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We propose Gnu-RL: a novel approach that enables real-world deployment of

reinforcement learning (RL) for building control and requires no prior information other

than historical data from existing Heating Ventilation and Air Conditioning (HVAC)

controllers. In contrast with existing RL agents, which are opaque to expert interrogation

and need ample training to achieve reasonable control performance, Gnu-RL is much

more attractive for real-world applications. Furthermore, Gnu-RL avoids the need to

develop and calibrate simulation environments for each building or system under

control, thus making it highly scalable. To achieve this, we bootstrap the Gnu-RL

agent with domain knowledge and expert demonstration. Specifically, Gnu-RL adopts a

recently-developed Differentiable Model Predictive Control (MPC) policy, which encodes

domain knowledge on planning and system dynamics, making it both sample-efficient

and interpretable. Prior to any interaction with the environment, a Gnu-RL agent is

pre-trained on historical data using imitation learning, enabling it to match the behavior

of the existing controller. Once it is put in charge of controlling the environment, the

agent continues to improve its policy end-to-end, using a policy gradient algorithm. We

evaluate Gnu-RL in both simulation studies and a real-world testbed. Firstly, we validated

the Gnu-RL agent is indeed practical and scalable by applying it to three commercial

reference buildings in simulation, and demonstrated the superiority of the Differentiable

MPC policy compared to a generic neural network. In another simulation experiment,

our approach saved 6.6% of the total energy compared to the best published RL result

for the same environment, while maintaining a higher level of occupant comfort. Finally,

Gnu-RL was deployed to control the airflow to a real-world conference room with a

Variable-Air-Volume (VAV) system during a 3-weeks period. Our results show that Gnu-RL

reduced cooling demand by 16.7% compared to the existing controller and tracked the

temperature set-point better.
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1. INTRODUCTION

Advanced control strategies for operating heating, ventilation,
and air conditioning (HVAC) systems have the potential to
significantly improve the energy efficiency of our building stock
and enhance comfort (Bengea et al., 2012; Li and Wen, 2014;
Goetzler et al., 2017). However, the majority of HVAC systems
today are still operated by simple rule-based and feedback
controls, such as on-off control or proportional-integral-
derivative (PID) control. These prescriptive and reactive control
strategies do not take into consideration predictive information
on disturbances, such as weather and occupancy (Killian and
Kozek, 2016), making their energy performance sub-optimal.

Optimal control strategies, such as model predictive control
(MPC) address these drawbacks by iteratively optimizing an
objective function over a receding time horizon. However,
despite many successful applications of MPC (e.g., Prívara et al.,
2011; Aswani et al., 2012; Maasoumy et al., 2014), its wide-
spread adoption has been limited by the need of accurate
models (Privara et al., 2013; Killian and Kozek, 2016). This
is especially challenging because buildings are heterogeneous
(Lü et al., 2015), e.g., they have different layouts, HVAC
configurations, and occupancy patterns. Thus, custom models
are required for each thermal zone or building under control,
limiting the scalability of MPC. Another drawback is that
MPC treats modeling and planning as two separate tasks.
Furthermore, the quality of the model is evaluated by criteria,
such as prediction error, which may or may not lead to good
control performance1.

Reinforcement learning (RL), on the other hand, is a learning-
based approach that adapts to different environments by learning
a control policy through direct interaction with the environment
(Sutton and Barto, 2018). RL has achieved remarkable success in
masteringmany complex tasks, such as playing Go (Moyer, 2016)
and StarCraft (Vinyals et al., 2017). It has also been shown to be a
feasible approach for optimal control of HVAC systems (Liu and
Henze, 2006; Dalamagkidis et al., 2007). However, the flexibility
of the RL framework comes at the cost of increased sample
complexity (Kakade, 2003). Taking recent published results as
examples, an RL agent may need 5 million interaction steps
(equivalent to 47.5 years in simulation) to achieve the same
performance as a feedback controller on anHVAC system (Zhang
and Lam, 2018). Even after pretraining on expert demonstration,
an RL agent may still require an additional year of training
in simulation to achieve similar performance to a baseline
controller (Jia et al., 2019). The long training time may explain
the limited number of real-world applications of RL for HVAC
control. The studies that did validate their RL agents in real-world
testbeds (Liu and Henze, 2006; Zhang and Lam, 2018) depended
on high-fidelity models to train their agents in simulation first.
Aside from the common problems with sim-to-real transfer
(Peng et al., 2018), such approach requires a high-fidelity model
for each building and thus shifts the focus back to modeling (or
model calibration) (Yang et al., 2015).

1We elaborate on this issue in sections 6.3 and 6.4.

To overcome these limitations, we propose Gnu-RL2: an RL
agent that exhibits a high level of independence and maturity
at the onset of its learning phase (i.e., a precocial agent) and
requires no prior information other than historical data from
existing controllers. As shown in Figure 1, the Gnu-RL agent
leverages a recently-developed Differentiable MPC policy (Amos
et al., 2018) that encodes domain knowledge on system dynamics
and control. We do away with the need for high-fidelity models
by initializing the Gnu-RL agent on historical data from the
existing controller. By imitating the existing controller, the Gnu-
RL agent behaves similarly to it prior to any interaction with the
environment. Once deployed, it continues to improve its policy
end-to-end using a policy gradient algorithm.

Firstly, we validated our approach is both practical and
scalable by applying it to three different buildings, the
warehouse, the small office, and the medium office
from the Department of Energy (DOE) commercial reference
buildings (Deru et al., 2011). We also demonstrated the
superiority of the Differentiable MPC policy compared to a
generic neural network. Then, we evaluated the performance
of Gnu-RL in detail in both a simulation study (an EnergyPlus
model of a 600 m2 office building from Zhang and Lam,
2018) and a real-world deployment (a 20 m2 conference room).
First, Gnu-RL was directly deployed to control the simulation
environment after offline pretraining on state-action pairs
generated by a P-controller. In this setting, our algorithm saved
6.6% of the total energy compared to the best-performing RL
agent in Zhang and Lam (2018), while maintaining a higher
level of occupant comfort. Next, we deployed Gnu-RL in a real
conference room for a 3-weeks period. The agent was pre-trained
on historical data from the Building Automation System (BAS).
Here, Gnu-RL saved 16.7% of cooling demand compared to
the existing control strategy based on a fixed schedule, while
achieving better set-point tracking.

This paper is an extension of our prior work (Chen et al.,
2019). In this paper, we provided further validation of our
approach on three new buildings (section 5), with larger
state-action space compared to the environments used in our
prior work.

The rest of the paper is organized as follows. Section 2 reviews
related work on MPC and RL for HVAC control. Section 3
provides technical background on the techniques used by Gnu-
RL, and section 4 formally introduces Gnu-RL. We then describe
experiments and results both in simulation studies (sections 5
and 6) and in a real-world testbed (section 7), and present
conclusions and directions for future work in section 8.

2. RELATED WORK

Because Gnu-RL updates a Differentiable MPC policy with a RL
algorithm, it can be seen as a hybrid of MPC and RL. Thus,

2The name Gnu comes from drawing an analogy between RL agents and animals.
Gnus are among the most successful herbivores in the African savanna, and part of
their success can be attributed to the precociality of their youngsters who are able
to outrun predators within a day after their birth. It is also worth mentioning, that
the name has no connection to the GNU operating system.
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FIGURE 1 | Framework. The Gnu-RL agent utilizes a Differentiable MPC policy, which encodes domain knowledge on planning and system dynamics. In the offline

pretraining phase, the agent is initialized by imitating historical data from the existing controller. In the online learning phase, the agent continues to improve its policy

end-to-end using a policy gradient algorithm.

in this section we review both MPC and RL approaches to
HVAC control.

2.1. Model Predictive Control for HVAC
Model predictive control is a planning-based method that solves
an optimal control problem iteratively over a receding time
horizon. Some of the advantages of MPC are that it takes
into consideration future disturbances and that it can handle
multiple constraints and objectives, e.g., energy and comfort
(Killian and Kozek, 2016).

However, it can be argued that the main roadblock preventing
widespread adoption of MPC is its reliance on a model (Privara
et al., 2013; Killian and Kozek, 2016). By some estimates,
modeling can account for up to 75% of the time and resources
required for implementing MPC in practice (Rockett and
Hathway, 2017). Because buildings are highly heterogeneous (Lü
et al., 2015), a custom model is required for each thermal zone or
building under control.

Privara et al. (2013) identified two paradigms for modeling
building dynamics: physics-based and statistics-based. Physics-
based models, e.g., EnergyPlus, utilize physical knowledge and
material properties of a building to create detailed representation
of the building dynamics. A major shortcoming is that such
models are not control-oriented (Atam and Helsen, 2016).
Nonetheless, it is not impossible to use such models for
control. For instance, Zhao et al. (2013) used exhaustive search
optimization to derive control policy for an EnergyPlus model.
Furthermore, physics-based model requires significant modeling
effort, because they have a large number of free parameters to be
specified by engineers (e.g., 2,500 parameters for a medium-sized
building; Karaguzel and Lam, 2011), and information required
for determining these parameters are scattered in different
design documents (Gu et al., 2014). Statistical models assume a
parametric model form, which may or may not have physical
underpinnings, and identifies model parameters directly from
data. While this approach is potentially scalable, a practical
problem is that the experimental conditions required for accurate
identification of building systems fall outside of normal building
operations (Agbi et al., 2012). Alternatively, excitation signals

from actuators may be used to help identify model parameters
(Prívara et al., 2011; Agbi et al., 2012; Aswani et al., 2012), which
requires careful design of experiments (Cai et al., 2016) and
may disturb normal operation. Even then, it is still difficult to
identify some parameters with supposedly rich excitation signals
(Agbi et al., 2012).

To add to the challenge, there are many sources of
stochasticity and uncertainty in building dynamics (Maasoumy
et al., 2014). Learning-based MPC (Aswani et al., 2012) accounts
for the stochasticity from internal thermal gains by modeling the
building dynamics in a semi-parametric form, where the zone
temperature evolves following a linear model and the internal
thermal gain is learned from data as a non-parametric term.
Learning-basedMPC also decouples robustness and performance
by using a statistical model to optimize performance and a
deterministic model to impose comfort constraints. Adaptive
MPC attempts to address the uncertainty by updating model
parameters online with new observations. Here the objective is to
estimate model parameters that minimize the difference between
prediction and observation over time. Examples of this line of
work include the use of Extended/Unscented Kalman Filter (Fux
et al., 2014; Maasoumy et al., 2014) to simultaneously estimate
states and model parameters. More recently, Yuan et al. (2020)
developed an adaptive MPC controller that learns a probabilistic
occupancy distribution based on fine-grained occupancy counts
collected from real buildings.

2.2. Reinforcement Learning for HVAC
The early works by Liu and Henze (2006) and Dalamagkidis
et al. (2007) demonstrated the potential of using RL for optimal
HVAC controls. However, practical application of RL was limited
by its sample complexity, i.e., the long training time required
to learn control strategies, especially for tasks associated with
a large state-action space (Liu and Henze, 2006). In Figure 2,
we summarized the training time reported in Liu and Henze
(2006), Dalamagkidis et al. (2007), Yang et al. (2015), Li et al.
(2017), Wei et al. (2017), Zhang and Lam (2018), Gao et al.
(2019), and Jia et al. (2019). We acknowledge the limitations of
the summary. Firstly, the RL agents were evaluated in different
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FIGURE 2 | Summary of training time reported in the literature; By incorporating domain knowledge and expert demonstration, our proposed Gnu-RL agent

drastically reduced training time compared to existing works.

environments of varying complexity, making direct comparison
impossible. We only considered works that evaluated their agents
in physics-based emulators, including EnergyPlus, TRNSYS, and
MATLAB Simulink. Another limitation is that most of these
papers reported the total training time. A more meaningful
evaluation metric may be the amount of time required to
reach the same performance as a baseline controller. Despite
these limitations, the observation here is that the amount of
time used for training is typically in the order of years. In
our prior work (Chen et al., 2019), we proposed Gnu-RL, a
precocial agent that is capable of controlling HVAC system well
at “birth.” We also want to draw the readers’ attention to Zhang
and Lam (2018), to which we benchmarked our approach in
section 6.

The long training time may explain why applications beyond
simulation are numbered, despite the numerous publications
on this topic. While Liu and Henze (2006) and Zhang and
Lam (2018) validated their RL agents in real-world testbeds,
they both assumed the existence of high-fidelity models for
training their agents in simulation first. Such approach depends
on a high-fidelity model for each building and thus shifts the
focus back to modeling (Yang et al., 2015). Costanzo et al.
(2016) also reported a real-world deployment, but provided
no quantitative evaluation. Google announced a 40% energy
consumption reduction in their data centers (Evans and Gao,
2016), but to our knowledge no technical publication of this
achievement is available yet.

To reduce sample complexity, researchers have experimented
with different approaches. Li et al. (2017) and Jia et al. (2019)
initialized their agents with historical data from the existing
controller. Li et al. (2017) populated the replay memory with
historical data. Similar to our approach, Jia et al. (2019) cloned
the behavior of the existing controller based on historical data.
Furthermore, Jia et al. (2019) proposed to use the expert policy,
i.e., the policy from the existing controller, as a baseline to reduce
variance. Costanzo et al. (2016) augmented the replay memory
with additional state-action pairs using a neural network. Chen
et al. (2018) and Nagy et al. (2018) incorporated a model of
system dynamics into RL. Nagy et al. (2018) trained a neural
network as a model for state transitions and incorporated multi-
step planning into RL. The experiments in Nagy et al. (2018)
showed that model-based RL was generally superior to model-
free RL in terms of sample efficiency, energy performance, and
occupants’ comfort. In comparison, Chen et al. (2018) used
a special input-convex neural network (Amos et al., 2017) to
model the system dynamics. With such a model choice, multi-
step planning over the complex neural network dynamics is a
convex problem and could be solved optimally with gradient
descent. Chen et al. (2018) validated their work in the large
office from DOE commercial reference buildings, controlling
the temperature setpoints of 16 thermal zones. In fact, to our
knowledge, this is the largest validation on this topic in terms of
the state-action space. While their approach showed significant
energy savings, no evaluation on thermal comfort was provided.
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FIGURE 3 | The agent-environment interaction in a Markov Decision Process.

3. BACKGROUND

We now present background technical concepts used
by Gnu-RL.

3.1. Reinforcement Learning
RL learns an optimal control policy through direct interaction
with the environment. The optimal control problem may be
formulated as a Markov Decision Process3 (MDP), as shown in
Figure 3. At each time step t, the agent selects an action Ut = u
given the current state Xt = x based on its policy πθ (Equation
1a). In modern RL, the policy is commonly approximated by a
neural network parameterized by θ (Mnih et al., 2013). Using a
neural network as a function approximator allows one to handle
large state-action space and generalize from past experiences
(Sutton and Barto, 2018).When the agent takes the action u, there
is a state transition Xt+1 = x′ based the environment dynamics
f (Equation 1b) and the agent receives a reward Rt+1 = r. In our
problem formulation, the reward is the negative of a cost function
(Equation 1c). The objective of RL is to find a policy πθ that
maximizes the expected total reward or, equivalently, minimizes
the expected total cost.

u ∼ πθ (u|x) = P(Ut|Xt = x; θ) (1a)

x′ ∼ f (x, u) = P(Xt+1|Xt = x,Ut = u) (1b)

r = −C(x, u) (1c)

RL methods can be categorized as model-free and model-based
based on whether a model of the environment is used. There
are three common approaches to model-free RL, i.e., value-based
methods, policy gradient methods, and actor-critic methods.
Valued-based methods, e.g., Q-learning and its variants, learns
the policy indirectly by learning a value function, e.g., Qπ (x, u)
(Equation 2a) or Vπ (x) (Equation 2b), and takes the action
that maximizes the value function with exploration. γ is the
discount factor. Alternatively, one may use the advantage
function, Aπ (x, u) as given in Equation (2c), which could be
interpreted as how much a given action improve upon the
policy’s average behavior. The value function may be updated
via methods, such as Bellman backup (Sutton and Barto, 2018).
Value-based methods have been applied to HVAC control in

3While Richard Bellman’s notation is more commonly seen in RL literature (i.e.,
s-states, a-actions, r-rewards), we adopt Lev Pontryagin’s notation (i.e., x-states,
u-actions, c-costs) to be consistent with classical control literature.

works, such as Liu and Henze (2007), Dalamagkidis et al.
(2007), Yang et al. (2015), and Costanzo et al. (2016). A
major shortcoming of Q-learning is that it is only applicable
to problems with discrete action spaces. Thus, for problems
with continuous action spaces, i.e., a large portion of HVAC
control problems, each continuous action need to discretized
into a number of discrete actions, which needlessly enlarge the
action space.

Qπθ
(x, u) = Eπθ

[
∞
∑

k=0
γ krt+k|xt = x, ut = u

]

(2a)

Vπθ
(x) = Eπθ

[
∞
∑

k=0
γ krt+k|xt = x

]

(2b)

Aπθ
(x, u) = Qπθ

(x, u)− Vπθ
(x) (2c)

Policy gradientsmethods directly search for an optimal policyπ∗θ ,
using stochastic estimates of policy gradients, and are applicable
to problems with continuous action spaces. In this work, we used
Proximal Policy Optimization (PPO) (Schulman et al., 2017) as
our online learning algorithm, which is elaborated in section
3.2. Actor-critic methods, e.g., Advantage Actor-Critic (A2C),
Asynchronous Advantage Actor-Critic (A3C) (Mnih et al., 2016),
and Deep Deterministic Policy Gradient (DDPG) (Lillicrap
et al., 2015), are hybrids of the value-based and policy gradient
approaches. Actor-critic methods use a policy network to select
actions (the actor), and a value network to evaluate the action
(the critic). Actor-critic methods have been used for HVAC
control in Li et al. (2017), Zhang and Lam (2018), and Gao
et al. (2019). A2C and A3C use a Q-network as critic and thus
are only applicable to problems with discrete action spaces, i.e.,
the same drawback as Q-learning. DDPG, on the other hand, is
applicable to problems with continuous action spaces. Although
we classified PPO as a policy gradient method, one can and
should incorporate a critic for variance reduction and more
robust performance.

Alternatively, one can incorporate amodel of the environment
to improve the sample efficiency. Previously, it was believed
that model-based RL could not perform as well as model-
free RL asymptotically. But, recent work (Chua et al., 2018)
has shown that model-based RL can match the asymptotic
performance of model-free RL algorithms, while being
significantly more sample efficient. A common idea for
model-based RL is to simultaneously learn a model of the
environment and plan ahead based on the learned model. The
classical Dyna-Q (Sutton and Barto, 2018) is an example of such
approach. Developing upon the idea, people have modeled the
environment with Gaussian Process (Kamthe and Deisenroth,
2017), locally linear models (Watter et al., 2015), and neural
networks (Chua et al., 2018).

3.2. Proximal Policy Optimization
As discussed earlier, policy gradient methods directly optimize
the policy πθ to maximize the expected total reward (Equation
3a). To do that, these methods compute an estimate of
the policy gradient defined in Equation (3b) and optimize
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the objective with stochastic gradient ascent (Equation 3c).
Aside from the obvious benefit of being able to handle
continuous action spaces, policy gradients methods have several
advantages over value-based ones, as discussed in Sutton
and Barto (2018). Firstly, policy gradient methods can learn
both deterministic and stochastic policies, while there is
no natural way to learn stochastic policy with value-based
methods. Secondly, the policy may be a simpler function to
approximate, and thus policy-based methods typically learn
faster and yield a superior asymptotic policy. Finally, the choice
of policy parameterization is a natural way to inject domain
knowledge into RL.

θ∗ = argmax
θ

Eπθ

[
∞
∑

k=0
γ krt+k

]

(3a)

g := ∇θEπθ

[
∞
∑

k=0
γ krt+k

]

(3b)

θ ← θ + αĝ (3c)

A variety of policy gradient algorithms have been proposed in
the literature. Perhaps, REINFORCE (Sutton and Barto, 2018)
is the most well-known one. However, it suffers from large
performance variance and unstable policy updates (Schulman
et al., 2017). PPO (Schulman et al., 2017) is the most
recent work in a line of research that improved upon vanilla
policy gradient methods, including Natural Policy Gradients
(Kakade, 2002) and Trust Region Policy Optimization (TRPO)
(Schulman et al., 2015a). The intuition behind these methods
is that in each update the policy πθ should not change too
much. This idea is most clear with the objective of TRPO
(Equation 4), which is to maximize an importance weighted
advantage estimate, subject to a constraint on the size of the
policy update.

max
θ

Êt

[
πθ (ut|xt)

πθold (ut|xt)
Ât

]

s.t. Êt

[

KL
[

πθ (·|xt),πθold (·|xt)
]]

≤ δ

(4)

However, it is not straightforward to solve the optimization
problem posed in Equation (4), due to the constraint. PPO
simplified the problem using a surrogate objective, given in
Equation (5a). wt(θ) denotes the importance weighting of the

policy after and before the update, i.e., πθ (ut |xt)
πθold

(ut |xt) , and ǫ is a

hyperparameter. For ease of notation in future discussion, we
denote the negative of the objective as LPPO (Equation 5b).
PPO is known to be stable and robust to hyperparameters and
network architectures (Schulman et al., 2017). It was also shown
to outperform methods, such as A3C (Mnih et al., 2016) and
TRPO (Schulman et al., 2015a).

max
θ

Êt

[

min
(

wt(θ)Ât , clip(wt(θ), 1− ǫ, 1+ ǫ)Ât

)]

(5a)

LPPO(θ) = −Êt

[

min
(

wt(θ)Ât , clip(wt(θ), 1− ǫ, 1+ ǫ)Ât

)]

(5b)

There are a number of options one can use for the advantage
estimate Ât , including total rewards (Equation 6a), Q-function,
advantage function, and k-step TD residual (Equation 6b).
Schulman et al. (2015b) provides a thorough discussion on
possible options and the bias-variance trade-off of these options.

Ât,R =
∞
∑

k=0
γ krt+k (6a)

Ât,TD = −Vπ (xt)+
k−1
∑

l=0
γ lrt+l + γ kVπ (xt+k) (6b)

3.3. Differentiable MPC
Since the success of Mnih et al. (2013), it is common to
approximate the policy πθ (u|x) with a neural network. However,
a generic neural network does not encode any domain knowledge
on planning or system dynamics, which is abundant in existing
HVAC control literature. We hypothesized that encoding such
knowledge in the policy would expedite the learning process.

In this paper, we took advantage of a newly developed
Differentiable MPC policy (Amos et al., 2018) in place of a
neural network. In the forward pass, the Differentiable MPC
policy solves a box-constrained linear-quadratic regulator (LQR)
problem given in Equation (7). Specifically, it finds the optimal
trajectory, τ ∗1 :T = {x∗t , u∗t }1 :T , which minimizes the quadratic
cost function over the planning horizon 1 :T (Equation 7a) and
satisfies a linear model of the system dynamics (Equation 7b).
Furthermore, the DifferentiableMPC implementation allows one
to incorporate box constraints on the control action (Equation
7c). It is also possible to use the Differentiable MPC policy for
non-quadratic cost and non-linear dynamics with local linear
quadratic approximation.

τ ∗1 :T = argmin
τ1 :T

∑

t

1

2
τTt Ctτt + cTt τt (7a)

s.t. x1 = xinit, xt+1 = Ftτt + ft (7b)

u ≤ u ≤ ū (7c)

In the backward pass, the differentiable nature of the policy
allows us to update the model parameters end-to-end. The
learnable parameters are {C, c, F, f }. The derivatives of the loss
with respect to the model parameters can be obtained by
differentiating the Karush-Kuhn-Tucker (KKT) conditions of the
problem given in Equation (7), using the techniques developed
in Amos and Kolter (2017). While the LQR problem (Equation
7) is convex, optimizing an objective with respect to controller
parameters is not (Amos et al., 2018). This is analogous to
the dual-estimation problem formulation in Adaptive MPC, i.e.,
simultaneously estimating states and parameters. Even for a
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linear system, the dual-estimation problem yields a non-convex
problem (Fux et al., 2014).

4. APPROACH

The overall framework of our approach is summarized in
Figure 1. To make our agent precocial, we took advantage of
domain knowledge on HVAC control and expert demonstration
from existing controllers. Specifically, a Gnu-RL agent utilizes a
Differentiable MPC policy, which encodes domain knowledge on
planning and system dynamics. The training includes two phases:
offline pretraining and online learning. In the offline pretraining
phase, the agent is initialized by imitating the historical state-
action pairs from the existing controller. Using this approach,
the Gnu-RL agent learns to behave similarly to the existing
controller, without any interaction with the environment. Thus,
the pretrained agent is precocial and may be deployed into a real-
world environment directly with minimal disturbance to normal
operation. In the online learning phase, the agent interacts with
the environment and improves its policy using a policy gradient
algorithm. While the agent already performs reasonably well at
the onset of online learning phase, it continues to fine-tune its
policy based on new observations.

We first formulate the HVAC control problem (section 4.1),
and then elaborate on the procedures used to train the agent
during the offline pretraining phase (section 4.2) and the online
learning phase (section 4.3).

4.1. Problem Formulation
We adapt the problem formulation in the Differentiable MPC
policy (i.e., Equation 7) to HVAC control. We use a linear model
for the system dynamics, as shown in Equation (8a). Though
building thermodynamics are non-linear in nature, we assume
that it may be locally linearized for the state-action space and
the temporal resolution that we are interested in Privara et al.
(2013). We define the state xt as the zone temperature and the
action ut depends on the specific problem. One should choose
the action such that it is consistent with the linear assumption
or linearize it to be so. Besides the state xt and the control
action ut , we also consider uncontrollable disturbances dt , such
as weather and internal thermal gains. We define the number
of states, actions, and disturbances as m, n, p, respectively. Thus,
xt ∈ R

m, ut ∈ R
n, dt ∈ R

p, A ∈ R
m×m, Bu ∈ R

m×n, and
Bd ∈ R

m×p. Equation (8a) can be written in the form of Equation
(7b), as shown in Equation (8b). While the original formulation
of Differentiable MPC policy learns ft , we only learn Bd since
the disturbances may be supplied by predictive models. Thus,
the learnable parameters θ are {A,Bu,Bd}, which characterize the
building thermodynamics. Compared to using a neural network
policy, the number of free parameters is drastically reduced and
the policy is interpretable to engineers. At each time step t, we
provide the agent with predictive information on disturbance for
the planning horizon, i.e., dt : t+T−1.

xt+1 = Axt + Buut + Bddt (8a)

=
[

A Bu
]

︸ ︷︷ ︸

F

[

xt
ut

]

︸ ︷︷ ︸

τt

+Bddt
︸︷︷︸

ft

(8b)

Our objective (Equation 9) is to minimize energy consumption,
while maintaining thermal comfort. We balance relative
importance of thermal comfort and energy with hyperparameter
η. One may choose different values of η for occupied and
unoccupied periods. We use the quadratic different difference
between actual zone temperatures and setpoints as a proxy for
thermal comfort, and thusOt = ηtIm and pt = −ηtxt,setpoint. The
cost with respect to actions may be defined based on the specific
problem; some options may be Rt = In or st = E1. Similarly,
Equation (9a) can be written in the form of Equation (7a), as
shown in Equation (9b). The Differentiable MPC allows for a
learnable cost function, but we assume the cost function to be
specified by engineers.

Ct(xt , ut) =
1

2
xTt Otxt + pTt xt +

1

2
uTt Rtut + sTt ut (9a)

= 1

2

[

xTt uTt
]

︸ ︷︷ ︸

τTt

[

Ot 0
0 Rt

]

︸ ︷︷ ︸

Ct

[

xt
ut

]

︸︷︷︸

τt

+
[

pTt sTt
]

︸ ︷︷ ︸

cTt

[

xt
ut

]

︸︷︷︸

τt

(9b)

There are some finer points that we need to highlight. The
Differentiable MPC policy outputs the optimal trajectory over
the planning horizon, i.e., τ ∗t : t+T−1 = {x∗t , u∗t }t : t+T−1. However,
we only take the first optimal action u∗t and re-plan at the next
time step based on new observations. This avoids compounding
model error over time. We use the re-planning procedure for
both offline pretraining and online learning. Moreover, since the
HVAC control problems we are interested in have continuous
action spaces, we use a Gaussian policy (Sutton and Barto, 2018)
around the optimal action u∗t (Equation 10). σ can be interpreted
as the amount of exploration.

ût ∼ πθ (u|x) =
1√
2πσ 2

exp

(

− (u− u∗t )
2

2σ 2

)

(10)

It should be noted that Amos et al. (2018) demonstrated
the Differentiable MPC policy in the context of imitation
learning, which is a supervised learning problem. Here we
extended it to policy learning, which is generally considered as
a harder problem.

4.2. Offline Pretraining
Imitation learning is a supervised approach for an agent to
learn a policy. The premise is that it is easier for the expert to
demonstrate the desired behavior, compared to asking the expert
to encode or fine-tune a policy (Silver et al., 2010). In an HVAC
control application, the existing controller can be considered as
the expert and the historical state-action pairs logged in BAS as
expert demonstrations. Specifically, the agent learns the mapping
between states to actions, i.e., the policy πθ (u|x), using expert
demonstrations as ground truth.

In behavior cloning, one minimizes the mean squared error
(MSE) loss between the expert actions and learner actions.
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Since the Differentiable MPC policy also produces next-state
predictions, we minimized the MSE loss between the states and
actions from the expert and our agent simultaneously, as given
by Equation (11). ut and ût are the actions from the expert and
the learner, respectively. xt+1 and x̂t+1 are the actual next state
vs. the next state predicted by the learner. The hyperparameter
λ balances the relative importance of actions and next-state
predictions. For instance, the engineer can choose a larger λ, if he
has limited confidence on the actions of the existing controller.
The procedures for offline pre-training are outlined in Algorithm
1. We can repeat the procedures in Algorithm 1 for a suitable
number of epochs. For parameter selection, we make a train-test
split over the expert demonstrations and select θ̂ with the smallest
test loss.

LImit(θ) =
∑

t

λ||xt+1 − x̂t+1||22 + ||ut − ût||22 (11)

Algorithm 1: Offline Pre-training—Imitation Learning.

Input: A Differentiable MPC policy πθ ;
Expert demonstrations X, U;

Randomly initialize policy parameter θ = {A,Bd,Bu};
for i= 0, . . . , # Episodes do

for t= 0, . . . , # Steps do
ût = πθ (xt);
x̂t+1 = fθ (xt , ut);

end

θ ←− θ − α∇θLImit(θ);
end

Output: A pre-trained policy, πθ̃

4.3. Online Learning
We adopt a policy gradient algorithm for this paper, because
it integrates naturally with the Differentiable MPC policy. To
elaborate, one can replace a neural network with a Differentiable
MPC policy, and update model parameters, θ , using the same
approach as laid out in Equation (3). The procedures for online
learning with PPO are outlined in Algorithm 2.

As mentioned in section 3.2, there are a number of possible
choices for advantage estimate Ât . In our prior work (Chen
et al., 2019), we used the total rewards (Equation 6a) for ease
of implementation. But, this option also results in the largest
variance. On the other hand, using advantage function results
in the smallest variance, but the advantage function must be
learned first (Schulman et al., 2015b), which is problematic given
we want our agent to be precocial. A good compromise may be
the baselined version of total rewards given in Equation (12),
where π0 refers to the policy from the existing controller and
Vπ0 is its value function. Vπ0 can be learned offline based on
historical data. Since Vπ0 is not a function of θ , ∇θVπ0 = 0.
Thus, offset a baseline from the total rewards reduces variance
without introducing a bias. The intuition of this formulation is
well-explained in Jia et al. (2019). Due to nature of HVAC control

problem, the rewards fluctuate with weather and operation
condition, e.g., occupied and unoccupied, regardless of the policy.
To reduce variance from using raw rewards, one can use offset
the rewards by those that would have been obtained by the
existing controller. This reformulates the original objective of
maximizing expected total reward to improving upon the policy
of the existing controller.

Ât =
∞
∑

k=0
γ krt+k − Vπ0 (xt) (12)

Algorithm 2: Online Learning—PPO (Modified from
Schulman et al., 2017).

Input: A pretrained policy, πθ̃ ;
for i= 0, . . . , # Episodes do

θold ← θ ;
for t= 0, . . . , # Steps do

ût = πθ (xt);
xt+1, rt+1 = env.step(ût);

end

Compute Ât ;
With minibatch of size M;

θ ←− θ − α∇θLPPO(θ);
end

5. EXPERIMENT 1: SIMULATION STUDY
ON COMMERCIAL REFERENCE
BUILDINGS

We validated that our proposed approach is indeed a practical
and scalable solution for HVAC control. We also show our
approach is generalizable across different buildings, by applying
it to the warehouse, the small office, and the medium
office from the DOE commercial reference buildings (Deru
et al., 2011).We demonstrated that the DifferentiableMPC policy
is superior to a generic neural network policy, in that it is
interpretable, more sample efficient, and has smaller performance
variance. Specifically, we compared the Differentiable MPC
policy to a long short-term memory (LSTM) network, with
reference to Wang et al. (2017). Finally, we established two
performance baselines for benchmarking the RL agents: an
optimal LQR, i.e., the theoretical performance upper bound,
and a PI controller, which is representative of controllers in
existing buildings.

5.1. Simulation Environments
The simulation environments used in this experiment are
based on the warehouse, the small office, and
the medium office from DOE commercial reference
buildings. We utilized OpenBuild (Gorecki et al., 2015),
a toolbox for co-simulation and controller design, for
fast prototyping of controllable environments based on the
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TABLE 1 | Dimensions of the state space models of the warehouse, the small

office, and the medium office; Only the zone temperatures, i.e., the states,

are observable, while the temperature at the other thermal nodes are not.

Warehouse Small office Medium office

# of thermal nodes (l) 99 144 358

# of states (m) 2 5 15

# of actions (n) 2 5 15

# of disturbances (p) 27 57 85

EnergyPlus models. OpenBuild abstracts away the complexity
of HVAC system and allows control over the heat flux to
zones of the building directly. Furthermore, OpenBuild
creates a linear state space model (SSM) of the building
thermodynamics, such that the optimal performance may be
calculated analytically to benchmark the performance of our
proposed approach.

Each linear SSM is created based on the RC modeling
framework, where the building envelope is represented as a
connected graph of thermal nodes. We denote the temperature
at these thermal nodes as zt ∈ R

l, where l is the number of
thermal nodes. The disturbance dt to each thermal node includes
weather and internal thermal gains from lighting, equipment,
and occupancy. Both the RC model parameters and disturbances
are calculated based on building and weather descriptions from
the EnergyPlus files. We tabulated the dimensions of the SSM
created by OpenBuild in Table 1.

We assume that only the zone temperatures xt are observable.
As one can see in Table 1 the number of zones is much smaller
than that of the thermal nodes, i.e., m << l. The actions ut
are the heat flux to each zone, and thus m = n and Bu is
a square matrix for each environment. For all three buildings,
we conducted the experiment on Typical Meteorological Year
3 (TMY3) weather sequence (Wilcox and Marion, 2008) in
Chicago. For this experiment, we defined the cost function as in
Equation (13) and use a constant η = 10.

Ct(xt , ut) =
η

2
||xt − xt,setpoint||22 +

1

2
||ut||22 (13)

5.2. Implementation Details
All three environments used a 15-min simulation and control
time step. Both the Gnu-RL agent and the LSTM agent plan
ahead for 6 steps, i.e., a 1.5-h planning horizon. We considered
each calendar day as an episode and each calendar year as an
epoch. To making training easier, particularly for the LSTM
policy, we incorporated an episodic reset mechanism, i.e., the
temperature at all thermal nodes was reset to setpoint at the
beginning of each day. This prevents the agent from being stuck
at undesirable state-space for excess amount of time. We used
min-max normalization to normalize all disturbance terms to 0–
1. We also provided the agent with ground truth information on
future disturbances.

RL for all our experiments4 was implemented in PyTorch
(Paszke et al., 2017). Following Amos et al. (2018), we used
RMSprop (Tieleman and Hinton, 2012) as the optimizer for the
Differentiable MPC policy and ADAM (Kingma and Ba, 2014)
as the optimizer for the LSTM policy. The LSTM policy has 2
layers, each with 32 units and ReLU activation. To have a fair
comparison, the LSTM policy has the same input and output as
the Differentiable MPC policy, i.e., input = {xt , dt : t+T−1} and
output= {ut : t+T−1}.

All experiments were repeated over five random seeds. For
offline pretraining, we used a learning rate of 1 × 10−3, except
for the Gnu-RL agent in the small office, where we used a
learning rate of 1×10−2 due to the particularly bad initialization.
For the Differentiable MPC policies, we initialized A and Bu to
be identity matrix and randomly initialized Bd with a uniform
distribution over [0, 0.1]. The LSTM policies were initialized
by PyTorch defaults. While we minimizes the imitation loss
during offline pretraining, we evaluated the performance directly
by letting the agents control the environment. Specifically, we
froze the policy every 100 episodes and let the agent control the
environment with a reduced amount of exploration, i.e., σ =
0.1. We report the mean and standard deviation of the episodic
rewards over 30 randomly sampled episodes.

For online learning, we used a learning rate of 2.5 × 10−4 for
the Differentiable MPC policy, and a learning rate of 5 × 10−4

for the LSTM policy. We evaluated the performance following
the same procedure as in offline pretraining, i.e., we evaluate
the policy every 100 episodes and report the mean and standard
deviation of rewards over 30 episodes. We re-scaled the reward
to be around 1, for better performance (Henderson et al., 2018).
For hyperparameters, we used γ = 0.8, ǫ = 0.1, and M= 48. For
the Differentiable MPC policy, we used a σ that linearly decayed
from 1 to 0.1. For the LSTM policy, we let the neural network
learn σ simultaneously.

The results for both offline pretraining and online learning are
summarized in Figure 4, where we compared the performance
of the Differentiable MPC policy with that of the LSTM policy.
For each experiment, we average the mean and the standard
deviation of episodic rewards over the five runs and show the
confidence interval of one standard deviation around the mean.
At the same time, we also plotted the performance of individual
runs with a thinner line weight. For ease of comparison, we
normalize all rewards by that of the PI controller for the
corresponding environment.

We also compared the performance of RL agents with two
baselines: an optimal LQR and a PI controller.

5.2.1. Optimal LQR
Since OpenBuild linearized the system dynamics, one can derive
the optimal performance analytically for each environment with
LQR. We assume the LQR has ground truth parameters of the
model, full observability over all the thermal nodes zt , and perfect
predictive information of disturbances. These assumptions are
not realistic. But, this provides us with a theoretical upper bound
for the control performance.

4The code is available at https://github.com/INFERLab/Gnu-RL
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FIGURE 4 | Summary of the experiments on the warehouse, the small office, and the medium office; Each experiment is repeated over five random seeds.

The performance of our proposed Gnu-RL agent is compared to a LSTM policy, during offline pretraining and online learning. We also include two baselines: an

optimal LQR and a PI controller. All rewards are normalized by that of the PI controller for the corresponding environment.

5.2.2. PI Controller
For a more realistic performance baseline, we developed a PI
controller for each zone with MATLAB PID tuner (Mathworks,
2020) based on ground truth model parameters. This is
representative of controllers in existing buildings. Furthermore,
we simulate state-action pairs with these PI controllers as
expert demonstration.

5.3. Results: Offline Pretraining
In the offline pretraining phase, the agents were pretrained by
imitating expert demonstration from the PI controllers. We
trained all agents for 5 epochs, i.e., we go through 1-year
worth of expert demonstration for five times. As shown in
Figure 4, the performance had plateaued by then. By the end of
offline pretraining, the Gnu-RL agents were performing similarly
to the PI controllers. In fact, the Differentiable MPC policy
outperformed the PI controller in the warehouse and the
medium office. We hypothesize that the domain knowledge
encoded in the Differentiable MPC policy enabled the agent

to extrapolate beyond expert demonstration. While the Gnu-
RL agent in the small office was not performing as well
as the PI controller, it drastically improved upon its poor
initial performance. Furthermore, given the same information,
the Differentiable MPC policy achieved significantly better
performance than its LSTM counterpart. This phenomenon
was also observed in Amos et al. (2018). Due to its encoded
knowledge, the Differentiable MPC policy was able to learn with
lower sample complexity compared to a neural network. Finally,
the Differentiable MPC policy has much smaller performance
variance than the LSTMpolicy, which is desirable in practice. The
same characteristics was also observed during online learning.

Note that the Differentiable MPC policies were initialized in
the same way for the three environments, which worked well
for the warehouse and the medium office, but not for the
small office. This implies the initialization scheme should
be based on the specific environment. Since the parameters
could be trapped in local minimal, it is preferable to initialize as
well as possible. Engineering estimates of the parameters, which
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have well-defined physical meaning, may be a more appropriate
initialization scheme.

5.4. Results: Online Training
In the online training phase, the agents continue to improve
their policies through direct interaction with the environment.
We trained all agents for 5 epochs, i.e., we go through the
TMY3 weather sequence five times. As shown in Figure 4, the
Gnu-RL agents in the warehouse and the medium office
were already performing better than the PI controller at the
onset of online training phase and thus they basically provided
energy savings and/or comfort improvement for free. On the
other hand, the LSTM policy consistently under-performed the
Gnu-RL agents over the 5-years training period. In fact, the
best-performing LSTM policy only approached the performance
of the PI controller in the warehouse at the end of 5-years
training period. Theoretically, a sufficiently expressive neural
network policy would eventually outperform the model-based
Differentiable MPC policy. But, that is not meaningful for
practical applications.

In the warehouse, the Gnu-RL agent improved its
performance approaching the optimal. But, we also see
fluctuations in performance. This may be a result of learning
rate being too large, when the performance was already close to
optimal. The performance of the Gnu-RL agent in the small
office suffered due to the poor initialization. Regardless, the
agent improved its policy and approached the performance of
the PI controller over time. This again highlights the importance
of having a reasonably good initialization. Alternatively, other
improvements may be available to expedite the learning.
In the medium office, the performance curves for both
the Gnu-RL agent and the LSTM policy were close to flat
throughout the training period. We hypothesize the large state-
action space of this environment makes convergence difficult
(Liu and Henze, 2006).

6. EXPERIMENT 2: SIMULATION STUDY
ON INTELLIGENT WORKSPACE

We also validated our approach in a simulation environment
with detailed HVAC system. Specifically, we trained and
evaluated our agent using the EnergyPlus model from Zhang
and Lam (2018), which was modeled after the Intelligent
Workspace (IW) on CarnegieMellon University (CMU) campus.
For offline pretraining, we used a baseline P-controller for
expert demonstration and simulated the state-actions pairs under
the TMY3 weather sequence, from Jan. 1st to Mar. 31st. We
pretrained our agent on the simulated state-action pairs. For
online learning, We deployed our agent in the simulation
environment, using the weather sequence in 2017 from Jan.
1st to Mar. 31st. Since the simulation environment, the state-
action space, and the weather sequence for training and testing
are the same as those in Zhang and Lam (2018), our results
are directly comparable. However, Zhang and Lam (2018)
assumed the existence of a high-fidelity model for training,

FIGURE 5 | Simulation testbed based on Intelligent Workspace. (A) Is a

geometric view of the EnergyPlus model rendered by OpenStudio (Guglielmetti

et al., 2011), and (B) Is a schematic of the water-based radiant heating system.

while we only assumed the existence of historical data from the
existing controller.

To understand how our approach compare to MPC, we
compared imitation learning with system identification during
the offline pretraining stage, and policy gradient methods
with Adaptive MPC during the online learning stage. In the
offline pretraining phase, we initialized our agent with imitation
learning. In comparison, it is possible to initialize the agent
with system identification using the same information. System
identification is the class of methods that estimate model
parameters of a dynamic system based on input and output
signals (Ljung, 1999). Specifically, prediction error methods
(PEM) look for parameters that minimize the difference between
predicted states and observed states. For online learning, we
compared our approach to Adaptive MPC. RL algorithms update
model parameters end-to-end, with the objective of maximizing
expected reward. On the other hand, it is also possible to update
parameters online using Adaptive MPC, with the objective of
minimizing prediction error (Fux et al., 2014; Maasoumy et al.,
2014).

6.1. Simulation Testbed
The IW (Figure 5) is a 600 m2 multi-functional space, including
a classroom, a common area, and offices. We used the same
EnergyPlus model used in Zhang and Lam (2018), which was
calibrated against operational data. In this experiment, we
controlled the water-based radiant heating system. Figure 5B
shows a schematic of the system and the control logic. The hot
water is supplied by a district heating plant. The supply water
(SW) flow is kept constant and the supply water temperature
is controlled by a P-controller to maintain zone temperature.
We trained our agent to control the supply water temperature
in place of the existing P-controller during the heating season.
The allowable range of supply water temperature is 20–65◦C.
The variables considered for this problem are listed in Table 2.
The cost function used for this experiment and the real-world
experiment presented in section 7 in given in Equation (14).

Ct(xt , ut) =
ηt

2
||xt − xt,setpoint||22 +

1

2
||ut||1 (14)
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TABLE 2 | The state, action, and disturbance terms defined for the simulation

study on Intelligent Workspace, a 600 m2 multi-functional space.

X-state Zone temperature (◦C)

U-Control Action SW temperature (◦C)

D-Disturbance Outdoor air temperature (◦C)

Outdoor air Relative Humidity (%)

Diffuse solar radiation (W/m2)

Direct solar radiation (W/m2 )

Occupancy flag

Wind speed (m/s)

6.2. Implementation Details
The implementation details are the same as section 5.2, unless
specified otherwise. We used the OpenAI Gym (Brockman
et al., 2016) wrapper for EnergyPlus developed in Zhang and
Lam (2018) to interface with the simulation environment. The
EnergyPlus model has a 5-min simulation time step. Following
Zhang and Lam (2018), each action was repeated for three times
(a 15-min control time step). The agent plans ahead for 12 steps
(a 3-h planning horizon).We shifted the 20–65◦C range of supply
water temperature setpoint to 0–45◦C for the control action. We
used η = 3 during occupied periods and 0.1 during unoccupied
periods. For offline pre-training, we used a learning rate of 1 ×
10−4 and a λ of 100. λ was adjusted so that loss from states and
loss from actions were about the same magnitude. During online
training, we used a learning rate of 5× 10−4.

6.3. Results: Offline Pretraining
6.3.1. Existing vs. Baseline P-Controller
The existing P-controller for supply water temperature operates
24/7, which is not the intended behavior for our agent and is not a
fair comparison5. Instead, we modified the existing P-controller
to be operational only during occupied periods, and call it the
baseline P-controller. We simulated state-action pairs using the
baseline P-controller under TMY3 weather sequence from Jan.
1st to Mar. 31st, as expert demonstrations.

We compared the performance of initializing model
parameters, i.e., θ = {A,Bu,Bd}, with imitation learning and
system identification. We used PEM for system identification,
as described in Privara et al. (2013). We assumed the same
model (Equation 8a) and used the same time series for both
initialization schemes. We evaluated the performance of the
two initialization schemes by letting the pretrained agents
control the simulation environment under the TMY3 weather
sequence, with fixed parameters. Figure 6 shows the behavior of
the initialized agents over a 5-days period, neither of which had
interacted with the environment before. The agent initialized
with imitation learning behaved similarly to the baseline P-
controller and tracked temperature setpoint well. The agent
initialized with system identification, however, consistently

5To illustrate the control strategy used by the existing P-controller, we included the
data traces from the actual system from Jan. 1 to Jan. 4, 2017 in Figure 7.

FIGURE 6 | Comparison of two initialization schemes: imitation learning vs.

system identification (evaluated on TMY3 weather sequence); The agent

initialized with imitation learning behaved similarly to the baseline P-controller,

while the agent initialized with system identification consistently

underestimated the heat requirement. Both agents were initialized with the

same information, i.e., export demonstration from the baseline P-controller.

underestimated the amount of heating required, despite its small
prediction error (RMSE= 0.15◦C).

The poor performance of the agent initialized with system
identification is not surprising, as the experimental conditions
required for accurate identification of building systems fall
outside normal building operations (Agbi et al., 2012). In
practice, excitation signals from actuators were often necessary to
identify model parameters (Prívara et al., 2011; Agbi et al., 2012).
However, such procedure requires careful design of experiments
(Agbi et al., 2012) and may disturb normal operation. Instead,
we successfully initialized the agent with imitation learning on
observational data, which neither required experimentation nor
disturbed occupants. The superior performance of imitation
learning can be attributed to the fact that the agent imitated the
expert on top of learning system dynamics. Learning how the
expert would have acted under a given circumstance was directly
relevant to the control task.

6.4. Results: Online Training
After pretraining, our agent controlled the environment using the
actual weather sequence in 2017. The left hand side of Figure 7
shows the behavior of Gnu-RL at the onset of training for a 4-days
period. Gnu-RL already knew how to track temperature setpoint
as well as the baseline P-controller, despite the fact that it had not
interacted with the environment before. In comparison, a recent
publication on the same environment (Zhang and Lam, 2018)
took 47.5 years in simulation to achieve similar performance to
the existing controller.

The results with comparison to Zhang and Lam (2018) are
tabulated in Table 3. The heating demand and predicted percent
dissatisfied (PPD) were calculated by EnergyPlus. Similar to
Zhang and Lam (2018), we only considered PPD during occupied
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FIGURE 7 | Performance of the Gnu-RL agent at the onset of deployment; The Gnu-RL already tracked temperature setpoint as well as the baseline P-controller.

TABLE 3 | Comparison of performance during online learning phase.

Heating

demand

PPD

mean

PPD

SD

(kW) (%) (%)

Existing P-Controller (Zhang and Lam, 2018) 43,709 9.45 5.59

Agent #6 (Zhang and Lam, 2018) 37,131 11.71 3.76

Baseline P-Controller 35,792 9.71 6.87

Gnu-RL 34,687 9.56 6.39

Gnu-RL + LPEM 24,901 18.77 12.48

periods. Our agent saved 6.6% energy and better maintained
comfort compared to the best performing RL agent in Zhang and
Lam (2018). To understand where the energy savings come from,
we show a close-up view of the state-action pairs over a single day
on the right hand side of Figure 7.While the baseline P-controller
heats up the space following a fixed occupancy schedule, Gnu-RL
preheats the space prior to occupancy and lets temperature float
toward the end of occupancy. This explains the savings with
respect to the baseline P-controller. It is worth noting that the
preheating behavior was not present in the baseline P-controller.
The knowledge embedded in the Differentiable MPC policy
enabled our agent to extrapolate beyond expert demonstration.

Our approach findsmodel parameters that maximize expected
reward using a policy gradient algorithm. Alternatively, Adaptive
MPC updates model parameters online byminimizing prediction
error. We compare the performance of two approaches with their
respective objectives: minimizing prediction error (Equation 15)
and maximizing expected reward (Equation 5). To minimize
prediction error, we use the same procedures as in Algorithm 2,
but use LPEM in place of LPPO. Both agents are initialized with
the same parameters from imitation learning.

LPEM(θ) =
∑

t

(xt+1 − x̂t+1)2 (15)

FIGURE 8 | Comparison of two approaches Policy Gradient (LPPO) vs.

Adaptive MPC (LPEM ); While optimizing LPEM resulted in consistently smaller

prediction error, optimizing LPPO resulted in larger overall reward.

Figure 8 compares the performance of optimizing two different
objectives over time. Because the rewards are also a function of
the weather sequence, we show the difference between rewards
from the agent and that from the baseline P-controller, which
we call residual reward. While optimizing LPEM resulted in
consistently smaller prediction error, optimizing LPPO resulted
in larger overall reward. Table 3 also shows that the PEM agent
failed to maintain comfort, despite its small prediction error.
One way to interpret this result is that minimizing prediction
error is only a surrogate for learning a control policy (Amos
et al., 2018). It is clear from the comparison that small prediction
error does not necessarily translate to good control performance.
We observed a similar result in section 6.3. Another common
observation from both comparisons is that it is highly-effective
to directly optimize the task objective, whether it is imitation
or control.
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FIGURE 9 | Real-world testbed. (A) Is a photo of the conference room, and

(B) Is a schematic of the VAV under control.

TABLE 4 | The state, action, and disturbance terms defined for controlling a

real-world conference room.

X-state Zone temperature (◦F)

U-control action Supply airflow (CFM)

D-disturbance Outdoor air temperature (◦F)

Discharge air temperature (◦F)

Occupancy flag

Occupancy count

7. EXPERIMENT 3: REAL-WORLD
DEPLOYMENT

Given the promising results in our simulation studies, we
repeated our experiment in a real-world conference room on
campus, during Jun. 5th-Jun. 25st, 2019 to validate that our
approach can make possible real-world deployment of RL for
HVAC control with no prior information other than historical
data. While the procedure here follows the same framework,
there are additional challenges from a real-world deployment.
Firstly, the existing controller in our testbed is not able to
track temperature setpoint well. Thus, our agent needed to
learn from sub-optimal expert moves. Secondly, real-world
deployment demands a higher-level of robustness compared
to simulation study. For instance, the agent’s intended actions
are not necessarily the same as the actions taken, e.g., there
is a 1–2 min delay with the BAS interface. Finally, RL is
sensitive to hyperparameters and other implementation details
(Henderson et al., 2018). However, it is difficult to fine-tune
these design choices in a real-world deployment. We resorted
to using the implementation details that worked well for
the simulation study (section 6.2) unless specified otherwise,
although the implementation details may not be optimal for this
specific problem.

7.1. Testbed
The conference room is a 20 m2 single-zone space (Figure 9)
controlled by a variable air volume (VAV) box. Figure 9B shows
a schematic of the system and the control logic. In the cooling
season, the VAV box discharges a variable volume of cool air into
the room. The cool air is supplied by an air handling unit (AHU)
at 55◦F. In this experiment, we controlled the amount of airflow

that was supplied to the room. We let the existing PID controller
determine the damper position to meet our proposed airflow
setpoint. The VAV box is also equipped with a hot-water-based
reheat coil, which was kept closed throughout the experiment for
energy efficiency. The variables used in the problem is listed in
Table 4. In the existing control logic, the maximum allowable
airflow is 200 CFM, and the minimum allowable values are
10 CFM for unoccupied periods and 35 CFM for occupied
periods. We followed the same upper and lower bounds for our
control action.

7.2. Implementation Details
The implementation details are the same as in section 6.2,
unless specified otherwise. We used the same 15-min control
time step. But, the thermal response of the real-world testbed is
faster than the simulation one, due to the difference in system
configuration. On hindsight, a smaller control time step may be
more appropriate. We normalized both our disturbance terms
and control actions to the range of 0–1. Due to the different scales
of state-action space from the simulation experiment, we used
η= 2 during occupied periods and 0.01 during unoccupied ones.

For offline pre-training, we used a learning rate of 1 × 10−3

and a λ = 0.1. For online learning, we used PI DataLink
(OSIsoft, 2019) to access real time observations from BAS and we
modified the existing control program to use the command we
published. The parameters were updated every day at midnight.
The conference room needs to be booked in advance, which
gave us predictive information on occupancy. At the same time,
the conference room is equipped with a depth-image-based
occupancy sensor (Munir et al., 2017), which enabled our agent to
adjust to unscheduled occupancy. To be conservative, the agent
cools the space if there is either a scheduledmeeting or occupancy
based on the sensor. For predictive information on weather, we
pulled weather forecast at the start of each day using Dark Sky
API (Dark Sky, 2020). After we decided on the experimental
testbed, we discovered that there was likely a leakage in the hot
water supply for the reheat coil. As a result, the discharge air
temperature is inversely proportional to the amount of airflow
in the range of 56 to 65◦F. Having a disturbance term that is a
function of control action adds complexity to the environment.
In practice, we assumed the discharge air temperature to be the
current observed value for the entire planning horizon.

7.3. Results: Offline Pre-training
We used the time sequences fromMay 1 to August 31 in 2017 and
2018 for training and testing, respectively. We manually selected
days where the controller tracks the temperature reasonably well:
20 days from 2017 for training and 13 days from 2018 for testing.
Again, We pre-trained our agent using imitation learning. We
repeated the procedures in Algorithm 1 over 20 epochs and
picked the set of parameters with smallest test loss. TheMSEwere
0.1 and 0.028 for the state and normalized action, respectively.

7.4. Results: Online Training
Figure 10 shows how our agent’s behavior evolved over the
3-weeks experiment period. Each snapshot shows the state-
action pairs over a 1-day period. Initially (6/10), our agent
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FIGURE 10 | Performance of the Gnu-RL agent during a 3-weeks real-world deployment; The Gnu-RL agent continuously improved its policy over time.

TABLE 5 | Summary of results for real-world deployment.

Cooling demand OAT IAT

Mean SD RMSE

(kWh) (◦F) (◦F) (◦F)

Existing controller Jun. 2017 169.4 69.6 6.9 2.4

Jun. 2018 130.7 71.9 7.1 2.7

Normalized 99.4 – – –

Gnu-RL 82.8 69.9 6.2 1.02

knew to pre-cool the space before scheduled occupancy, but it
tended to overshoot. At Week 2 (6/17), the agent was no longer
overshooting. But, it consistently underestimated the amount of
cooling required to maintain temperature. By the end of the
experiment (6/24), the agent was tracking setpoint reasonably
well despite the varying number of occupants. Also shown in
Figure 10, there were quite a few discrepancies between the
meeting schedule and the real-time occupancy counts. Other
than that, there were also counting errors from the occupancy
sensor. For example, there is a positive cumulative counting error
toward the end of 6/17.

The performance of our agent with comparison to the existing
controller, which follows a fixed occupancy schedule from 6 a.m.
to 10 p.m., is summarized in Table 5. The Gnu-RL agent saved
16.7% of total cooling demand compared to the existing control
strategy, while tracking temperature setpoint significantly better.
It should be noted that the cooling demand is not proportional
to the energy consumption. The total cooling demand6 of the
existing controller is calculated using the historical data from
Jun. 2017 and 2018 and is normalized for the duration of the
experiment and outdoor air temperature (OAT), following the

6The cooling demand is calculated as Q̇ = cṁ1T, where Q is the cooling demand,
c is the specific heat of air, m is the amount of airflow, and 1T is the difference
between mixed air temperature and supply air temperature from the AHU. Mixed
air is the mixture of recirculation air and outdoor air.

Weather Normalized Method suggested by Energy Star (Energy
Star, 2018). Since it is difficult to calculate PPD for the real-world
deployment, we used the RMSE between indoor air temperature
(IAT) and setpoint as a proxy for comfort and evaluate it only
during occupied periods.

8. DISCUSSION AND CONCLUSIONS

We proposed Gnu-RL, a precocial RL agent that is capable of
controlling HVAC at “birth.” To achieve this, we bootstrapped
our agent with domain knowledge and expert demonstration.
We demonstrated in both simulation studies and a real-
world deployment that Gnu-RL had reasonably good initial
performance and continued to improve over time. Firstly, we
demonstrated that the Gnu-RL agent is scalable, by applying
it to three different buildings. Furthermore, we showed that
the Differentiable MPC policy is superior to a LSTM policy
in that it is interpretable, more sample-efficient, and has
smaller performance variance. In another simulation study, we
benchmarked our approach to a recent publication, and our
agent saved 6.6% energy compared to the best performing RL
agent in Zhang and Lam (2018), while maintaining occupants’
comfort better. We also compared our approach to alternatives,
i.e., system identification and Adaptive MPC, and demonstrated
that it is more effective to optimize task objectives end-to-
end. In the real-world conference room, where Gnu-RL was
deployed for a 3-weeks period, it saved 16.7% of cooling
demand compared to the existing controller, while tracking the
temperature setpoint better.

All the energy savings were achieved without the need for a
high-fidelity model. Thus, to use our approach in practice, an
engineer only needs to identify the state, action, and disturbance
terms of interest and define the cost function. The only prior
information we used was historical data from the existing
controllers. While we discussed our approach in the context of
HVAC, it is readily transferable to the control of other building
systems. Furthermore, the requirement of historical data does not
preclude the usage of this method on new buildings. Since, there
are only a small number of free parameters and these parameters
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have well-defined physical meaning, it is straightforward to
initialize these parameters with engineering calculations.

In summary, our proposed approach, Gnu-RL, was shown
to be a promising practical and scalable RL solution for HVAC
control. However, there are many potential improvements to
explore in future work, starting by relaxing some of the
assumptions made here. For example, we assumed that future
occupancy information was available, which is seldom the case.
As future work, we will incorporate a probabilistic occupancy
model into the RL framework. For reference, Levine (2018)
presented the close connection between RL and probabilistic
graphical models. Similarly, we assumed that building systems
can be locally linearized. The assumption worked for the
problems we considered, but it may or may not extrapolate to
more complex problems.

Additionally, we identified a few directions for further
research. Firstly, there is a need for standardized evaluation,
including common simulation testbeds, baseline controllers, and
evaluation procedures, such that researchers can compare their
results on equal footings. As a step toward this direction, we
conducted a simulation study in the same environment as in
Zhang and Lam (2018), along with the same state-action space
and weather sequence, making our results comparable. We
also make our code publicly available at https://github.com/
INFERLab/Gnu-RL. Regarding evaluation procedures, we refer
readers to Henderson et al. (2018), which provided a thorough
discussion on the challenges in reproducing RL results, along
with recommendations.

Secondly, there is a need to develop offline evaluation
procedures for pretrained agents (Dulac-Arnold et al., 2019). To
elaborate, in our real-world deployment, we could only observe
the imitation loss from our agent after offline pretraining. Yet, it
was an indirect proxy for control performance. In fact, our agent
tended to overshoot at initialization, contrary to our expectation
based on the imitation loss. Thus, there is a need to evaluate
the performance of pretrained agents without access to the
environment. This is important in practice to reassure building
owners/operators the expected performance of a novel controller
before deploying it in a real building.

Thirdly, there are a number of engineering decisions one
needs to make when applying our approaches, ranging from
initialization of model parameters, the hyperparameter η that
balances energy and comfort, and other hyperparameters used
during online learning. Furthermore, one cannot expect to do
hyperparameter selection for real buildings in the same way as in
simulation. We made those decisions based on implementation

details used in the literature and engineering judgments. While
these decisions generally worked well in our experiments, they
do not guarantee good results (recall the experiment on the
small office in section 5). More experiments on different
environments may lead to additional insights on how to make
these decisions intelligently.

Finally, control problems with larger state-action spaces
generally require longer learning/training time (Liu and Henze,
2006). This is observed in our experiment on the medium
office. In existing buildings, HVAC controllers operates
independently based on their local information. But, for
scenarios where whole-building control is necessary, there may
be a need for multi-agent RL, where the large original problem is
subdivided into more tractable sub-problems.
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