.e., have the same number of nodes and
corresponding edges in place. As the boundary conditions for
a structure are critical, connections to ground are represented
by a special node—the ground node—and boundary conditions
are encoded in the edge attributes for nodes connecting to
ground. Two structures are deemed structurally equivalent if
their corresponding AGs are topologically equivalent and the
ground nodes in the two graphs are in correspondence. Figure 9
illustrates some AG representations which are, and are not,
structurally equivalent. A simple definition of a homogeneous
population is then one that is composed of structures which are
pairwise structurally equivalent; however, things are a little more
complicated than this in general, and the details can be found in
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FIGURE 12 | Population-based SHM summary.

Gosliga et al. (2020a). A heterogeneous population is then simply
one that is not homogeneous.

The question remains as to how to specify the metric on the
space of AGs; one way to do this is via the maximum common
subgraph (MCS). Two graphs are clearly more similar if they have
more common structure, and this captured in the size of their
MCS. Furthermore, the MCS makes sense from a PBSHM point
of view; common subgraphs in the AG correspond to common
substructures in the structures of interest. If an SHM problem
is to be transferred between structures, the process is clearly
more likely to succeed if the problem occurs within a common
substructure. The process of extracting the MCS between two
graphs is computationally demanding; the algorithm used for
the illustration here is the Bron-Kerbosch algorithm as described
in Gosliga et al. (2020a). Once the MCS is established, this can
be converted into a metric distance which is smaller when two
structures share larger MCSs; the metric used here and described
in Gosliga et al. (2020a), is the Jaccard similarity coefficient.
Figure 10 shows two AGs associated with a wind turbine and an
airplane; although these look quite different, they do possess an
extended common subgraph, which is shown in Figure 11. The
subgraph corresponds to the chain (and branches) running from
A to H in the wind turbine graph and that running from M to
F in the airplane graph; in fact there are multiple chains from M
that have the same subgraph structure.

Figure 12 tries to summarize the main concepts of PBSHM
via a flowchart, from homogeneous populations to heterogeneous
populations and from forms, and transfer learning to graph
theory integration. Throughout this paper, the main emphasis
has been on expressing the basic ideas of the proposed
population-based framework. Because of the limitations of space,
this approach has inevitably lacked detail in terms of the

case study structures and their experimental investigation. The
curious reader is again directed toward the foundational papers
for the missing detail: (Bull et al., 2020a; Gardner et al., 2020a;
Gosliga et al., 2020a).

6. CONCLUSIONS

Population-based SHM (PBSHM) offers significant advantages
for the research field and also in terms of the implementation of
SHM in an industrial environment, as it can address problems
like label deficiency, structural performance, data minimization
and robust performance metrics as well as validation and
verification of SHM systems. Valuable information can be
transferred between groups of similar or dissimilar structures.
Knowledge transfer and mapping are critical processes in
developing PBSHM such that inferences about health states can
be transferred. It was stressed here, how important it is when
applying transfer learning to determine what similarities exist
between structures within a population, and what information
could and should be transferred, such that negative transfer is
avoided. In order to characterize similarities between structures
an abstract representation theory has been described, based on
attributed graph (AG) representations via irreducible element
(IE) models. In the case of homogeneous populations (of
nominally-identical structures), the concept of the form was
discussed as a powerful tool for PBSHM. For more general
heterogeneous populations, examples of transfer learning were
presented and discussed.

This paper summarizes foundations for a theory and
methodology for population-based SHM, in order to perform
knowledge transfer within and between homogeneous and
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heterogeneous populations. The integration of an IE and AG-
based approach to quantify knowledge about structures is vital
in understanding the effectiveness of PBSHM architectures.
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