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A common pain point for physical retail stores is live inventory monitoring, i.e., knowing

how many items of each product are left on the shelves. About 4% of sales are lost

due to an average 5–10% out-of-shelf stockout rate, while additional supplies existed

in the warehouse. Traditional techniques rely on manual inspection, per-item tagging

using RFIDs, or human-in-the-loop systems, such as Amazon Go. These approaches,

while effective, either have poor accuracy, long delays between results or are cost

prohibitive. In this paper, we present FAIM (Autonomous InventoryMonitoring Framework)

for cashier-less stores. To the best of our knowledge, this is the first fully autonomous

system that fuses multiple sensing modalities. Utilizing weight difference on a shelf,

visual item recognition in customers’ hands and prior knowledge of item layout FAIM

monitors products picked up or returned without human-in-the-loop. We present results

from a real-world setup with 85 items (33 unique products) replicating the layout of a

local 7-Eleven store. To evaluate our system we characterize the similarity of the unique

products across three physical features (i.e., weight, color, and location). Our results

show that the fused approach provides up to 92.6% item identification accuracy, a 2×

reduction in error compared to reported self-checkout stations.

Keywords: auto-checkout, product recognition, item identification, inventory monitoring, retail, sensor fusion,

vision, weight

1. INTRODUCTION

Traditional retail stores face significant labor costs to monitor shelf inventory regularly, often
postponing this operation until off-peak hours. A delay in inventory monitoring causes high
sales losses when a particular item is gone from the shelf though additional stock existed in the
warehouse. An ordinary convenience store faces out-of-shelf stockout rates of 5–10%, which results
in a loss of up to 4% of sales (Gruen et al., 2002). In North America alone, this accounts for ∼93
billion annual losses (Li and Zhang, 2015).

In order to address this issue, current approaches focus on three ways to monitor shelf stock:
manual, on-item tags, and vision-based sensing. Manual approaches are the norm and mainly rely
on visual inspection of the shelves to reorganize and restock when needed. Employees bandwidth
typically only allows for up to a few checks a day, leading to high cost and minimal effectiveness
especially in high traffic stores.
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Other approaches use sensors on every item (e.g., RFID tags)
to monitor remaining stock of each product (Bottani et al., 2017;
de Boer, 2018). However, the added cost of the tags together
with the labor cost of labeling every item make this approach
impractical other than for high-end goods, such as electronic
consumer goods or apparel (de Boer, 2018; Moretti et al., 2019).
More recently, cashier-less stores using a variety of sensors are
being explored. Most approaches still require human operators
for proper functioning and have highly constrained stocking
requirements. While some stores are already operational, such
as Amazon Go Amazon (2019), their automated accuracy has
not been revealed and several reports point out that they heavily
rely on employees watching the cameras to avoid low receipt
accuracy (Coldewey, 2019; Recode, 2019).

In this paper, we present an Autonomous Inventory
Monitoring system, FAIM, which tracks shelf-level stock in real-
time as the customers pick up or return items. Using weight
sensors on each shelf, our system identifies the item being taken
based on the location and absolute weight change of an event,
which is fused with visual object identification once the item
is in the customer’s hand. FAIM leverages physical knowledge
about the customer–shelf interaction to focus the attention of the
visual classifier only on the item being interacted with. We fully
implemented FAIM on a five shelf setup with four cameras and 60
weight plates. To evaluate the system in a real-world setting, we
used 85 items from 33 unique products and mimicked the item
layout of a local 7-Eleven. Therefore, our contribution is 3-fold:

• FAIM, the first fully autonomous shelf inventory monitoring
system without human-in-the-loop.

• An adaptive sensor aggregation algorithm to combine
information from different sensing modalities, in particular
shelf weight differential, visual in-hand item recognition, and
prior knowledge of item layout (i.e., product location).

• A visual item recognition model training methodology
that leverages traditional visual descriptors along with an
implementation and evaluation in a real-world market setup
with 33 products replicating the layout of a 7-Eleven store.

The rest of the paper is organized as follows. First, section 2
discusses related works and background. Section 3 describes the
design of the FAIM system. In section 4 we present the fusion
algorithm that combines location, weight and vision information.
Next, section 5 provides results and analysis of the real-world
evaluation in our store setup. Finally, we conclude in section 6.

2. RELATED WORK

There exists a significant amount of work on object identification
from weight as well as appearance features, though most focus
on only one sensing modality. While there are solutions that can
successfully identify objects solely by their weight, they fall short
in tackling the inventory monitoring domain, where many sets of
products weigh similarly (e.g., soft drinks, energy bars). Although
vision-based object identification would be able to tackle the
above cases when their packaging is different, the convenience
retail market is filled with similar-looking items that have distinct

content (e.g., any yogurt vs. its fat-free version). Furthermore
there are works that attempt to identify the person interaction
using visual and inertial fusion approaches (Ruiz et al., 2020),
however these are outside the scope of the paper given that we
are only addressing at most one customer interacting at a time
(see section 3.2).

None of these solutions, alone, is capable of fully addressing
the autonomous inventory monitoring problem due to the
nature of the sensing modalities and the complexity of the
environment. Sections 2.1 and 2.2 cover the state-of-the-art in
weight- and vision-based object identification, respectively, and
their individual limitations.

2.1. Weight-Based Object Identification
The location of an event is a key piece of information to
understand what object was picked—or placed—and is used by
most prior works to complement the magnitude of the total
change in weight. Different hardware approaches have been
proposed to measure the weight on a surface and identify objects
placed on it. A common solution consists in instrumenting a
platform, such as a table or a shelf, with multiple load cells to
measure the total weight of the objects on the platform (Murao
et al., 2015, 2017; Misra et al., 2019). While this makes it possible
to identify objects by tracking changes in the total weight, it
cannot handle cases where certain object weights are multiples
of each other. In addition, location information can only be
retrieved during an event and for that particular object.

To overcome these limitations, some stock-level monitoring
approaches rely on capacitive weight-sensing mats (Metzger
et al., 2007; Green, 2009; Godlewski, 2010; Rofouei et al., 2010;
Meyer, 2016; Liu et al., 2018). By measuring the change in
capacitance between two parallel plates, these works analyze
the presence, absence or shape of individual items to identify
and count them. However, such approaches become hard to
utilize when the sensing material is facing the harsh environment
of an operating convenience store: liquids spilling, continuous
impact, friction, permanent deformations and cost dramatically
constrain their practicality in a store setting. Furthermore, any
weight-based only object identification method suffers from low
accuracy when dealing with categories of items that contain
a high variance of weight (e.g., fruits, vegetables or packaged
salads). For such classes of objects other sensing modalities
are required.

Finally, a small subset of prior works have attempted to
complement weight sensing with vision, for applications, such
as grocery re-identification in a fridge (Kamoda et al., 2012;
Misra et al., 2019). Despite the small scale and highly controlled
environment, these works indicate the benefits of multi-modal
sensing for item identification.

2.2. Vision-Based Object Identification
There are two major approaches for visual object identification:

Traditional feature-based and descriptor-based techniques,
such as Bag of Features (BoF) (O’Hara and Draper, 2011), shape
descriptors for object retrieval (López et al., 2017), Local Binary
Pattern (LBP) (Fronitasari andGunawan, 2017), and Speeded-Up
Robust Features (SURF) (Srivastava et al., 2019), rely on different
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FIGURE 1 | FAIM scenario and real implementation. Through weight sensors and cameras, the goal is to autonomously detect and identify what item(s) customers

take.

sets of features designed to extract meaningful characteristics of
regions in an image, which allows the detection and classification
of objects. In practice, these approaches involve a high degree
of parameter tuning, limiting their scalability and adaptability
to new scenarios, such as different lighting conditions or camera
angles (Loussaief and Abdelkrim, 2018).

On the other hand, Deep Learning techniques try to overcome
this issue with a data-driven approach. Mask R-CNN (He et al.,
2017), Faster R-CNN (Ren et al., 2015), Yolo (Redmon et al.,
2016), Center-Net (Duan et al., 2019), NormalNet (Wang et al.,
2019), FoveaBox (Kong et al., 2020), all leverage a big amount of
data, both in 3D and 2D, to generalize the characteristics of the
objects to be identified. While in theory they should not require
human input, the training procedure still involves some hyper-
parameter tuning. In addition, in order to achieve high accuracy
levels, these models require thousands of images of each object,
under different conditions, with different backgrounds and from
different angles. These images require labeling of the ground-
truth for training, this can either be done manually, creating a
labor intensive problem, in a semi-supervised (Teng et al., 2018)
or fully automated fashion (Ruiz et al., 2019c).

In the retail domain, several prior works have tackled the
item identification problem (Qiao et al., 2017; Tonioni et al.,
2018; Klasson et al., 2019; Wei et al., 2019) but current state-
of-the-art is still limited in accuracy due to the great similarity
in appearance across products (e.g., chocolate bars of the same
brand with different sizes, flavors or textures). On top of that,
none of these works take videos as input, meaning an added layer

of scene understanding is required in order to figure out which of
the detected products is the one the customer took (vs. products
which remain on the shelf).

3. SYSTEM DESIGN

To the best of our knowledge, FAIM is the first fully
autonomous shelf inventory monitoring system without human-
in-the-loop. This section provides our system design choices
and assumptions.

3.1. System Overview
Figure 2 shows FAIM’s system framework. It utilizesmulti-modal
sensing to improve item identification accuracy. In particular,
we focus on three sources of information: item layout, weight
and appearance. FAIM’s pipeline is triggered when a change
in the total weight of a shelf is detected. From that it extracts
two features: the absolute weight difference and the spatial
distribution of the weight. The weight change-based prediction
computes the probability of each product class by comparing
the absolute weight difference to each product’s average weight.
The location-based prediction computes the probability of each
product class by combining the spatial distribution of the weight
change on the shelf with prior knowledge of item layout. The
vision-based prediction leverages human pose estimation and
background subtraction to focus the visual object classifier’s
attention to identify the object(s) in the customer’s hand.
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FIGURE 2 | FAIM system overview. (Top) Vision-based pipeline (yellow). (Bottom) Location- and Weight change-based prediction pipeline (blue). (Right) Fusion

algorithm (green). Prior knowledge of item layout, weight and appearance (pink).

Finally, FAIM fuses all three predictions by applying an adaptive
weighted linear combination.

3.2. Assumptions
Handling all the intricacies and corner cases of a fully
autonomous system for inventory monitoring is a very
challenging task. Given the early stage of the research in this
domain, we wanted to limit the scope of this paper in order to
fully address the problem defined: handling pick up and put back
events under normal shopping behavior. While we are aware that
cultural, age, and other factors impact what’s considered normal
behavior, we observe some general trends on customers shopping
in convenience stores. We make the following assumptions in
order to scope this paper:

1. At any given time, at most one customer is interacting

with a particular shelf. Unlike big supermarkets, convenience
stores observe a much lower customer density albeit a higher
foot traffic. In addition, most customers shop individually and
respect other customers’ personal space, i.e., if someone is
picking an item from the same shelf they want an item from,
they wait for the other customer to get their items first. This
assumption is particularly true recently given the necessity of
social distancing—due to COVID-19, people remain 6 feet
apart. This physical separation and the typical size of a shelf
(3–4 feet) make this a reasonable assumption.

2. Customers don’t place outside objects on shelves. It is
common for customers to enter the store carrying certain
objects, such as a purse or a drink, but unless they are
purposefully trying to fool the autonomous system, they rarely
leave anything on a shelf that wasn’t picked inside the store.

Therefore, while users are free to return items they do not
want anymore, FAIM can safely assume any put back event
corresponds to items from the inventory.

3. Customers don’t alter items’ properties (weight or

appearance) before putting something back. For instance,
our system assumes that customers won’t pick a bag of chips,
eat half of them and put them back on a shelf.

4. Customers pick one item a time. When customers want
multiple items from the same shelf, it is uncommon to pick
different items with each hand at the same time, i.e., even
if they use both hands, they usually pick a product with
one first, then the other, so FAIM would correctly flag them
as two separate events. Note that this assumption could be
relaxed by considering all combinations of up to N items
being picked up, though N should be kept small to limit
computational complexity.

3.3. Hardware Design Decisions
There are many design choices involved in the instrumentation
of smart retail stores for inventory monitoring. In this section,
we discuss some insights we gained by implementing FAIM and
working with actual retailers, as well as the impact and tradeoffs
of different hardware approaches.

3.3.1. Weight Sensing
An interesting tradeoff to consider when instrumenting retail
store fixtures with weight load cells is the size of each weight-
sensing plate, i.e., the size of each independent platform
suspended over one or more weight sensors. On the one hand,
larger sensing areas—e.g., one per shelf or even one per fixture—
means lower hardware cost and processing, but also lower signal
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resolution (the load cells need to support a larger maximum
capacity) as well as lower spatial resolution (more items per plate,
which increases the chances of having multiple items with very
similar weights). In section 5 we explore the impact of different
plate sizes on FAIM’s accuracy.

Furthermore, weight plate size and design can have a big
repercussion on item layout flexibility, an often desired demand
by retailers. Product dimensions vary in a wide range, and so
does the stock offered at convenience stores and their item layout.
Therefore, limiting each product to a single sensing plate, while
helping weight sensing by isolating each product, would lead to a
hard constraint on the possible products on display, limiting its
practical use.

Retailers’ profit margins are very low and maximizing item
density is of utter importance (see Figure 8 for an example of
a typical fixture layout in a convenience store). We therefore
adopted a flexible hardware design that can be easily mass-
produced to bring costs down, as shown in Figure 1. Our single-
size design consists of narrow weight plates (4′′ width, divisible
by the standard 48′′ fixture length) laid contiguous to each other.
This design has the added advantage that such small weight
plates won’t have as much weight on top, allowing for lower
maximum capacity load cells thus higher weight resolution (sub-
gram) without requiring expensive ADCs (Analog-to-Digital
Converters). Moreover, section 3.4 details how FAIM handles
cases where items span across multiple weight plates (the weight
difference in each individual plate does not correspond to the
total weight of the item, hence the product prediction has to
cluster neighboring weight cells into a single event for a correct
item identification).

3.3.2. Vision Sensing
There are also many design considerations related to installing
cameras in retail stores, from camera specifications, to camera
placement and even number of cameras to deploy. As vision
processing improves, camera specification constraints can be
relaxed. From our initial experiments, camera resolution doesn’t
play a huge role (in fact most deep learning networks downsize
the input image to about 300–720 pixels wide for training and
computation efficiency purposes). As for frame rate, we have
empirically observed 25–30 fps to be enough to get at least one
good frame of the item being picked. In addition, optimal lighting
might help get sharper andmore consistent views of the products,
but that is out of the scope of this paper.

Camera quantity and placement pose trade-offs worth
exploring more in depth in future work. Overall, the intuition
is that by having multiple cameras spread across different
viewing angles, the system can minimize the likelihood of visual
occlusions. While this is true, the added hardware, setup, power
and computational cost can dramatically impact the benefits
of autonomous inventory monitoring. For instance, the first
Amazon Go (Amazon, 2019) store in Seattle features hundreds
of cameras—hanging from the ceiling, on top of each fixture
and even below each shelf—and still relies on a human-in-
the-loop approach to resolve uncertainties (Coldewey, 2019;
Recode, 2019). From our initial experiments we empirically

noticed weight sensors to be amuchmore robust—and cheaper—
predictor of what item was picked up or put back on a
shelf. Therefore, we do not consider shelf-mounted cameras
in this paper. Section 5.2 however analyzes the impact of any
combination among four different camera placements—top-
down, sides and in front of each fixture—on FAIM’s accuracy.

3.4. Customer-Shelf Interaction Detection
The first step in FAIM’s pipeline is to detect when an event
took place (i.e., a customer picked up or put back an item
on a shelf). In our proposed system architecture, displayed in
Figure 2, the processing of every change in the inventory starts
with a weight change trigger. After carefully analyzing some
initial experiment data, we came to the conclusion that, even
during normal shopping behavior, i.e., customers not trying to
fool the system, visual occlusions from hands or the body are
highly likely (especially for smaller items), which makes vision
much less reliable than weight for triggering events. Unless
someone purposefully drops an object of similar weight as they
pick an item from a shelf—which would break Assumption 2,
the weight difference on the load sensors is generally enough to
detect an event.

There are numerous prior works to detect events based
on weight change on a load sensed surface (Schmidt et al.,
2002; Murao et al., 2017). In essence these approaches compute
the mean and variance of the weight values over a sliding
window, and classify the state as either stable—no interaction—or
active—an interaction is taking place—by comparing the moving
variance to a threshold. Once the state is back at stable, the mean
weight before and after the active state is extracted and reported
as the weight difference of the event, where the sign indicates
whether it was a pick up or a put back.

Furthermore, inevitably—even with physical separation
between the weight-sensing plates—there might be cases where
items lay on more than one plate. In those scenarios, looking
at the individual plate scale would yield erroneous weight
difference values. Instead, we aggregate all weight plates in each
shelf and detect events at the shelf level. This also makes the
event detection more robust to light items laying on more than
one plate—which might go undetected at each individual plate,
but would still provide a big enough change on the aggregate
moving variance and mean. See Figure 3, which shows the shelf
aggregated weight data along with the weight moving variance,
mean and the events detected.

Mathematically, let wn
s,p define the weight on the pth weight

plate on shelf s at discrete time n. We compute the shelf ’s
aggregated weight as:

wn
s =

∑

p
wn
s,p (1)

Then, the shelf ’s aggregated moving mean and variance are,
respectively, µn

s and νns :

µn
s =

1

2Nw + 1

n+Nw
∑

t=n−Nw

wt
s (2)
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FIGURE 3 | Aggregated weight sensed by a shelf during the first 15 s of one of our experiments (raw in light blue, filtered in dark blue), as well as the events detected

by FAIM (orange) and the annotated ground-truth (purple). Two products were picked up in this section of the experiment.

νns =
1

2Nw + 1

n+Nw
∑

t=n−Nw

|wt
s − µt

s|
2 (3)

where Nw is the sliding window half-length in samples, which
corresponds to 0.5 s in our implementation (2Nw + 1=61).

An event is detected according to Equation (4):

Event begins on shelf s: νts > εν , ∀t ∈ [nb, nb+Nh) (4a)

Event ends on shelf s: νts ≤ εν , ∀t ∈ (ne−Nl, ne] (4b)

Temporal consistency: ne > nb (4c)

where Nh and Nl correspond to the minimum length the weight
variance has to exceed or fall short of the threshold εν in order
to detect the beginning and end of an event. Based on some
initial experiments we empirically set the values to Nh=Nl= 30
(0.5 s) and εν = 0.01 kg2. Once an event has been detected, the
Weight Change Event Detection module determines the event
weight difference 1µ and the location—set of weight plates
{ps}—according to Equation (5):

Event weight difference: 1µ = µne
s − µ

nb
s (5a)

Event location: L = { ps : |µ
ne
s,p − µ

nb
s,p| ≥ εµ} (5b)

where εµ indicates the minimum weight contribution of a single
plate in order to be included in the event, which we set to εµ=5 g.
Once the event weight difference 1µ is determined, this module
further computes the event weight distribution—set of weight
contributions {1µ%

s,p}—according to Equation (6)

Event weight distribution: D =

{

1µ%
s,p :

|µ
ne
s,p − µ

nb
s,p|

∑

p′ |µ
ne
s,p′ − µ

nb
s,p′ |

}

(6)
We define Equations (5a), (5b), and (6) as the output of the
Weight Change Event Detection block (as seen in Figure 2). We

leverage these definitions inWeight change-based item Prediction
(section 4.2) and Location-based Item Prediction (section 4.1).

3.5. Vision Event Extraction
Understanding customer–item interactions and identifying the
products picked from or returned to a shelf from video streams
is very computationally expensive (especially for higher camera
densities). For this reason, FAIM only saves a small buffer of
recent history and uses the Weight Change Event Detection
trigger from section 3.4 to start analyzing the images. For put
back events we directly analyze the buffer as soon as an event is
detected, whereas for pick up events we delay the vision analysis
until the oldest frame in the buffer coincides with the event
trigger, ne from Equation (4b).

The Vision Event Extraction pipeline is divided in two
sequential tasks: Vision Event Preprocessing and Product
Detections Spatial Selection. The former gathers different sources
of visual evidence and is composed of the Human Pose
Estimation, Background Subtraction and Product Detection
& Classification modules. The latter then aggregates all the
information and determines which object detections to keep
or reject based on the customer’s hand location (see Figure 4).
As the output of the Vision Event Extraction pipeline, those
detections together with their associated product probabilities,
are fed into the Vision-based Item Identification module (section
4.3) which tries to determine what product was picked.

3.5.1. Vision Event Pre-processing
Ideally, this step should only be comprised of Product Detection
& Classification. However, visual object classifiers, such as Ren
et al. (2015) and He et al. (2017), provide a set of (location, object
class) for anything found on an image (i.e., they would also detect
all products on the shelves). In order to focus just on the item
that was picked, the Vision Event Preprocessing takes additional
steps, as shown in Figure 2. On the one hand, it performs Human
Pose Estimation, a popular research topic in the Computer Vision
literature which tries to localize the joints of each person. There
are many works in this domain, such as Newell et al. (2016), Wei
et al. (2016), and Cao et al. (2017, 2018) which, through different
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FIGURE 4 | Human pose estimation provides us an estimate of the location of the customer’s hand, where the visual classifier will look for items (A). We also apply

background subtraction to the original image to remove detected items present around the hand (B), such as the objects remaining on the shelf.

approaches, are all quite mature and robust to varying lighting
conditions, clothing and even substantial occlusion. On the other
hand, leveraging the fact that cameras are stationary, Background
Subtraction techniques, such as Guo et al. (2016) can be used to
“hide” all the products that remain on the shelf and therefore
focus the attention of the visual classifier only on the moving
foreground, where it can find the item being taken or returned.

3.5.2. Product Detections’ Spatial Selection
From the skeleton of the customers, the location of their
wrists represents a simple-yet-effective attention mechanism: by
ignoring any detections with centroids further away from the
hand than a given threshold, FAIM eliminates most detections
of the object classifier that do not correspond to the item the
customer is picking or putting back. We call this threshold Rc

h
,

for each camera c, and pick its value empirically based on the
camera–shelf distance. This spatial selection can be very useful
to complement Background Subtraction when there is more
than one customer moving in the scene or when the customer
interacting with the shelf has products on the other hand which
they had previously picked.

3.6. Inventory Prior Knowledge
FAIM relies on three sources of information to produce an
accurate estimate of what item was returned or taken from a shelf
by a customer. In order to do so, the system needs to be informed
about certain properties of each product. These models can be
categorized based on the source of information they provide: item
layout (product location), weight and appearance model.

3.6.1. Item Layout Model
Item layout is a mapping between each product and their—
initial—location in the store. The granularity or resolution of
this layout could dramatically vary due to different factors, such
as store size, complexity of the layout or even time and cost
associated with manual annotation. Let I represent the set of
products in the inventory and i ∈ I be any particular product
(e.g., Scotch Brite sponge, Fabric Febreeze, etc.). In a generic way,
item layout can be defined as a function l (·) → {i ∈ I} that

returns the set of products expected to be found at any query
location. The resolution of the item layout can then be defined
as the smallest change in location which yields a different value
of l. Given the narrow width of our weight plates, the highest
resolution considered in this paper is the plate level: we constrain
the query location to a given shelf s and plate p such that l (·) can
be rewritten as:

ls,p = {i ∈ I | product i is stocked at plate p on shelf s} (7)

Where |ls,p| is the total number of items at plate p on shelf s.
This way, we can simulate lower spatial resolutions by recording
the item layout at virtual plates p′ that aggregate multiple real
plates, e.g., as,p′ = as,p1 ∪ as,p2 ∪ as,p3 (we call p′ a bin of
width 3). We evaluate the impact of three different levels of item
layout granularity—plate, half-shelf and shelf—in section 5.2.
Throughout the paper, we will refer to the item layout model as:

L = {ls,p}, ∀s,∀p (8)

3.6.2. Item Weight Model
In order to predict which product was picked, FAIM first
needs to have some knowledge about the weight distribution of
each product in the inventory, W(i). This one-time calibration
step consists in weighing every item and then parameterizing
the distribution, which can be approximated by a Gaussian
distribution (characterized by its mean µ and standard deviation
σ ) as displayed in Figure 5. The item weight modelW is therefore
just a list of µ and σ pairs:

W =
{

(µi, σi) : W(i) ∼ N (µi, σ
2
i )

}

, ∀i ∈ I (9)

Note that in general, most products have a fairly consistent
weight distribution, thus once estimated, new items would not
need to be weighed on restocking.

3.6.3. Item Appearance Model
There are many ways to encode a visual representation of each
item, as discussed in section 2.2. Since the focus of this paper
is on how to combine the different sources of information
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FIGURE 5 | Weight distribution of each product used in our experiments.

to produce an accurate product prediction and not in how
to improve each source in particular, we follow state-of-the-
art approaches for modeling the visual appearance. That way,
FAIM is not constrained to a particular object detector and
can directly benefit from any improvements in the state-of-the-
art. Currently, the best visual identification results are obtained
through two data-driven approaches: (1) using visual descriptors
as defined by theMPEG-7 standards (Tyagi, 2017). This approach
extracts contextual content associated with images, such as Color,
Texture, Shape, Motion, and Location. It is most often applied in
the domain of search engine for images; (2) Convolutional Neural
Network (CNN) based models, such as the ones mentioned in
section 2.2 (Girshick, 2015; Ren et al., 2015; Redmon et al., 2016;
He et al., 2017). Either approach requires a large data collection
process. We provide more details of our data generation, for
both approaches, and training implementation of deep learning
models to recognize different object classes—also known as
instance segmentation—in section 5.1.

In this paper we applied both approaches. We trained a CNN
and generated visual descriptors for all 33 products. We then
used the visual descriptors to validate the training accuracy for
similar looking products. To achieve this we’ve collected 20
s videos from multiple angles and distances of a single item
of each product placed in a turntable. Then, we cropped the
product using background subtraction. For each generated image
we’ve extracted color (Manjunath et al., 2001), texture (Sandid
and Douik, 2016) and shape descriptors (Bober, 2001). Through
observation of the distribution of these descriptors we’ve noticed

that each product produces, maximally, four clusters for a

full 360◦ revolution of the product. Therefore, we’ve extracted

the centroid of these clusters and used them to measure the
mahalanobis distance between the centroids of each class (see
Figure 6). We see that the products in our database are visually
distinguishable from each other. This is natural as different
brands continuously attempt to create their unique visual identity
in order for consumers to easily pick out their products from all
the similar competitors’ products. Although this technique allows
us to distinguish the object based on visual information, it is
highly sensitive to occlusions. We therefore use this technique
as an indicator of which objects are more similar to each other
in order to then test and validate the performance of our trained
CNN with those products.

We’ve further used common data augmentation techniques
and generated 30k multi-item images (like the ones on

Figure 7D) for the network to learn a model of the visual
appearance of each product.

4. COMBINING LOCATION, WEIGHT, AND
VISION

The previous section described the item layout, weight and
appearance models that FAIM relies on. Here, we detail how
each sensing modality estimates the likelihood of the item in
the event belonging to each product class, i ∈ I by leveraging
this inventory prior knowledge (sections 4.1–4.3), and how these
sources of information are then all combined to emit the final
product prediction (section 4.4).

In this paper P(I = i) is considered uniformly distributed,
given that we have generated the receipts by picking randomly
from each class of products, using a uniform distribution.
However, this assumption can change if more information about
which products are picked upmore regularly is available. A better
model of P(I = i) could provide better estimates of which
product was picked.

4.1. Location-Based Item Identification
From the item layout model (L, Equations 7 and 8) and the event
location information (L={ps}, Equation 5b), the Location-based
Item Identification module estimates the likelihood of the item
in the event belonging to each product class, i ∈ I . A simple
approach would predict PL (I = i | L) according to:

All items arranged at location L: LL =
⋃

ps∈L
ls,p (10a)

PL (I = i | L) =

{

1/ |LL| i ∈ LL

0 otherwise
(10b)

where |LL| indicates the number of different products stocked at
the weight plates L = {ps}. Note that since a location L might
be composed of multiple plates, we first need to take the union
(Equation 10a). Then, any item in the resulting set would have
equal probability of being picked, and any item outside of the
event’s location would be ignored.

However, such approach would be disregarding some useful
information: some plates may have observed a much larger
portion of the total weight change than others, and it is therefore
more likely that the item comes from those particular plates. For
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FIGURE 6 | Dominant Color Descriptor distribution of each product trained in our model. Each dot represents a centroid of a cluster of dominant color descriptors

obtained for different angles of each product. Statistical Neighboring Embedding was used to visualize the similarity between different products. Dots that are closer to

each other represent products that are similar in dominant color. E.g., “Palmolive Ultra strength” and “7 Select Dish Liquid” seen on the right.

FIGURE 7 | An example of the data generation for training. We collected videos of the items from three different angles shown in (A). (B) Illustrates the view from one

of camera angles. From (B) we removed the background (C) and overlaid the multiple cropped objects (D) onto images from the COCO Dataset (Lin et al., 2014).

Finally, a Faster R-CNN (Ren et al., 2015) model was trained with 30k images like (E).

this reason, FAIM uses a weight change-guided location-based
item identification:

PL (I = i | D) =
∑

p : i∈ls,p

|1µ%
s,p|

|ls,p|
(11)

Where PL(I = i | D) is computed by summing each plate’s
weight change, weighted by the amount each plate contributed
to the total weight change of the shelf. We then use PL in
our fusion computation, in section 4.4 to calculate the final
product prediction.

4.2. Weight Change-Based Item
Identification
Product prediction based on weight change is fairly straight-
forward. The main idea is to estimate how close the event’s
weight change 1µ is to the distribution of each product, given
by the item weight model. It is important to also account for
the noise affecting the weight sensor readings, which is generally
approximated by a normal distribution with zero mean and
some standard deviation estimated empirically (σw = 5g in our

experiments).We define then1M and1Mm as random variables
of the true weight displaced and the measured weight displaced in
the event, respectively. And 1µ and 1µm as the values selected
from these variables. Furthermore, the probability of 1µm given
1µ can be defined as a normal distribution, such that:

P(1Mm | 1M = 1µ) ∼ N (1µ, σw) (12)

Then, using the Bayes’s rule the probability of the item belonging
to each product class is determined by:

PW (I = i | 1Mm = 1µm) =
P (1Mm = 1µm | I = i) P(I = i)

P (1Mm = 1µm)
(13)

where, in our experiments, P(I = i) is uniformly distributed and
P(1Mm = 1µm) is constant since we have the measurement.
We obtain:

PW (I = i | 1Mm = 1µm) ∝ P (1Mm = 1µm | I = i) (14)

We include 1M in the calculation of PW by marginalizing the
joint conditional probability P(1Mm = 1µm,1M = 1µ | I =
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i), obtaining:

PW (I = i | 1Mm = 1µm) ∝

+∞
∫

−∞

f1Mm,1M|I=i(1µm,1µ) d1µ

(15)
Given the chain rule:

f1Mm ,1M|I=i(1µm,1µ) = f1Mm|1M=1µ,I=i(1µm)

· f1M|I=i(1µ) (16a)

therefore: (16b)

PW (I = i | 1Mm = 1µm) ∝

+∞
∫

−∞

f1Mm|1M=1µ,I=i(1µm)

· f1M|I=i(1µ) d1µ (16c)

We assume conditional independence of 1Mm and I given
1M = 1µ, obtaining:

PW (I = i | 1Mm = 1µm) ∝

+∞
∫

−∞

f1Mm|1M=1µ(1µm)

·f1M|I=i(1µ) d1µ (17)

In Equation (17) the right side of the integral (f1M|I=i(1µ))
follows Equation (9) and is therefore normally distributed given
a particular i. In section 4.4 we combine Weight change-based
Item Identification with Location-based Item identification by
leveraging Equations (11)–(17).

4.3. Vision-Based Item Identification
While the Product Detections Spatial Selection module (section
3.5) already determines the set of detected objects with high
probability of being on the customer’s hands, these predictions
need to be combined together—for all frames in the buffer—to
output a single probability value for each product class. Unlike
weight and location, which are very hard to occlude, visual
classifiers often suffer from temporary occlusions—especially for
smaller items or when customers carry multiple items in their
hand. As a consequence, simply concatenating (i.e., multiplying)
the logits (classification score) of all objects would lead to
undesired results, since an item not detected in a frame would
end with a probability of 0 regardless of how confident all
other frames were. We instead propose using a noisy OR model,
which in essence computes the probability PV (I = i) that each
product was seen by taking the complement of the probability
that the product was never seen. Mathematically, let V represent
the set of valid detections for the current event—output by the
Product Detections Spatial Selection module—and vi ∈ [0, 1] the
classification score for each product class i ∈ I , then:

PV (I = i | V) = 1− P(i not seen in V) = 1−
∏

v∈V

1− vi (18)

This approach is also easy to extend to multi-camera
deployments: given the detections Vc of each camera c ∈ C,
the overall probability PV (I = i | Vc1 , . . . ,VcC ) = PV (I = i |
⋃

c∈C Vc).

4.4. Item Identification Combining All
Sensing Modalities
FAIM’s last stage of the pipeline fuses all sources of information
to emit a final product prediction, and the one with the highest
probability score will be selected. Following Bayesian inference,
this fusion would be mathematically described as:

P(I = i | 1µ,VC) =
P(1M = 1µ,

⋃

c∈C Vc | i) · P(I = i)
∑

i∈I P(1M = 1µ,
⋃

c∈C Vc | i) · P(I = i)

(19a)

îMLE(1µ,VC) = argmax
i

P(1M = 1µ,VC | i)

(19b)

The main challenge in this sensor fusion arises from the
difficulty of estimating the joint conditional probability P(1M =

1µ,VC | i), since the visual features and the weight change
may not be conditionally independent on i. In this paper, we
approximate this likelihood as a weighted linear combination of
each individual sensor modality—weight and vision—prediction.
We compute the probability Pi

weight
that item i was picked up/put

down, from the weight sensing modality, using:

Piweight = P (I = i | 1Mm = 1µm,D) (20a)

=
P (1Mm = 1µm,D | I = i) P(I = i)

P (1Mm = 1µm,D)
(20b)

Although 1Mm and D are not independent, they are however
conditionally independent given I = i. This is true because once
i is set, a product is selected. Thus, the location from where the
product was taken is independent of its measured weight and
vice-versa. We therefore obtain:

Piweight =
P (1Mm = 1µm | I = i)P(D | I = i)P(I = i)

P (1Mm = 1µm,D)
(21)

Using Bayes’s Theorem for the conditional probabilities in
Equation (21) we get:

Piweight =
P (1Mm = 1µm)P(D)

P (1Mm = 1µm,D)P(I = i)

P (I = i | 1Mm = 1µm)P(I = i | D) (22)

As in our experiments P(I = i) is uniformly distributed and
all terms in the first fraction are constant—given that we have
the measurement taken 1µm and its weight distribution D.
Equation (22) can therefore be combined with Equations (11)–
(17), obtaining the following:

Piweight ∝ PW (I = i | 1Mm = 1µm) · PL(I = i | D) (23)

In general, information from weight modality (Pi
weight

, i.e.,

Location- and Weight Change-based Item Identification) is
a more robust product predictor—partially because it is less
affected by occlusions, thus we assign it a higher relevance when
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alpha-blending (α = 0.7 gave us the best results). It is also worth
noting that, as discussed in section 4.3, cameras can be occluded,
lighting conditions may change, etc., therefore an object not
being seen should not result in a final probability of 0. For
these reasons, FAIM sums both modalities predictions instead of
multiplying to fuse them. Furthermore, while our vision pipeline
tries to ensure that only the item being picked or put back
is seen by the Product Detection & Classification module, it
may happen that several object detections get selected by the
Product Detections Spatial Selection (e.g., when the customer
has other items in their hand). In those cases, it doesn’t make
sense that probabilities add up to 1 (e.g., 25% confident that it
saw four objects), but rather that each product was seen with
probability 1. Consequently, FAIM does not normalize the vision
product predictions before alpha blending. Therefore, Equation
(19b) becomes:

Piweight ∝ PW (I = i | 1Mm = 1µm) · PL (I = i | D) (24a)

Pivision = PV (I = i | V) (24b)

Pifusion = α Piweight + (1− α) Pivision (24c)

î∗ = argmax
i

Pifusion (24d)

where î∗ is the product predicted for the event.

5. EVALUATION

This section presents our implementation of FAIM, the
experimentation setup, the metrics used to evaluate
the performance of different approaches, and the actual
experiment results.

5.1. System Implementation
Our system utilizes a large array of weight and vision
sensors. Below we describe the details about our hardware
implementation and training procedure, followed by how the
experiments were carried out and the evaluation metrics.

In order to understand the effect of having weight sensors
at different spatial resolutions, we designed narrow (4′′) weight
plates which fit nicely on standard 48′′ shelves used by many
retailers. This allows us to simulate plates of different widths
(which we call bins) and evaluate the bin size parameter.

For vision sensors, we utilized 720p IP cameras and wrote
scripts to record all video and weight data to disk. Although we
process the results offline, our algorithms run in real-time on
a cluster of 3 Nvidia GeForce GTX 1080 GPUs for our vision
pipeline—the computation required for the weight change- and
location-based predictions is negligible.

As Figure 8 shows, in order to fully evaluate a real-world
setup, we went to a local 7-Eleven convenience store, purchased
all items on a fixture (Figure 8B) and arranged them in the same
manner on our shelves (Figure 8A). In the process, we initialized
our system by:

1. Weighed every item and fitted a Normal distribution to
generate the item weight model (displayed on Figure 5).

2. Marked what items lie on what plates (e.g., 409 is stocked on
plates 1 and 2 on shelf 1) to generate the item layout model.

3. Extracted general information descriptors from the frames
collected for training of each product. Specifically Dominant
Color Descriptor (DCD) (Talib et al., 2013) (displayed in
Figure 6), Homogeneous Texture Descriptor (Sandid and
Douik, 2016) and Region-based Shape Descriptor (RSD) (Kim
and Kim, 2000). While these descriptors are not suited to
distinguish the object during a pick-up/put-down, due to
occlusions, they provide insights into the visual similarity of
the products.

4. We replicated (Wei et al., 2019)’s approach for training
the visual product recognition pipeline. While rotating 360◦

on a white turntable (facilitates background removal), three
cameras at different angles and distances simultaneously
recorded an item of each product class, placed on its back
as well as front side. From those videos, the items could
be segmented out and overlaid on top of random images
in random positions, sizes, rotations, etc. (see Figure 7). We
pre-trained a Faster R-CNN (Ren et al., 2015) model (using
ResNet-50 and FPN) on (Wei et al., 2019)’s dataset, trimmed
the last (classification) layer, changed the number of output
classes to 33 + 1 (background) and trained on our dataset of
30k images generated from such cropped products.

5. Evaluated the item appearance model by collecting data on the
most similar products guided by the product visual similarity
obtained in Step 3.

5.1.1. Experiment Settings
We designed our experiments to try to simulate a real shopping
experience where customers have a notion of what they want to
purchase but may not know where items are located. Our eight
participants had never seen this item layout and, at the beginning
of each trial (five repetitions per person) they were given a
randomly generated shopping list with 3–6 items (repetitions
allowed). To incentivize the presence of some put back events,
with 20% probability subjects were asked to return one of their
items (without specifying where they should put it). Participants
were instructed to leave the experiment area once they thought
they had collected all items in their list. We set up the four
cameras to cover the fixture (set of shelves) from all the main
angles: top-down, in front and both sides, as shown in Figure 1.

5.1.2. Metrics
The main area this paper tackles is item identification. We define
the average item identification accuracy, Avg. ID accuracy for
short, as:

Avg. ID accuracy =
# correct items predicted

# events
(%) (25)

Its complement, the average identification error, can then be
easily defined as:

Avg. ID error =
# incorrect predictions

# events
(%) (26)

It is worth noting that the whole framework relies on a successful
event detection, that is, missing an event or detecting two
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FIGURE 8 | In order to follow a realistic item layout and understand potential failure cases in real deployments, we replicated (A) the layout of a 7-Eleven store (B).

consecutive events as a single event would have a direct negative
impact in the identification accuracy. However, since event
detection accuracy tends to be high and it is out of scope for this
work, we focus on the evaluation of item identification (measured
by the Avg. ID accuracy). In the next subsection, we analyze
our experiment results and the dependency of FAIM’s Avg. ID
accuracy on different system parameters.

5.2. Real-World Experiments
In order to fully evaluate the system in a real-world setting, we
conducted the “7-Eleven fixture” experiments described above,
and present the results here. We want to understand how the
resolution or amount of information on a given sensing modality
affects the identification performance.

For weight sensing, one of the system parameters that impacts
the spatial resolution is the bin width. As a reminder from
Figure 1, we refer to a bin as a virtual plate that aggregates
(sums) multiple real plates, where bin width indicates how many
plates make up a bin. In Figure 9, we can see how location-
based (PL, in light brown) item identification suffers the most as
bins get wider—and therefore more items lie inside—dropping
from 76.1% at bin width 1–11.9% when we only have one plate
per shelf (bin width 12). On the other hand, weight change-
based (PW , in orange) identification is independent on the bin
width, since it only takes as input the total weight change on

the whole shelf. Of course, some items are very close in weight
to others (see Figure 5) so only relying on the absolute weight
change yields an accuracy of 68.2%. By combining these two
weight sensing-based sources of information (Pweight = PL · PW ,
in brown), the accuracy rises to 91.5% and the impact of larger
bin widths is reduced, only dropping to 79.0% for bin width
12. Finally, as we investigate deeper below, fusing the weight
with visual information (Pfusion, in blue) can bump the accuracy
all the way to 93.2% for bin width 3 (slightly higher than bin
width 1, and corresponds to the width of most of the items in
the inventory).

However, it isn’t only bin width that affects weight-based
predictions. The resolution of the item layout model, L, can
also significantly impact performance. As shown in Figure 10,
we consider three different resolutions: plate-level (L contains
which items could be located at each individual plate), half-shelf-
level (L only records which items lie on the left 6 or right 6
plates of each shelf) and shelf-level (L only logs the product–shelf
mappings). What we observe is that a half-shelf layout model is
almost as good as the plate-level layout (90.9 vs. 92.0% for FAIM’s
fusion or 90.3 vs. 91.5% for weight-based), while requiring a lot
less effort to generate and maintain. On the other hand, when
the item layout resolution is at the shelf level, the accuracy drops
to 80.1 and 79.0%, respectively, a likely unacceptable level for
real deployments.
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FIGURE 9 | Item identification accuracy for weight sensor densities. As the weight sensor density increases (higher spatial resolution)

performance—slowly—increases.

FIGURE 10 | Item identification accuracy for different resolutions of item layout (i.e., how knowing what products are in each plate, in every half-shelf or only in every

shelf affects performance). Half-shelf offers a great compromise between accuracy and hardware cost.

Figure 11 explores the benefits of using different amounts and
combinations of cameras. For short, we refer to them as Left,
Right, Top, and Back (their exact location with respect to the
shelves can be seen in Figure 1). For this comparison, we use two
different baselines for vision-based item identification:

(a) Simply taking the argmax on PV (dark red), which often
contains multiple items with probability 1—and would
report a lower accuracy.

(b) Thresholding on PV , e.g., considering an event was correctly
identified as long as the ground-truth product had a 0.9 or
higher visual score—which captures better whether vision
would help the fusion or not.

From the results it is interesting to observe that just using
Left and Right cameras already leads to the fusion scores
up to 92.6%. It is also worth noting that the low vision-
based accuracies reported here are a combination of multiple

factors: the domain adaptation gap between the lighting and
environmental conditions where the item appearance model was
collected and the experiments were conducted, the imperfections
on the background subtraction to crop the items and the difficulty
of focusing the attention of the visual classifier on the item
in the customer’s hands, to name a few. But even with this
room for improvement, FAIM’s fusion approach still can extract
useful visual information and achieve up to 3.4% higher accuracy
than without cameras, which reduces error from 21 to 17.6%
(Figure 12), a 19% reduction in error. Cameras contribute the
most to the system when less sensors are used, or the knowledge
of the item layout is reduced.

It is relevant to note that vision plays an important role as
the weight sensor density and item layout resolution decrease. In
other words, as the number of sensors, and the granularity of
the knowledge of where the products are in the shelf, reduce,
cameras compensate for the reduction in available information
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FIGURE 11 | Item identification accuracy for different camera combinations [Left, Right, Top, Back (see Figure 1)]. With only Left+Right FAIM already achieves

highest accuracy (92.6%).

FIGURE 12 | Item identification error for different bin widths. Note the reduction in error when vision assists weight (FAIM, beige, is consistently better than no fusion,

green). Starting at 2 bins/shelf the Avg. ID Error is already smaller than Self-Checkout (Beck, 2011).

(see Figures 9, 10). 92.6% is also an improvement over the
reported accuracy of current self-checkout systems, which can
give results of only 86% (Beck, 2011) and still is widely used in
retail stores.

In the real world there are other factors that contribute
to the accuracy of FAIM, such as the number of people
interacting simultaneously with the shelves or the density of
item arrangement. Sensing signals obtained from pick ups or put
downs of items in the shelves are affected by multiple people
interacting simultaneously, this presents further challenges in the
weight change detection module. To address this it is necessary
to identify who is interacting with the shelf. This can be done
with infrastructure sensing (Mirshekari et al., 2018), vision (Chen
et al., 2020), or both. However, this stayed outside the scope of
this paper, unfortunately due to COVID-19 it became impossible
to conduct more experiments and collecting multiple people
interacting simultaneously with a shelf. In our future work we
intend to study the system performance in crowded scenarios

and higher density stores to understand the reliability and
deployability of such a system.

6. CONCLUSION

In this paper, we presented FAIM (Framework for Autonomous
Inventory Monitoring) for cashier-less convenience stores.
Utilizing weight difference, visual item recognition, and item
layout (location) information, FAIM monitors products placed
on or picked up from shelves without human-in-the-loop with
up to 92.6% item identification accuracy, a 2× reduction in
error compared to the 86% accuracy reported for self-checkout
stations. To the best of our knowledge, this is the first fully
autonomous system that fuses multiple sensing modalities to
identify what item(s) customers take, without relying on human-
in-the-loop approaches, such as manual monitoring or Amazon
Go systems.
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