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Automatic reality capture and monitoring of construction sites can reduce costs,

accelerate timelines and improve quality in construction projects. Recently, automatic

close-range capture of the state of large construction sites has become possible through

crane and drone-mounted cameras, which results in sizeable, noisy, multi-building

as-built point clouds. To infer construction progress from these point clouds, theymust be

aligned with the as-designed BIM model. Unlike the problem of aligning single buildings,

the multi-building scenario is not well-studied. In this work, we address some unique

issues that arise in the alignment of multi-building point clouds. Firstly, we show that a

BIM-based 3D filter is a versatile tool that can be used at multiple stages of the alignment

process. We use the building-pass filter to remove non-building noise and thus extract

the buildings, delineate the boundaries of the building after the base is identified and as a

post-processing step after the alignment is achieved. Secondly, in light of the sparseness

of some buildings due to partial capture, we propose to use the best-captured building

as a pivot to align the entire point cloud. We propose a fully automated three-step

alignment process that leverages the simple geometry of the pivot building and aligns

partial xy-projections, identifies the base using z-histograms and aligns the bounding

boxes of partial yz-projections. Experimental results with crane camera point clouds of a

large construction site show that our proposed techniques are fast and accurate, allowing

us to estimate the current floor under construction from the aligned clouds and enabling

potential slab state analysis. This work contributes a fully automated method of reality

capture and monitoring of multi-building construction sites.

Keywords: reality capture, multi-building point cloud, building extraction, BIM model, construction site, crane

cameras

1. INTRODUCTION

The need for automating progress monitoring in construction projects is well-established in light
of the waste involved in manually inspecting sites and updating records (Golparvar-Fard et al.,
2011). In the past decade, efforts toward automation have benefited from advancements in on-
site spatial survey technologies, which provide as-built information in the form of 2D images and
3D point clouds (Yang et al., 2015b; Wang and Kim, 2019), as well as improvements in computer
vision techniques for processing this data (Seo et al., 2015; Zhong et al., 2019). An effective method
for extracting useful information from as-built point clouds is to align them with the as-designed
BIM model (Bosché, 2010). This method has opened up a plethora of applications in construction,
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such as construction progress tracking, safety management and
dimensional quality management (Wang and Kim, 2019).

In essence, the problem of aligning as-built and as-designed
models is that of point cloud registration, a well-studied topic
in Computer Vision (Pomerleau et al., 2015). When applied to
the context of the built environment, point cloud registration
becomes complex due to the many occlusions, self-similarities
and non-model points, which make automation of this pipeline
very challenging (Bueno et al., 2018). Several solutions have
been proposed for achieving fast and accurate alignment in the
construction context (Wang and Kim, 2019), but they need to
be updated in the face of changing trends in reality capture
of construction.

A recent development is the emergence of multi-building
point clouds, made possible by the integration of crane or drone-
mounted cameras and photogrammetric techniques. The multi-
building scenario presents the problem of isolating the buildings
from a noisy construction site point cloud to enable effective
alignment with the as-designed Building Information Model
(BIM). An initial coarse alignment can be achieved by converting
the as-built point cloud into the coordinate system of the as-
designed BIM. Further alignment can be achieved by studying
point (Kim et al., 2013c) or plane correspondences (Bueno et al.,
2018) between the point clouds to be registered, although the
latter is more natural for the built environment. Finally, fine
alignment can be achieved by the Iterative Closest Point (ICP)
algorithm (Besl and McKay, 1992) and its variants (Yang et al.,
2015a). For all these registration approaches, removal of outliers
is necessary to ensure fast and accurate results. In the case of
multi-building point clouds, the outlier ratio is especially large.
An efficient method to remove non-building noise is therefore
highly desirable.

Another issue that can arise with multi-building point
clouds that do not have complete coverage of the entire
site is a significant disparity in the quality of different
buildings. Buildings that are only partially captured and therefore
fragmented can be an obstacle to accurate registration. Also,
once a building is extracted from the multi-building point cloud,
its base must be identified to accurately delineate the profile of
the building.

To address these issues, we present the following solutions.
First, we propose a BIM-based 3D bounding box filter, which we
call a building-pass filter, to remove non-building noise. The filter
defines a region of interest based on the outer limits of the BIM
model and applies an efficient kd-tree-based search for building
points. Such a filter has been used before as a preprocessing step
(Han et al., 2018), but we use it additionally as an interim step
during alignment and as a postprocessing step. To address the
disparity in data quality across buildings, we present an approach
to define a pivot building from which we obtain the required
transformation for the entire multi-building point cloud. We
also present a strategy using z-histograms to identify the base
of buildings and infer the floor number from the aligned as-
built point cloud. We call this algorithm BEAM (BIM-based
Extraction and Alignment for Multi-building Point Clouds).
The performance of the algorithm is evaluated by comparing
it with manually generated ground truth transformations and

examining the proportion of the cast-in-place roof slab that can
be correctly extracted after alignment.

Additionally, this is one of few works that study crane camera
point clouds. In a previous study (Masood et al., 2019), we tested
a building extraction strategy on crane camera point clouds that
did not make use of the as-designed BIM, in light of some point
clouds in our dataset that were not georeferenced and could thus
not easily be aligned with the model. However, georeferencing as-
built data based on site referencing systems is a common practice
in the industry (Wang and Kim, 2019) and is thus considered
necessary for this work. Crane camera technology offers some
key advantages over its counterparts like Light Detection And
Ranging (LiDAR) and Unmanned Aerial Vehicles (UAVs), such
as being fully automated, low-cost, and low-labor (Tuttas et al.,
2016). The 3D point clouds obtained from crane cameras can
allow daily and automatic inference of the current floor under
construction, while 2D images can be used to infer the state of
cast-in-place concrete roof slabs.

This paper is organized as follows: section 2 discusses related
work; section 3 describes the crane camera dataset; section 4
explains the BEAM algorithm; section 5 presents the results
and discussion, including a potential application of mapping
the output of BEAM to 2D crane camera images; section 6
discusses some limitations of this work; and section 7 presents
the conclusions.

2. RELATED WORK

In this section, we study previous works on the following three
central themes of our paper: (i) Crane camera point clouds; (ii)
Fully automated alignment of as-built data with as-designed BIM
data; and (iii) Building extraction in the presence of noise.

2.1. Crane Camera Point Clouds
In a comprehensive review of point cloud data acquisition
techniques, Wang et al. (2019) identified Light Detection
And Ranging (LiDAR) and photogrammetry (including
videogrammetry) as the main methods of acquiring point clouds
for construction applications. Typically, 3D data in construction
has been captured using LiDAR, which provides high-precision
point clouds and has been the technology of choice in some
important past works (Bosché, 2010; Kim et al., 2013b; Zhang
and Arditi, 2013; Bosché et al., 2015). However, laser scanners are
expensive and require expert labor, which makes them unsuitable
for continuous progress monitoring (Rebolj et al., 2017). Large
areas are surveyed using Airborne LiDAR, which involves the
significant expense of a piloted airplane carrying specialist laser
scanning equipment (Johnson et al., 2014). In addition, Airborne
LiDAR produces a distant view of the site that is not suited for
close-range analysis.

According to Wang et al. (2019), photogrammetry has
gained the most popularity due to the ease of access to the
required equipment and the maturity of software packages.
Photogrammetric point clouds are obtained from photographic
images. Some past works used fixed on-site cameras (Golparvar-
Fard et al., 2011; Kim et al., 2013a; Omar et al., 2018) for image
capture, but focused only on a small segment of the construction
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site. A large number of devices would be required to achieve
complete coverage of the construction site, since each visible
point needs to be covered by at least two cameras (Braun et al.,
2015). Attaching cameras to UAVs is becoming popular (Ham
et al., 2016) and results in high coverage of the construction site.
But UAVs have certain disadvantages. Aside from the need for
flight permissions (Cardot, 2017), there are restrictions such as
a security distance to be maintained from buildings and cranes,
and maximal flight heights, which can pose a problem for tall
buildings (Tuttas et al., 2016). Also, UAVs can only operate in the
active area of construction when the cranes do not move, such as
during breaks. Additionally, the risk of collisions, image quality
deterioration due to bad weather and the difficulties in camera
pose estimation with the continuous position changes of the UAV
are inhibiting factors (Bang et al., 2017).

Wang and Kim (2019) conducted a comprehensive review of
the application of point cloud data in the construction industry.
It is evident that crane camera point clouds have received little
attention. We review the exceptions subsequently. Tuttas et al.
(2016) were the first to study as-built point clouds generated
from crane cameras. They did a comparative analysis of image
acquisition from crane cameras with hand-held cameras and
UAVs. Based on their experiments, the authors suggested that
despite the effort required to mount the camera and limited
flexibility due to the limited range of motion of cranes, crane
cameras are the best technique in terms of automation, safety
and effort required. Xu et al. (2018) presented a method to detect
and reconstruct scaffolding components from point clouds. They
proposed a 3D local feature descriptor to extract features that
were used to train a machine learning classifier to identify points
belonging to linear straight objects. Despite good results on
noisy crane camera point clouds, the authors suggested that
outlier removal prior to applying the descriptor could improve
the performance.

Braun et al. (2015) presented amethod to detect built elements
in an as-built crane camera point cloud. They used two cameras
mounted on the boom of a crane to acquire images. The authors
proposed to establish the sequence of construction of elements in
the form of a “precedence relationship” graph. This was meant
to track the built status of occluded elements, which could be
inferred from the graph since it could not from the point cloud.
However, such element-wise analysis requires the registration of
the point cloud with the BIM model, which they ensured by
manually inserting control points. The registration is therefore
not fully automatic. In the next section, we review key past works
that deal with fully automated point cloud registration in the
construction context.

2.2. Registration of As-Built and
As-Designed Models
Following the typical point cloud registration pipeline, as-built
and as-designed point clouds can be aligned by preprocessing
to remove noise, coarse registration to achieve a rough
alignment and fine registration to achieve near-optimal
alignment. Preprocessing is discussed in section 2.3. As for
coarse registration, some important early works proposed

plane-matching (Bosché, 2012) and Principal Component
Analysis (PCA)-based alignment (Kim et al., 2013b), but a recent
review paper identifies the work of Bueno et al. (2018) as the
state-of-the-art in the construction context. The approach in this
work is to findmatching sets of plane patches (and not just planes
as in Bosché, 2012) in the as-built and as-designed data, find a
set of transformations between these patches and then shortlist
the best transformation through a series of support-assessment
stages. The plane-based registration framework presented in
this work is a robust approach that fits naturally to the built
environment and was shown to successfully register different
kinds of buildings. However, in cases when the geometry of the
building is simple, some assumptions can be made which obviate
the need for extracting planes and assessing support. Instead
of searching for matching planes in the entire point cloud and
assessing a large set of transformations, we can simply align the
2D projections of the top and facade of the buildings. In Wang
et al. (2016), the problem of 3D transformation was converted to
the simpler 2D case by aligning 2D projections. We take a similar
approach in this work, except that instead of obtaining the 2D
projection from a fitted plane, we obtain it by directly projecting
the as-built point cloud. Additionally, we project only part of
the as-built point cloud to ensure that noise at the base does
not interfere with the alignment. Also, aside from alignment,
we require filtering of fine noise and base identification, which
we achieve by strategic application of a BIM-based filter and
z-histograms, respectively.

For fine registration, the ICP algorithm is the standard
approach (Bosché, 2010; Kim et al., 2013b; Bueno et al., 2018).
However, the ICP algorithm requires point matching, which
involves the assessment of all as-built data points. This can create
a significant computational overhead when dealing with multi-
building point clouds that contain a large amount of noise.
Bosché (2010) suggested that some form of point sampling
should be used to reduce the computational cost of ICP.
Our proposed BIM-based filter removes non-building points
efficiently and thus removes the need for analyzing the entire
as-built point cloud. A recent work presents a method to speed
up ICP by removing ground points from laser-scanned data
for robot navigation (Li et al., 2019). Aside from the different
data-type and application, our work differs from ground point
extraction in the sense that we need to remove all non-building
points, regardless of their being ground or non-ground points.
This requirement of ours can be classed as building extraction,
which we review in the next section.

When as an as-designed model is not present, or the disparity
between the as-designed and as-built data is large (such as in
early phases of construction), as-built data separated temporally
can be matched by finding feature correspondences across 2D
images (Tuttas et al., 2017). However, we do not explore as-built
vs as-built registration in this work.

2.3. Building Extraction for Construction
Sites
The problem of building extraction is to identify and segment
buildings from visual data of a scene. Building extraction
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techniques have largely been developed for distant aerial imagery
for urban planning and monitoring applications (Tomljenovic
et al., 2015; Boonpook et al., 2020). Building extraction can either
be data-driven (Nguyen et al., 2020) or model-driven (Zheng
and Weng, 2015). Data-driven methods are the natural choice
when a suitable model is not present. A previous work of ours
(Masood et al., 2019) proposed a building extraction strategy
based on 3D convex hull volumes of clusters on an as-built
point cloud, based on the observation that buildings are larger
than non-building elements. This work did not depend either
on the BIM model or the georeferencing of the point cloud to
identify buildings. However, the algorithm could suffer in the
early stages of construction when non-building elements may be
more voluminous than the building area.

When a suitable model is present, model-driven building
extraction is more robust (Li et al., 2020). For example,
Karantzalos and Paragios (2008) proposed a set of building
templates as shape priors to guide the segmentation of buildings
from aerial imagery, achieving superior results to pure intensity-
based segmentation. In the construction context, BIMmodels are
now ubiquitous and can be naturally used as strong geometric
and semantic priors for building extraction from multi-building
construction scenes. For example, Han et al. (2018) used the
minimum andmaximum values of the BIMmodel to filter a large
UAV point cloud, leading to an 80% reduction in the number
of points. They included a threshold to account for registration
errors. In this work, we build on the idea of BIM-based filtering
by defining a 3D bounding box filter based on the BIM model.
In addition to global filtering to extract buildings, we show how
in combination with z-histograms of the building, such a BIM-
based filter can aid in base identification and as a postprocessing
step after alignment. A recent work (Huang et al., 2020) uses
the 1D histogram of the horizontal projection of a building
point cloud to reason in the frequency domain about vertical
translation. We instead use the z-histogram to identify the base
of the building based on the intuition that the base has a greater
point count than the noisy regions.

3. DATA DESCRIPTION

The data was collected on the site of the Tripla project located
in Helsinki, Finland, which includes a shopping center, hotel,
housing and offices. The total area of the site is 183,000 floorm2.
A crane camera solution developed by Pix4D was used to collect
data (Cardot, 2017). Two independent cameras were mounted on
the jib of a tower crane. The cameras were located approximately
13 and 37 m from the rotation axis of the crane, respectively
and their viewing direction was toward the ground. The vertical
height of the crane boom, and thus of the cameras, was about 100
m from sea level. Since the cameras were in nadir orientation, the
viewing directions of the camera did not change when the crane
moved. The focal length per detector width was approximately
28 mm for 35 mm film. Images were automatically taken as the
crane would begin operation and then transferred to the Pix4D
Cloud, where they were converted to 2D maps and 3D point
clouds. Points were calculated with the stereo baseline across the

TABLE 1 | Description of as-built point cloud dataset.

Point cloud # Date (dd/mm/yyyy) Density (points/m3) Number of points

1 17/08/2018 949.4 17,349,826

2 20/08/2018 988.4 15,117,822

3 1/10/2018 1110.43 16,499,213

4 1/11/2018 1338.91 15,909,536

5 5/11/2018 1032.46 14,144,080

6 7/11/2018 756.85 16,4806,06

7 13/11/2018 881.31 10,915,918

8 19/11/2018 885.19 13,100,825

crane jib and the overlap in the turning direction was at least
60%. The size of the images was 3648 × 5472 pixels. The entire
process, from image capture to daily point cloud, was automatic.
From a point cloud dataset spanning August to November 2018,
eight point clouds were selected based on their being successfully
georeferenced and also containing at least some segment of all
three buildings on the site. The georeferencing was performed
automatically using Global Positioning System (GPS) values. The
dates, densities and point counts of the point clouds are shown in
Table 1.

Figure 1A shows the as-designed BIM model of the
buildings with their respective labels, while Figure 1B shows the
corresponding labels on an as-built point cloud.

The point clouds are too fragmented for element-wise
identification, but the geometry of the facade is retained to a
reasonable degree. This can be used for estimating the number
of the current floor under construction. The point cloud contains
a large amount of non-building noise, which presents two
problems: (i) it can interfere with the alignment with the BIM
model and (ii) there would a large computational overhead for
analyzing the entire point cloud. Also, the base contains multiple
occlusions which can interfere with identifying the boundaries
of the building. Additionally, while none of the buildings is fully
captured, buildings B and C are relatively more fragmented.

In order to achieve good alignment, the non-building noise
must be eliminated. Following this, the best-captured building
can be used to obtain the necessary transformations for
alignment. Then, the base of the buildings (which may be
occluded) must be identified. Finally, the building point clouds
must be aligned with the BIM model. Once this is achieved, the
current floor under construction can be inferred from the aligned
cloud. In the next section, we present our method of achieving
these objectives in light of these requirements.

4. BEAM: BUILDING EXTRACTION AND
ALIGNMENT FOR MULTI-BUILDING POINT
CLOUDS

4.1. Overview
In this section, we present BEAM, which is our solution to
address the problems outlined in section 3. An initial coarse
alignment is achieved by conversion of the global coordinate
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FIGURE 1 | Construction site in Helsinki, Finland with the three buildings

labeled A, B, and C in (A) an as-designed BIM model and (B) an as-built point

cloud.

system (in which the as-built point clouds are originally defined)
to the local coordinate system (of the BIM model) followed by
correction of the zero-point offset and angular offset, which we
easily obtain from design information. To address the problem
of non-building noise, we apply the building pass filter to remove
the coarse non-building noise, leaving only some noise around
the building profiles. Then, for further coarse alignment, fine
noise removal and base detection, we select the best-captured
building as the pivot building and apply the following steps. We
align the xy projections (using ICP), apply the building-pass filter
to remove some fine noise, identify the base of the buildings
using z-histograms, align the yz projections using bounding
box alignment and apply the building-pass filter again for
further fine noise removal.We then apply the 2D transformations
obtained for the pivot building to the other buildings, along
with the same strategic application of the building-pass filter
and base alignment. The result is a well-filtered and BIM-aligned
as-built point cloud, from which we infer the current floor
under construction. The algorithm is illustrated in Figure 2 and
explained subsequently.

Let a construction site point cloud from the dataset (of
eight point clouds) be P =

{
p1, ...pN

}
, P ⊂ R

3 with pi =

(pix, p
i
y, p

i
z)
T ∈ R

3. for i = 1, ...,N. Let B be a point cloud

obtained from the as-designed BIMmodel. Our target is to obtain
L = {LA,LB,LC}, which is the set of point clouds corresponding
to buildings A, B, and C, such that L is aligned with B. The first
step is coordinate conversion which is explained below.

4.2. Coordinate Conversion
The location data in the as-built point clouds is in terms of global
coordinates defined by the Universal Transvers Mercator (UTM)
system for zone 35 V, also known as ETRS-TM35FIN (Uikkanen,
n.d.). UTM coordinates consist of easting and northing values
(E,N). The BIM model is defined in terms of local (X,Y ,Z)
coordinates. The axes of the local coordinate system are selected
so as to follow nearby streets and outer-wall directions of
buildings. The zero point for the BIM model is set to be in the
South-West direction from the site area, thus giving positive X
and Y coordinate values for all locations on the site. Let’s refer to
this zero point, expressed in UTM coordinates, as (E0,N0). The
height value Z is the same for both local and global coordinates
and it follows the N2000 coordinate system, which expresses the
height from the theoretical sea level mean height. Local X and
Y coordinate axes differ by θ = 11.4◦ from the global E and
N axes, as is illustrated in Figure 3. Both the global zero point
and angular offset were obtained at the start of the project (from
the architect and site drawing, respectively), after which we were
able to apply the conversion to all point clouds without any
manual intervention.

In order to convert the point cloud into local coordinates, we
shift the as-built point cloud by the local zero and rotate by θ , as
is expressed in the following equation:

[
X
Y

]
=

[
cosθ sinθ
−sinθ cosθ

]
×

[
E− E0
N − N0

]
(1)

We will refer to the converted point cloud as Plocal. The results
of conversion for Point Cloud 1 are shown in Figure 4. As can be
seen from the figure, the conversion leads to a rough alignment
of the point cloud with the BIM model.

4.3. Building-Pass Filtering
The building-pass filter is a 3D bounding box filter (Rusu
and Cousins, 2011) whose parameters are defined using the
BIM model to specify a region of interest that contains the
buildings. The data points that fall within the region of
interest are searched using a k-dtree, a modern formulation
of which is given in Skrodzki (2019). We define the building-
pass filter subsequently. Let the limits of B be limitsB =

{xBmin, x
B
max, y

B

min, y
B
max, z

B

min, z
B
max}. The filter is a cuboid whose

vertices are defined by limitsB as shown below:

bpf =




xBmin yBmin zBmin

xBmax yBmin zBmin

xBmax yBmax zBmin

xBmin yBmax zBmin

xBmin yBmin zBmax

xBmax yBmin zBmax

xBmax yBmax zBmax

xBmin yBmax zBmax




(2)
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FIGURE 2 | Flowchart showing major components of BEAM.

We add a tolerance tol to bpf defined as follows:

tol =

{
δ if vertex ismax

−δ if vertex ismin
(3)

The tolerance is required because the as-built point cloud
is misaligned with the as-designed BIM to start with. Once
the cuboidal region of interest is created, a 3D k-dtree is
built to efficiently find the points in Plocal, which is explained

subsequently. First, we determine the cutting dimension d. This
is the dimension in which two points pa and pb exist such

that
∣∣∣pda − pd

b

∣∣∣ ≥

∣∣∣p̃de − pd̃
f

∣∣∣, where d̃ refers to the other two

dimensions. After this, we sort the values in d (held in a set S)
and find the median of S. This median forms the root node of
the tree. All values less than the median are assigned to the left
child and those greater than the median to the right child. The
algorithm then recurses on the children nodes. If the number of
points corresponding to a particular node is less than the bucket
size b (which we take as 5,000), we cease to partition the points
and instead label the node as a leaf node. Note that we implement
a leaf-based tree in which all the points are stored at the leaf nodes
(and not at the inner nodes as in the case of non-leaf based trees).
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This considerably decreases the space required to store the tree
(Behley et al., 2015). The computational complexity of building
the kdtree is typically O(NlogN).

Once the kdtree is built, we can now efficiently search for
points within the building-pass filter. The cutting threshold αnode,
is defined as follows:

αnode =

SNS
2
+ SNS

2 +1

2
(4)

where node is the index of the current nodes in the kdtree and NS

is the number of points in S. Equation (4) is the median of the
elements of S when NS is even.If NS is odd, it is rounded to the

FIGURE 3 | Angular deviation of X and Y axes of local coordinate system (of

the BIM model) from the UTM35V global coordinate system (E, N).

nearest greater integer. Starting the tree traversal from the root
node, if the maximum building-pass filter limits corresponding
to the cutting dimension at the node exceed (or are equal to)
αnode, we move to the right child of the current node. Then, if
the minimum building-pass filter limits are less than (or equal
to) αnode, we move to the left child of the current node. This
continues until a leaf node is found. Now, the points in the leaf
node are assessed for presence within the building-pass filter,
after which the algorithm moves back up the tree to the next
untested node. All leaf nodes that are of a lower index than the
last visited leaf node cannot possibly contain the desired points
and are thus eliminated from the search. For our dataset, for a
bucket size of 5,000, the kdtree reduces the search space by 72%
on average compared to a brute force search.

We apply the building-pass filter to Plocal with tol = 5 m
to accommodate the initial misalignment. The results will be
shown in section 5. With most of the non-building portion of
Plocal removed, we achieve the set U = {UA,UB,UC} of unaligned
building point clouds. To aid building-specific analysis, we define
the corresponding set B = {BA,BB,BC} of as-designed point
clouds obtained from the BIM model.

4.4. Alignment of the Pivot Building and
Base Detection
We select UA as the pivot building since it has the best coverage,
find the required transformation for it and then apply the
resulting transformations to UB and UC. Since the outer geometry

FIGURE 4 | As-built Point Cloud 1 after coordinate conversion seen against the as-designed BIM model.
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of the building is simple, we can convert the 3D alignment to 2D
by considering the 2D projections of the top and facade of the
building. We first align the xy projections of the point clouds,
after which we identify the base of the as-built point cloud,
following which we align the yz projections of the point clouds.
These steps are detailed subsequently.

4.4.1. Alignment of xy Projections

We find the transformation Txy that aligns the xy projections of
UA and BA using the standard point-to-point ICP algorithm. In
order to prevent base noise from interfering with the alignment,
we only project the top 50% of UA. We then apply Txy to UA to
achieve an xy-aligned 3D as-built point cloud, to which we apply
the building-pass filter to remove fine noise around the building
profile. This time, we wish to filter only above the building and to
its sides and wish to retain the base area for analysis in the next
step. Thus, we set the minimum x and z-limits to −∞ and the
maximum x-limit to ∞. All other limits remain as in Equation
(2). Also, we can now set tol to zero since the point cloud is
already xy-aligned. We denote the xy-aligned point cloud as U

xy
A .

4.4.2. Base Identification

Identifying the base of the building is a challenging task because
of a concentration of construction noise at the base. Our strategy
to identify the base is to study the histogram of the z-values at the
base of the building and select the mode of these values, based on
the intuition that the base of the building has a far greater point
count than the noisy regions. We first take the yz projection of
U
xy
A , downsample it with a grid filter and define the region of

interest to be the bottom 20% portion of the building. We then
construct the histogram with a bin width of 0.1 m and take the
mode as the base height. For safety, we add a small tolerance of
0.1 m, which is effectively the histogram bin next to themode bin.
The histogram for Point Cloud 1 is shown in Figure 5. The peak
corresponds to 31.9 m and thus 32 m is taken as the base height.
Once the height is estimated, we can simply remove the points
below base. The resulting point cloud is denoted as U

g
A.

4.4.3. Alignment of yz Projections

To perform the yz-alignment of U
g
A and BA, we simply align their

respective bounding boxes. However, if the y limits of the base
extend beyond those of the overall y-limits of the building, the
bounding box may become enlarged beyond the envelope of the
building. In order to prevent this from distorting the y-alignment,
we take the bounding box of the top 90% of the building. Then,
we simply shift the bounding box by the difference between the
bounding box edges which are normal to the y-axis. To perform
z-alignment, we take the bounding box of the entire yz projection
and shift it by the difference between the bounding box edges
which are normal to the z-axis.

Once the yz-alignment is complete, we apply the building-
pass filter again as defined in Equation (2) and with tol set to
zero. Finally, we achieve the set of aligned building point clouds
L = {LA,LB,LC}.

FIGURE 5 | Histograms of z-values for the bottom 20% portion of building A

for Point Cloud 1. The red bar corresponds to the mode bin and the green bar

is the selected base height.

4.5. Floor Level Estimation
In this section, we explain our strategy to estimate the current
floor under construction.We first study the histogram of z-values
between the ends of the yz projections of the building sections
and select the largest z value (i.e., the largest height) as the height
of the section. To ensure that our selected region of interest falls
within the ends of the building section, we shrink the region
of interest by 10% on each side. Also, to avoid selecting a z
value corresponding to an outlier, we set a simple noise criterion
as follows:

ni

ntotal
> γ (5)

where ni is the number of points at the ith bin of the histogram,
ntotal is the total number of points in the region of interest and γ

is a noise threshold which we set to 0.005.
Once the height of each slab section is obtained, we use a

rule base created from design heights to infer the floor number.
Specifically, we check if the estimated floor height falls between
the upper levels (according to the design) of the roof slabs of the
previous and current floor. The rule base is shown in Table 2.
We add a tolerance th of 1 m, considering that the floor height is
3.1m. The results are presented in section 5.

5. RESULTS AND DISCUSSION

In this section, we discuss the results obtained by applying
BEAM to our dataset of eight point clouds, following which
we. To avoid congested illustrations, only point clouds 1 and 5
are illustrated.

5.1. Building-Pass Filter
Figure 6 illustrates the application of the building-pass filter to
point clouds 1 and 5. The filter removes most of the non-building
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portion of the construction site. The misalignment is relatively
less for Point Cloud 1 and thus the need for the tolerance may
not be obvious. However, Point Cloud 5 is noticeably more
misaligned, as is evident from the figure. Without a tolerance, the

TABLE 2 | Rule base used to infer floor number.

Height range Floor #

(33+th,37.2+th] 1

(37.2+th,40,3+th] 2

(40.3+th,43.4+th] 3

(43.4+th,46.5+th] 4

(46.5+th,49.6+th] 5

(49.6+th,52.7+th] 6

(52.7+th,55.8+th] 7

(55.8+th,58.9+th] 8

(58.9+th,62+th] 9

(62+th,65.1+th] 10

(65.1+th,68.03+th] 11

>68.03+th 12

The heights correspond to upper roof slab levels of each floor taken from the as-designed

BIM model.

filter would remove some portion of the building. The filter leads
to an average point count reduction of 63.32%.

5.2. Alignment and Base Detection
Figure 7 shows the xy-alignment for point clouds 1 and 5. The
ICP algorithm corrects the angular orientation of both point
clouds reasonably well. The results are similar for the entire
dataset. Figure 8 shows the results for base detection for both
point clouds. The base is identified correctly in both cases and
the results are consistent across the entire dataset. Next, Figure 9
shows the yz-alignment for both point clouds. Point Cloud 5 is
significantly misaligned in both y and z directions, but this is
corrected effectively by the algorithm.

5.3. Registration Accuracy and Speed
The following metrics were used to evaluate the registration
accuracy and speed of the proposed algorithm:

• The difference between the transformations obtained from the
proposed algorithm and the ground truth transformations,
which were obtained by manually applying a rotation
and translation to each aligned point cloud such that the
cast-in-place slab of section 1 (see Figure 10) was finely
aligned with the corresponding slab in the BIM model. The
rotation (angular correction) was applied such that the slabs

FIGURE 6 | First application of the building-pass filter (with tolerance 5) to (A) Point Cloud 1 and (B) Point Cloud 5.
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FIGURE 7 | Alignment of xy projections using ICP for (A) Point Cloud 1 and (B) Point Cloud 5.

boundaries became parallel as judged by visual inspection.
Then, translation was applied such that the bottom-right
corners of the slabs (when viewed overhead) coincided.
We report the angular and translation errors δR and δT ,
respectively, as defined below:

δR =
∣∣αgtruth − αBEAM

∣∣ (6)

δT =
∥∥Tgtruth − TBEAM

∥∥ (7)

where T = [tx, ty, 0]. The accuracy of z-alignment is assessed in
terms of the floor estimation, as discussed in section 4.

• Root-Mean-Square Error (RMSE), which is the Euclidean
distance (in meters) between the aligned point clouds.

• Computation time (in seconds) to run BEAM on
an Intel Core i7-9750HF CPU with 16 GB RAM in
MATLAB-R2020a software.

The results are shown in Table 3. The mean angular error
is 1.34 degrees, translation error is 2.6 m and RMSE is
0.7 m. These errors are small enough to enable further
analysis of the slab states, as will be discussed in section
5.5. Considering the large average number of points in our
dataset (14,940,000), the mean computation time of 159.86 s
is small.
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FIGURE 8 | Base detection for (A) Point Cloud 1 and (B) Point Cloud 5.

5.4. Floor Estimation
The floor estimation was limited to building A, because only this
building is consistently captured across its entire width. But since
this building is not captured across its entire length, the floor level
could be calculated for two out of four sections of the building, as
is illustrated in Figure 10.

The ground truth of the current floor under construction was
obtained from the Pix4D cloud bymanual inspection. The results
of the floor estimation are shown in Table 4. The current floor is
estimated accurately for every point cloud, except for point cloud
4, where the actual floors “12” and “11” are estimated as “11” and
“9,” respectively. As shown in Table 5, the estimated heights for
sections 1 and 2 corresponding to Point Cloud 4 are 67.9 and
62.8 m, respectively, while floor 12 is detected beyond 69.03 m
and floor 11 beyond 63 m. The reason for the misestimation is
the small difference in scale between the BIM point cloud and the
as-built point cloud, the latter being smaller.

5.5. A Potential Application of Crane
Camera Images: Slab State Recognition
Crane camera data could be used to enable remote monitoring
of construction sites and automatic alerts in construction

workflow when progress falls behind expectations, especially to
aid those construction managers who are off-site and whose
workflows require real-time knowledge of any deviations of
plans. For example, automatic inference of the current floor
under construction from BIM-aligned point clouds, as was
demonstrated in this work, could keep managers informed of
deviations from the schedule.

Another potential application is that once the current floor
under construction is known, cast-in-place concrete roof slabs
can be extracted. As we shall demonstrate subsequently, the slabs
can be accurately extracted from the aligned as-built point cloud.
We can measure the overlap between the slabs in the BIM model
and those in the as-built point cloud using Intersection Over
Union (Iou) (Csurka et al., 2013). For a reference area R and
estimated area E, the IoU can be defined as:

IoU =
E ∩ R

E ∪ R
(8)

To obtain the estimated slab areas, we manually determined the
slab corners of sections 1 and 2 (see Figure 10) from the set of
aligned clouds LA. The reference slab areas were obtained from
the BIM model. An average IoU of 0.833 was obtained. This is a
good overlap that can be leveraged to infer the state of the slab.
For example, Bang and Kim (2020) considered bounding boxes
with IoU more than 0.80 to represent the same construction
scene, therefore such bounding boxes were merged together
before object recognition was performed.

Once the slab region is identified, we canmap the 3D points to
the corresponding 2D crane camera images used to create them.
From these 2D images, we can infer whether the slab contains
no formwork, formwork only, formwork and rebar or completed
rebar, as shown in Figure 11.

A generalized version of this application was explored by
Dimitrov and Golparvar-Fard (Dimitrov and Golparvar-Fard,
2014), who used a bag-of-words model with a Support Vector
Machine (SVM) for material recognition from site images.
The authors considered 20 classes of materials. To improve
the accuracy, they suggested that classes be limited to the
material expected in a particular region under construction.
Also, the authors suggested the need for identifying a region
in a photograph belonging to a single material so that material
classification could be restricted to that region. They suggested
that these regions could be derived by back-projecting BIM
element surfaces or points of a segmented point cloud onto
site images. This kind of automated region extraction was
explored in Aikala et al. (2019). In future work, we intend to
automatically infer the slab state by formulating this as a scene
recognition problem.

6. LIMITATIONS

Due to incomplete coverage of the construction site by the
cameras, the point clouds were fragmented. The most complete
portion of the point cloud showed half of the facade of a building
albeit a good view of the roof slabs. The rear was completely
missing since it was not within the camera’s field of view. Only a
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FIGURE 9 | Alignment of yz projections for (A) Point Cloud 1 and (B) Point Cloud 5.

small segment of other buildings was available, which precluded
them from floor estimation. Future work should consider how
more crane cameras can be placed to extend coverage and
examine a possible integration with drone images or images from
fixed cameras.

In our data, and in fact for most buildings, the yz alignment is
a case of matching straight edges, which is achieved by matching
their bounding boxes. If the shapes are irregular, aligning the

bounding boxes may not lead to a close alignment. In such
cases, edge detection methods such as Sobel (Kittler, 1983) and
Canny (Canny, 1986) or their modern variants such as CannySR
(Akinlar and Chome, 2015), Predictive Edge Linking (Akinlar
and Chome, 2016) and HT-Canny (Song et al., 2017) may be
employed to trace the edges and then attempt the alignment.

The as-built point cloud was slightly out of scale with respect
to the BIMmodel, which affected the accuracy of floor estimation.
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FIGURE 10 | Description of building sections considered for floor estimation. The BIM model is shown in the backdrop.

FIGURE 11 | Different states of the slab: (A) No formwork, (B) Formwork, (C) Rebar, and (D) Rebar complete.

TABLE 3 | Rotation error (δR), translation error (δT ), RMSE, and computation time

of BEAM.

Point cloud # δR(degrees) δT (m) RMSE (m) t (s)

1 0.43 0.89 0.79 150.65

2 0.36 0.4 0.7 136.07

3 1.36 4.08 0.72 187.66

4 1.19 2.22 0.61 163.53

5 2.59 4.79 0.76 156.52

6 2.94 5.64 0.71 171.37

7 0.71 0.72 0.74 150.51

8 1.18 2.04 0.58 162.53

Mean 1.34 2.6 0.7 159.86

Automatically equalizing the scale of the as-built point cloud and
BIM model should be addressed in future work.

7. CONCLUSION

Reality capture technologies are improving in level of automation
and coverage, which is making it possible to acquire images
and 3D point clouds of large, multi-building construction sites.
In this work, we proposed BEAM, which is an algorithm that
addresses some unique computational challenges that arise in the

TABLE 4 | Floor estimation results.

Point cloud # Actual floor Estimated floor

Section 1 Section 2 Section 1 Section 2

1 8 6 8 6

2 8 6 8 6

3 10 9 10 9

4 12 10 11 9

5 12 10 12 10

6 12 11 12 11

7 12 11 12 11

8 12 11 12 11

processing of multi-building point clouds. Firstly, to eliminate
coarse and fine non-building noise, we presented a BIM-based
building-pass filter. Results with eight point clouds of a three-
building construction site showed that the filter offers a robust,
flexible, and efficient way to remove both coarse and fine
noise, leading to an average point count reduction of 63.32%
for our dataset. Additionally, the building-pass filter can easily
be applied to multi-building point clouds from other reality
capture technologies (such as drones) and is relevant for point
clouds of diverse densities. Secondly, in view of the holes in
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TABLE 5 | Estimated slab heights shown against the rule base created from

design heights.

Point cloud # BIM-based rule base Estimated height (m)

Section 1 Section 2 Section 1 Section 2

1 (55.8+th,58.9+th] (49.6+th,52.7+th] 59.6 53.7

2 (55.8+th,58.9+th] (49.6+th,52.7+th] 58.9 53.2

3 (62+th,65.1+th] (58.9+th,62+th] 64 61.1

4 >68.03+th (62+th,65.1+th] 67.9 62.8

5 >68.03+th (62+th,65.1+th] 69.3 64.4

6 >68.03+th (65.1+th,68.03+th] 71.3 67.3

7 >68.03+th (65.1+th,68.03+th] 70.9 68.1

8 >68.03+th (65.1+th,68.03+th] 71.4 68.7

the data and disparity in data quality across buildings, we
proposed an alignment strategy in which the best-captured
building is selected as the pivot and partial 2D projections of
the building are aligned. The registration accuracy was shown
to agree well with ground truth, but could be further improved
with fine alignment algorithms. We studied how the achieved
alignment could facilitate slab analysis by calculating the slab
region that could be extracted based on design dimensions. We
achieved a mean IoU of 0.83, which we expect is a sufficiently
good overlap for slab state analysis. Thirdly, we proposed a
base identification strategy using z-histograms that is iteration-
independent and could effectively identify the base for the entire
dataset despite occlusions. As a result of successful alignment and
base identification, floor numbers could be accurately calculated
by mapping the height of the aligned cloud with design heights
extracted from the BIM model. One floor was misestimated as
a result of the small difference in scale between the as-built point
cloud and the BIMmodel. This should be addressed by automatic
scale-matching in future work.

The results of this study contribute to real-time
construction progress monitoring by offering a fully automated,
computationally feasible and accurate method of aligning daily
construction site point clouds with as-designed models. This
could facilitate remote management of construction sites, better

organization of support functions such as procurement and
logistics, and more accurate reporting of project status at the
company or business unit level. Also, this is one of few works that
uses crane camera data, which is an emergent technology that
offers many benefits in terms of cost and automation compared
with other reality capture techniques.

In future work, we intend to explore automatic recognition
of the state of cast-in-place slabs by formulating it as a scene
recognition problem that can be solved using a Bag-of-Words
approach. Also, we intend to address the issues with data quality
by installing fixed cameras on the crane and possibly augmenting
them with drone data.
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