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A method is presented for extracting features of approximate optimal brace types and
locations for large-scale steel building frames. The frame is subjected to static seismic
loads, and the maximum stress in the frame members is minimized under constraints on
the number of braces in each story and the maximum interstory drift angle. A new
formulation is presented for extracting important features of brace types and locations from
the machine learning results using a support vector machine with radial basis function
kernel. A nonlinear programming problem is to be solved for finding the optimal values of
the components of the matrix for condensing the features of a large-scale frame to those of
a small-scale frame so that the important features of the large-scale frame can be extracted
from the machine learning results of the small-scale frame. It is shown in the numerical
examples that the important features of a 24-story frame are successfully extracted using
the machine learning results of a 12-story frame.
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INTRODUCTION

The optimization problem of brace locations on a plane frame is a standard problem that has been
extensively studied over the past few decades (Ohsaki 2010). However, it is categorized as a topology
optimization problem that involves integer variables indicating the existence/nonexistence of
members. Therefore, it is more difficult than a sizing optimization problem, where the cross-
sectional properties are considered as continuous design variables and their optimal values are found
using a nonlinear programming algorithm. Furthermore, another difficulty exists in the problem
with stress constraints (Senhola et al., 2020), which are to be satisfied by only existing members;
therefore, the constraints are design-dependent, and the problem becomes a complex combinatorial
optimization problem.

The solution methods for combinatorial optimization problems are categorized into
mathematical programming and heuristic approaches. For a truss structure, the topology
optimization problem with stress constraints can be formulated as a mixed-integer linear
programming (MILP) problem (Kanno and Guo, 2010). However, the computational cost for
solving an MILP problem is very large, even for a small-scale truss. By contrast, various heuristic
methods, including genetic algorithms, simulated annealing (Aarts and Korst, 1989), tabu search
(Glover, 1989), and particle swarm optimization (Kennedy and Eberhart, 1995), have been proposed
for topology optimization problems (Saka and Geem, 2013). Hagishita and Ohsaki (2008a) proposed
a method based on the scatter search. Some methods have been proposed for generating brace
locations using the technique of continuum topology optimization (Rahmatalla and Swan, 2003;
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Beghini et al., 2014). However, the computational cost of a
heuristic approach is also very large for a structure with many
nodes and members. Therefore, the computational cost may be
substantially reduced if a solution that cannot be an approximate
optimal solution or a feasible solution is excluded before carrying
out structural analysis. For this purpose, machine learning can be
effectively used.

Machine learning is a basic process of artificial intelligence, the
use of which has resulted in great successes in the field of pattern
recognition (Carmona et al., 2012). Support vector machine
(SVM) (Cristianini and Shawe-Taylor, 2000), artificial neural
network (ANN) (Adeli, 2001), and binary decision tree (BDT),
are regarded as the most popular methods. The application of
machine learning to the solution process of optimization
problems has been studied by many researchers, including
Szczepanik et al. (1996) and Turan and Philip (2012).
Probabilistic models, including Bayesian inference, Gaussian
process model (Okazaki et al., 2020), and Gaussian mixture
model (Do and Ohsaki, 2020), have also been extensively studied.

The application of machine learning to structural response
analysis and structural optimization has been studied since the
1990s in conjunction with data mining approaches (Hagishita
and Ohsaki, 2008b; Witten et al., 2011). The use of machine
learning is categorized into several levels. The simplest level is to
estimate the structural responses that are to be obtained by
complex nonlinear and/or dynamic analysis, demanding a
large computational cost. For example, SVM for regression
(Smola and Schölkopf, 2004; Luo and Paal, 2019) has
successfully been applied to reliability analysis (Li et al., 2006;
Liu et al., 2017b; Dai and Cao, 2017), and ANN (Papadrakakis
et al., 1998; Panakkat and Adeli, 2009), including deep neural
network (DNN) (Nabian and Meidani, 2018; Yu et al., 2019), can
be used for estimating multiple response values. Nguyen et al.
(2019) used DNN for predicting the strength of a concrete
material. Abueidda et al. (2020) used DNN for finding the
optimal topology of a plate with material nonlinearity. The
approaches in this level are regarded as surrogate or regression
models which are similar to the conventional methods of
response surface approximation, Gaussian process model, etc.
(Kim and Boukouvala., 2020). Most of the research on machine
learning for structural optimization are classified into this level.
The computational cost for structural analysis during the
optimization process can be drastically reduced using machine
learning for constructing a surrogate model.

The second-level application of machine learning to structural
optimization may be to classify the solutions into two groups,
such as feasible and infeasible solutions or approximate optimal
and non-optimal solutions. During the optimization process
using a heuristic method, the solutions judged as infeasible or
non-optimal can be simply discarded without carrying out
structural analysis. Cang et al. (2019) applied machine
learning to an optimization method using the optimality
criteria approach. Liu et al. (2017a) used clustering for
classifying the solutions. Kallioras et al. (2020) used deep
belief network for accelerating the topology optimization
process. Various methods of data mining can be used for
classifying the solutions; however, the number of studies

included in this level is rather small. In this paper, we extend
the method using SVM in our previous paper (Tamura et al.,
2018) to classify the brace types and locations of a large-
scale frame.

The most advanced use of machine learning in structural
optimization may be to directly find the optimal solution without
resorting to an optimization algorithm. Several approaches have
been proposed for learning the properties of optimal solutions of
plates subjected to in-plane loads (Lei et al., 2018). However, it is
difficult to estimate the properties of optimal solutions with
enough precision so as to find the optimal solutions without
using an optimization algorithm. Alternatively, reinforcement
learning may be used for training an agent, simulating the
decision-making process of an expert (Yonekura and Hattori,
2019; Hayashi and Ohsaki, 2020a, Hayashi and Ohsaki, 2020b).

One of the drawbacks in the application of machine learning
to structural optimization is that the computational cost for
generating the sample dataset for learning and the process of
learning itself may exceed the reduction of the computational
cost for optimization by utilizing the learning results. Therefore,
it is important to develop a method such that the machine
learning results of a small-scale model can be utilized for
extracting the features of approximate optimal and non-
optimal solutions of a large-scale model. Furthermore, it is
beneficial and intuitive to structural designers and engineers
if the important features or properties observed in the
approximate optimal solutions can be naturally extracted by
the machine learning process. However, it is well known that the
learning results by ANN are not interpretable. Although feature
selection is an established field of research in machine learning,
its main purpose is the reduction of the number of features
(input variables) to prevent overfitting and reduce the
computational cost in the learning process (Xiong et al.,
2005; Abe, 2007; Stańczyk and Jain, 2015).

Identification of important features is very helpful for finding a
reasonable distribution of braces preventing unfavorable yielding
under strong seismic motions. A building frame should also be
appropriately designed for preventing collapse due to unfavorable
deformation concentration (Bai et al., 2017), which can be
enhanced by the P-delta effect (Kim et al., 2009). However,
the seismic load considered in this paper is of a level of
moderately strong motion (level 2 in the Japanese building
code); we do not consider a critically strong motion (level 3 in
the Japanese building code) that would lead to a collapse due to
deformation concentration.

In this paper, we present a method for extracting the
important features of brace types and locations of approximate
optimal large-scale steel building frames subjected to static
seismic loads utilizing the machine learning results of a small-
scale model. The maximum stress in the members, including
beams, columns, and braces, is to be minimized under constraints
on the number of braces in each story and the maximum
interstory drift angle among all stories. The key points of this
study are summarized as follows:

• A new formulation is presented for identifying important
features of the solutions with large score values from the
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machine learning results by SVM with radial basis function
(RBF) kernel.

• A method is presented to estimate important features of a
large-scale model from the machine learning results of a
small-scale frame.

• The important features of brace types and locations of an
approximate optimal 24-story frame can be successfully
extracted using the machine learning results of a 12-story
frame. A clear difference exists in the cumulative numbers of
appearance of important features in the approximate
optimal solutions and the non-optimal solutions.

OPTIMIZATION PROBLEM

Consider an nf -story ns-span plane steel frame. An example of
a12-story 4-span frame is shown in Figure 1. The types and
locations of braces are optimized to minimize the maximum
absolute value of the edge stress in members, including beams,
columns, and braces, under static horizontal loads representing

the seismic loads. The vertical loads are not considered, assuming
the process of seismic retrofit installing various types of braces to
a frame consisting of beams and columns (Tamura et al., 2018)
(i.e., the braces do not have any stress under vertical loads).

The braces are selected from the nb types, including “no-
brace”. The five types in Figure 2 are used in the numerical
examples. These types are identified by the integer variable
ti ∈ {1, 2, . . . , nb}, where the index i � 1, . . . , nf ns indicates the
location in which a brace can be installed. For the 12-story 4-span
frame, there are 48 locations, as indicated in Figure 1. As is well
known, the types and locations of braces have significant
influence on the stresses in beams, columns, and braces.
Continuously located braces will transmit the horizontal
seismic loads smoothly to the supports, while discontinuous
braces will cause excessive axial forces and bending moments
in the members. Therefore, it is possible to investigate efficient
locations of braces using a machine learning method.

Among the various methods of machine learning, we
use SVM to extract important features of brace types and
locations. We can investigate the properties of approximate

FIGURE 1 | A 12-story 4-span frame.
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optimal solutions using SVM more easily than ANN, for
which the learning results are difficult to interpret. SVM is
effective for ordered input feature values. However, in our
problem, the types 1, 2, . . . , nb (� 5) in Figure 2A do not
have any order in view of the effect on the structural
responses, i.e., ti is a categorical variable, which should be
converted into a set of dummy variables (Tamura et al.,
2018). For this purpose, a binary variable xij is introduced for
each type of brace so that xij � 1 if ti � j, otherwise xij � 0, as
shown in Figure 2B. In the vector consisting of m � nbnf ns
binary variables, xij is denoted by x.

It is possible to express the ‘no-brace’ by xi2 � xi3 � / �
xinb � 0 without using the variable xi1 � 1. Accordingly, the
representation using nb binary variables xi1, . . . , xinb for
each brace location has a redundancy, which is called
multicollinearity, and should be prevented in a multivariate
analysis. However, it is known that multicollinearity does not
cause any serious problems for SVM, because unnecessary
features are automatically ignored in the learning process. It
has been confirmed by Tamura et al. (2018) that the
representation with five binary variables in Figure 2 has
better performance than that with four variables and without
“no-brace”.

Let σ i(x) denote the maximum absolute value of the edge
stresses of member i which may be a beam, a column, or a brace.
We minimize the maximum value of σ i(x) among nm members,
which is calledmaximum stress for brevity. However, it is difficult
to determine the optimal locations of braces that have relatively
small absolute values of stress, if only the maximum stress among
all members is to be considered in the objective function.
Therefore, we use the following p-norm to incorporate the
effect of brace locations that are not directly related to the
maximum stress:

F(x) � ⎡⎣∑nm
i�1

(σ i(x))p⎤⎦
1
p

(1)

A constraint is given for the number of braces nbi in the ith
story, which should be equal to nb. To prevent selecting a too
flexible structure against seismic loads as a candidate of
approximate optimal solution, an upper bound r is assigned to
the maximum interstory drift angle rmax(x) among all stories.
Then, the optimization problem is formulated as

Minimize F(x) � ⎡⎣∑nm
i�1

(σ i(x))p⎤⎦
1
p

subject to nb
i � nb, (i � 1, 2, . . . , nf )

rmax(x)≤ r

(2)

OUTLINE OF MACHINE LEARNING
USING SVM

Tamura et al. (2018) showed that the approximate optimal
solutions, which have objective function values close to the
optimal value, and the non-optimal solutions, which cannot be
the optimal solution, can be classified for a small 5-story 3-span
frame using SVM and BDT. They demonstrated that the
optimization process using SA can be accelerated utilizing the
machine learning results so that structural analysis is carried out
only for the neighborhood solutions labeled as approximate
optimal. In their method, a dataset of 10,000 samples (pairs of
the design variables and the corresponding objective function value)
is randomly generated for training, and the 1,000 (10%) best and the
1,000 (10%) worst solutions are regarded as approximate optimal
and non-optimal solutions, respectively, which are labeled as y � 1
and y � −1. However, it is not realistic to carry out machine
learning for each frame mode to be optimized, because the
computational cost for preparing the dataset and the learning
process will be too large even though a substantial reduction of
the computational cost is expected for the optimization process.
Therefore, in this paper, we present a method for utilizing the
machine learning results of a small-scale frame to evaluate the
properties of a large-scale frame, where SVM is used as the machine
learning tool. The complex data that cannot be classified using the
linear kernel can be successfully classified using nonlinear kernels
such as polynomial and RBF kernels. The details of SVM are not
explained here, because they are available in textbooks such as
Cristianini and Shawe-Taylor (2000).

Suppose the learning process is completed using a set of n
samples [(x1, y1), . . . , (xn, yn)] of design variable (input) vector xi
and the response (output) value yi. The score S(x) of a variable
vector x is computed, as follows, using the kernel function
K(xi, x), coefficients αpi , and bias bp:

FIGURE 2 | Types of braces including “no-brace”; (A) categorical variable, 1) no-brace, 2) right diagonal brace, 3) left diagonal brace, 4) K-brace, 5) V-brace, (B)
binary representation of brace types.
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S(x) � ∑n
i�1
[yi αp

i K(xi, x)] + bp (3)

The value of y of a variable vector x is estimated from S(x) as

y � { 1 if S(x)≥ 0
−1 if S(x)< 0 (4)

Accuracy of the machine learning results is generally
quantified by the ratios of TP (true positive) and TN (true
negative), for which the labels y � 1 and −1 are estimated
correctly, and FP (false positive) and FN (false negative), for
which the labels y � −1 and 1 are estimated wrongly as y � 1
and −1, respectively. For application of the machine
learning results to find the optimal solution of problem Eq.
2, the ratio of FN should be reduced so that a candidate of
the optimal solution is not missed during the optimization
process, while structural analysis is not carried out for a
solution estimated as y � −1. Reducing the ratio of FP is
also important to reduce the computational cost for
optimization.

In the following numerical examples, we use the function
fitcsvm in the Statistics and Machine Learning Toolbox of
MATLAB R2016b (MathWorks, 2016). The kernel scaling
factor is assigned automatically, and the appropriate value of
the box constraint parameter is investigated in Properties of
Small-Scale Frame Section.

IDENTIFICATION OF IMPORTANT
FEATURES

One of the drawbacks of machine learning using, for example,
ANN, is that understanding the reasons for the obtained results is
very difficult. In other words, identification of important features
in the input variable vector is very difficult. In this section, we
present a method for extracting the important features
contributing to a large score value using SVM. In our
problem, the feature corresponds to the component of x
representing the type of brace, including “no-brace”, to be
assigned at each location in the frame.

If the linear kernel is used, the score function of a variable
vector x is evaluated as

S(x) � ∑n
i�1

yi αix
T
i x + b (5)

where αi and b are the coefficients and the bias identified by
machine learning, respectively, and xi is the ith sample in the
training dataset. Using the parameter vector β � (β1, . . . , βm)
defined as

β � ∑n
i�1

yi αixi (6)

the score S(x) can be rewritten as

S(x) � βTx + b � ∑m
j�1

βjxj + b (7)

Hence, contribution of the feature xj is estimated by the value
of weight coefficient βj. Suppose the set of jth feature {x1j, . . . , xnj},
i.e., the jth components xij of x1, . . . , xn, has the mean value μj and
the standard deviation δj among all samples. Then, the jth
components xij and xj of the vectors xi and x, respectively, are
normalized to x̂ij and x̂j as

x̂ij �
xij − μj
δj

,

x̂j �
xj − μj
δj

(8)

so that the mean value and the standard deviation are equal to 0
and 1, respectively. The vectors consisting of x̂ij and x̂j are
denoted by x̂i and x̂, respectively. The normalized values of xj �
1 and 0 expressing existence and non-existence of the specific
brace type are denoted as ξ1j � (1 − μj)/δj and ξ0j � (0 − μj)/δj,
respectively. The difference ΔSj(x) between the score values
corresponding to xj � 1 and 0, while the remaining variables
xk (k≠ j) are fixed, is computed as

ΔSj(x̂) � βj(ξ1j − ξ0j ) � βj
δj

(9)

We can see from Eq. 9 that xi � 1 contributes to a larger/
smaller score value if βj/δj is positive/negative.

However, when the nonlinear RBF kernel is used, it is not
possible to derive an explicit formulation like Eq. 9, and the score
function has a complex form using the normalized feature vector
as follows:

S(x̂) � ∑n
i�1
[ yi αi exp(−c‖x̂i − x̂‖2)] + b

� ∑n
i�1
⎡⎢⎢⎣yi αi ∏m

j�1
exp(−c(x̂ij − x̂j)2)⎤⎥⎥⎦ + b (10)

where c is the multiplier for the RBF kernel.
Several methods have been proposed for extracting the

important features from the results of SVM using nonlinear
kernels (Xiong et al., 2005; Abe, 2007; Stańczyk and Jain,
2015). However, their purpose is the reduction of the number
of feature variables to reduce the computational cost for learning,
and it is difficult to identify the important features that have a
large contribution to the classification of the solutions into the
specific groups. Therefore, we propose a simple method below.

Define cij and dij as

cij � ∏
k≠ j

exp(−c(x̂ik − x̂k)2)
dij � yi αi[exp(−c(x̂ij − ξ1j )2)

−exp(−c(x̂ij − ξ0j )2)] (11)
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From Eqs 10, 11, the difference of the score values between
xij � 1 and 0 is computed as

ΔSj(x̂) � ∑n
i�1

dijcij (12)

Let ISV denote the set of indices of support vectors in the
training dataset after the learning process is completed. Then αi �
0 for i ∉ ISV, and accordingly, dij � 0 is satisfied for i ∉ ISV in Eq.
12. Furthermore, since x̂ik and x̂k are the random variables with
the same mean and variance, we assume that cij has almost the
same value irrespective of i and j. Validity of this assumption is
discussed in Properties of Small-Scale Frame Section. Hence, the
effect of existence of the jth feature, i.e., xj � 1 is evaluated by

ΔŜj(x̂) � ∑
i∈ISV

dij (13)

FEATURE EXTRACTION OF LARGE-SCALE
FRAME

When optimizing a large-scale frame, computational cost may be
reduced if the machine learning results of a small-scale frame can
be utilized. Suppose we carry out machine learning for an
nf1-story frame and apply the results to an nf2-story frame
(nf2 ≫ nf1). For this purpose, the feature values of the
nf1-story frame should be expressed as functions of the feature
values of the nf2-story frame, for which the score value is to be
predicted. These two frames are assumed to have the same

ns-span, for simplicity, and the feature values in each span of
the nf2-story frame are converted into those in the corresponding
span of the nf1-story frame, i.e., the feature values are condensed
in the story (height) direction using the same rule for all spans.
Furthermore, the same rule is used for all types of braces.

The algorithm for the nf2-story frame utilizing the results of
nf1-story frame is summarized as follows:

Step 1. Assemble the feature values in each span of the nf2-story
frame into an nf2 × nb matrix Xnf 2 , where each row corresponds to
the story, and each column corresponds to one of the binary
variables representing the nb types of braces including “no-brace”.

Step 2. Compute the nf1 × nb matrix Xnf 1 for each span of the
nf1-story frame using an nf1 × nf 2 matrix H as

Xnf 1 � HXnf 2 (14)

Step 3. Obtain the feature vector x of the nf1-story frame by
rearranging the components of Xnf 1 , and compute the score
function value S(x) using the machine learning results of the
nf1-story frame.

Figure 3A illustrates the coding of the matrix Xnf 2 for a single
span of a 4-story frame. For example, the 1st row of Xnf 2

corresponds to the 1st story of the frame, and the existence of
K-brace corresponds to the vector (0, 0, 0, 1, 0) as defined in
Figure 2B. Figure 3B illustrates the condensation process from a
4-story frame to a 2-story frame. If the matrix H is assigned as
shown in the figure, the mean values of (1st, 2nd) and (3rd, 4th)
stories of the 4-story frame is assigned to the 1st and 2nd stories,
respectively, of the 2-story frame (i.e., this process is regarded as a
kind of mean—value pooling in the vertical direction).

FIGURE 3 | Illustration of the condensation process; (A) example of Xnf2 for a 4-story 1-span frame, (B) condensation from 4-story frame to 2-story frame.
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The (i, j)-component of H is regarded as the weight
coefficient of the feature value of the jth story of the
nf2-story frame to that of the ith story of the nf1-story frame.
The converted feature vector reassembled from the matrix Xnf 1

is incorporated into Eq. 10 after normalization using Eq. 8,
where the coefficients αi and bias b have been determined by
carrying out machine learning for the nf1-story frame. However,
the bias b in Eq. 10 should be modified for more accurate
prediction results. Therefore, the components of coefficient
matrix H, as well as the bias b, are determined so that the
prediction error of the nf2-story frame is minimized.

Let R denote the correlation coefficient between the maximum
stress of the large-scale nf2-story frame and the score estimated by
the small-scale nf1-story frame. The negative correlation coefficient
R is to beminimized because a large score value should correspond
to a small value of maximum stress. However, the bias b cannot be
determined by minimization of R. Furthermore, it is preferable to
have small ratios of FP and FN. Therefore, the following problem is
to be solved to obtain the values of H and b:

Minimize G(H, b) � R(H, b) + w

(δS)2 ∑
i∈IFN∪IFP

[Si(H, b)]2

subject to Hij ≥ 0, (i � 1, 2, . . . , nf 1; j � 1, 2, . . . , nf 2)
∑nf 2
k�1

Hik � 1, (i � 1, 2, . . . , nf 1)
(15)

where Si is the score of the sample i of the nf2-story frame, δS is
the standard deviation of Si among all samples, IFP and IFN are the
sets of indices of the samples judged as FP and FN, respectively,
Hij is the (i, j) component of H, and w is a weight coefficient.
Problem Eq. 15 is a nonlinear programming problem, which is to
be solved using the sequential quadratic programming algorithm
in the numerical examples.

NUMERICAL EXAMPLES

Description of frames
We investigate the properties of a 24-story 4-span frame using the
machine learning results of a 12-story 4-span frame. The
horizontal seismic loads are assigned based on the building
code in Japan. To evaluate the axial forces of beams, the
assumption of a rigid floor is not used; instead, the axial
stiffness of each beam is multiplied by 10 to the standard
value incorporating the in-plane stiffness of the slab, without
modifying its bending stiffness. The column base is rigidly
supported, and the braces are rigidly connected to the beams
and columns. The section shapes of beams and columns are wide-
flange sections and square hollow structural sections, respectively.
Young’s modulus of the steel material is 2.05 × 105 N/mm2, the
upper bound of interstory drift angle is r � 1/200, and the
number of braces in each story is nb � 2. The parameter of
p-norm is assigned as p � 10.

The optimization process and frame analysis with the standard
Euler-Bernoulli beam-column elements are carried out using
MATLAB R2016b (MathWorks, 2016). The function fitcsvm in

the Statics and Machine Learning Toolbox is used for machine
learning, and SQP of fmincon in the Optimization Toolbox is
used for solving problem Eq. 15. A PC with Intel Xeon E5-2643
v4, 3.40GHz, 64 GB memory is used for computation.

Properties of Small-Scale Frame
Approximate optimal and non-optimal solutions are classified for
the 12-story 4-span frame as shown in Figure 1. The story height
is 3 m and the span is 6 m. The member sections are listed in
Table 1, where A is the cross-sectional area and I is the second
moment of area. The symbols H, L, and HSS indicate wide-flange
section, L-section, and hollow structural section, respectively. The
horizontal loads P2, P3, . . . , P11, PR applied at the floors, as
indicated in Figure 1, are 37, 52, 68, 84, 101, 118, 136, 156, 178,
204, 241, and 507 (kN), which are the sum of the loads at the
nodes on the corresponding floors, respectively.

First, we investigate the effect of the value of the box constraint
parameter C on the accuracy of prediction. For this purpose, we
generate another set of 10,000 samples for verification of the
results. Table 2 shows the error ratio, the numbers of FNs and FPs
in the 1,000 samples, respectively, the number of support vectors
(SVs), and the number of SVs with αpi value equal to its upper
bound C, for various values of C using linear and RBF kernels,
respectively. Note that the error ratio is the ratio of sum of FN and
FP among 1,000 + 1,000 � 2000 samples. The CPU time is also
listed. It is seen from Table 2 that the number of SVs with αpi � C,
i.e., the outlier values, is large if C has a large value. By contrast,
the error becomes larger as C is increased. Therefore, we select a
moderately small value three for C in the following examples. It is
seen from the results inTable 2 that RBF kernel has smaller errors
than the linear kernel.

The contribution of a feature, which represents the location
and type of a brace, is evaluated using the method described in
Identification of Important Features Section. For this purpose, we
show that the variation of cij with respect to i is negligibly small
compared with that of dij. For the 12-story 4-span frame, the
number of features is m � 5nf ns � 5 × 12 × 4 � 240;
i.e., j � 1, 2, . . . , 240. The number of SVs as a result of
machine learning using RBF kernel is 819, and the samples

TABLE 1 | List of sections of 12-story frame.

Beam A (cm2) I (cm4)

11F-RF H-390 × 300 × 10x16 133.3 37,900
8F–10F H-488 × 300 × 11x18 159.2 68,900
2F–7F H-588 × 300 × 12x20 187.2 114,000

Brace A (cm2) I (cm4)

10S-12S L-65 × 65 × 6 8.727 46.1
7S-9S L-65 × 65 × 9 12.69 64.4
1S-6S L-65 × 65 × 12 16.56 81.9

Column A (cm2) I (cm4)

10S-12S HSS-450 × 450 × 16 269.0 82,900
7S-9S HSS-450 × 450 × 19 315.2 95,500
1S-6S HSS-450 × 450 × 22 360.0 107,000
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are rearranged so that the index set for SV is given as
ISV � {1, 2, . . . , 819}. A sample t � (t1, t2, . . . , t48), before
converting into dummy variables x, is randomly generated as

t � (2, 1, 2, 1, 1, 5, 1, 5, 4, 5, 1, 1, 2, 1, 1, 3, 1, 3, 1, 2, 5, 1, 2, 1,
2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 3, 2, 5, 1, 1, 5, 1, 1, 3, 1, 4, 3, 1)

(16)

The values of cij and dij for all i ∈ ISV and j � 1, for example,
are plotted in Figure 4. As seen from these results, the variances
of ci1 and di1 have the same order. However, the mean, variance,
and coefficient of variation (CV) with respect to i for j � 1 are
0.284, 8.51 × 10− 4, and 0.10263 for cij, and 1.24 × 10− 4,
1.92 × 10− 4, and 111.56 for dij; i.e., ci1 has a much smaller CV
than di1 because the mean value of ci1 is much larger than that of
di1. Tables 3A,B show the CVs of cij and dij, respectively, for the
selected features of various samples. Note that the CVs of dij do
not depend on the sample. We can verify from these tables that
the CVs of cij are much smaller than those of dij, which justifies
the assumption of constant cij with respect to i.

The features related to the eight largest contributions to be
judged as approximate optimal solution are shown in Figures
5A,B for linear and RBF kernels, respectively. Note that the
maximum stress exists at the end of a brace in most of the
approximate optimal solutions. As seen from the figure, similar
features are found in the best solutions by using linear and RBF
kernels. Let Li and Ri denote the features with the ith largest
contribution in the results using linear and RBF kernels,
respectively, computed by Eqs 7, 12. The number of samples
containing the specific feature in approximate optimal and non-
optimal solutions are denoted by ngood and nbad , respectively.
Contribution of the feature is defined as Ni in Figure 3C in the
descending order of ngood − nbad . Although the orders are
different, the same feature considering symmetry of the frame
appears in Figures 5A,B,C as L1 � R2 � N1 � N3, L2 � R1, L4 �
L7 � R3 � R4 �N2 �N4, L5 � R6, and L8 � R2. This fact explains
that the locations and types of the braces are important features
for distinguishing the approximate optimal and non-optimal
solutions in view of the maximum stress value. Note that the
brace locations in the 6th and the 9th stories are important,
because the story stiffness change at these stories.

The sets of four features corresponding to the eight largest
contributions to the approximate optimal solution are plotted in
Figure 5D. As seen from the figure, the existence of K- and
V-braces in the interior spans of the 4th and 9th stories, as well as

TABLE 2 | Error ratio and numbers of FN, FP, SV, and SV with αpi � C, for various values of C using linear and RBF kernels.

Linear kernel RBF kernel

Error
ratio
[%]

FN FP SV SV with
αpi � C

CPU
time
[sec.]

Error
ratio
[%]

FN FP SV SV with
αpi � C

CPU
time
[sec.]

C � 10− 4 5.35 73 34 1878 1853 0.82 5.05 62 39 2000 2000 0.62
C � 10− 3 4.60 57 35 806 679 0.51 5.05 62 39 2000 2000 0.58
C � 10− 2 5.55 62 49 391 246 0.56 5.05 62 39 2000 2000 0.60
C � 10− 1 6.35 58 69 251 87 0.96 4.85 73 24 1,680 1,591 0.62
C � 3 8.25 74 91 196 17 9.04 3.60 42 30 819 33 0.63
C � 10 8.95 79 100 188 9 20.81 3.65 40 33 850 0 0.58
C � 102 9.10 75 107 184 4 21.08 3.65 40 33 850 0 0.62
C � 103 10.10 95 107 206 0 21.33 3.65 40 33 850 0 0.60
C � 104 10.10 95 107 206 0 21.31 3.65 4 33 850 0 0.63

FIGURE 4 | Variations of cij and dij with respect to i for j � 1.

TABLE 3 | CVs of cij with respect to i for various samples.

(A) CVs of Cij

Sample j � 1 j � 2 j � 3 j � 4 j � 5 j � 6 / j � 240

1 0.103 0.102 0.104 0.103 0.103 0.103 / 0.103
2 0.096 0.097 0.096 0.097 0.097 0.096 / 0.096
3 0.098 0.098 0.098 0.098 0.098 0.098 / 0.097
4 0.099 0.100 0.100 0.100 0.100 0.100 / 0.100
5 0.109 0.109 0.110 0.110 0.110 0.109 / 0.109
6 0.095 0.096 0.095 0.094 0.096 0.095 / 0.094
7 0.103 0.103 0.104 0.104 0.103 0.103 / 0.104
8 0.098 0.099 0.097 0.099 0.099 0.098 / 0.098
9 0.100 0.100 0.101 0.101 0.101 0.100 / 0.100
10 0.093 0.093 0.094 0.093 0.093 0.093 / 0.093

(B) CVs of dij

j � 1 j � 2 j � 3 j � 4 j � 5 j � 6 / j � 240

111.6 −271.5 −203.0 340.0 −303.5 −87.1 / −182.2
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non-existence of brace in the outer spans, is important to be
classified as an approximate optimal solution.

Application of machine learning results of 12-story frame to
24-story frame.

The machine learning results of the 12-story frame are utilized
for optimization of brace locations of a 24-story frame. The story
height and span are the same as those of the 12-story frame,
which are 3 m and 6 m, respectively. The seismic loads
P2, P3, . . . , P23, PR are 10, 14, 19, 23, 27, 32, 36, 41, 46,
50, 55, 60, 65, 71, 76, 82, 88, 95, 102, 111, 121, 135, 156, and 346
(kN). The sections of beams, columns, and braces are listed in
Table 4.

The optimization problem Eq. 15 is solved with the parameter
w � 1.0, where H is assumed to be a band matrix with six non-
zero components in each row. The value of bias b is 0.473, and the
components of the matrix H are shown in Table 5, where the
thick gray indicates a large value. No clear rule is observed from
the table about the values of the non-zero components in H. The

FIGURE 5 | Features with the eight largest contributions to approximate optimal solution; (A) linear kernel, (B) RBF kernel, (C) number of samples given as
ngood − nbad , (D) sets of four features using RBF kernel.

TABLE 4 | List of sections of 24-story frame.

Beam A (cm2) I (cm4)

20 F-RF H-488 × 300 × 11x18 159.2 68,900
14F–19 F H-588 × 300 × 12x20 187.2 114,000
8F–13 F H-700 × 300 × 13x24 231.5 197,000
2F–7 F H-800 × 300 × 14x26 263.5 286,000

Brace A (cm2) I (cm4)

19S-24S H-100x100 × 6 × 8 21.59 378
13S-18S H-125 × 125 × 6.5x9 30.00 839
7S-12S H-150x150 × 7 × 10 39.65 1,620
1S-6S H-150x150 × 7 × 10 39.65 1,620

Column A (cm2) I (cm4)

19S-24S HSS-600 × 600 × 19 423.00 232,000
13S-18S HSS-600 × 600 × 22 483.70 261,000
7S-12S HSS-600 × 600 × 25 542.80 288,000
1S-6S HSS-600 × 600 × 36 745.40 372,000

Frontiers in Built Environment | www.frontiersin.org February 2021 | Volume 6 | Article 6164559

Sakaguchi et al. Machine Learning of Braced Steel Frame

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


CPU time is 161.9 s for generating the learning data, 1.2 s for
SVM for the 12-story frame, and 540.2 s for solving the nonlinear
programming problem Eq. 15.

The errors of application of machine learning results of a 12-
story frame to predict the score value of the 24-story frame are
shown in Table 6. The RBF kernel is used with the box parameter
C � 3. The results of direct learning of the 24-story frame are also
shown. As seen from Table 6, utilizing the results of the 12-story
frame leads to about a 20–50% increase of the error from that of the
direct learning of the 24-story frame. However, the errors are 2.30%
and 1.60%, which are very small, and the numbers of FNs and FPs
among 1,000 samples, respectively, are also small for both cases.
Table 6 also shows that the absolute value of correlation coefficient
R utilizing the results of the 12-story frame is a little smaller than
that of the direct learning of the 24-story frame.

Figure 6 shows the distribution of scores of approximate
optimal and non-optimal solutions of the 24-story frame
utilizing the machine learning results of the 12-story frame. It
is confirmed that most of the approximate optimal and non-
optimal solutions are separated successfully by the score value 0.

Since the frame without a brace is symmetric with respect to the
center vertical axis, we can assume that the optimal solution is also
symmetric. Therefore, the four best and worst symmetric solutions
are selected as shown in Figure 7, where the thick line indicates the
member with the maximum stress value. We can see from these
results that the approximate optimal solutions have braces in the
inner span, while many braces are located in the outer span of the
non-optimal solutions. Note again that the purpose of this paper is
to extract the important features of the approximate optimal
solutions. Therefore, we do not intend to optimize the brace
locations using the machine learning results only. The learning
results will be effectively used in an optimization process as

demonstrated in our previous study (Tamura et al., 2018). It is
true that the best solutions in Figure 7 are not realistic and large cost
will be needed for construction. However, the features in each best
solution, not the solution itself, will be utilized for optimization
purposes.

In the same manner as the 12-story frame, contribution of the
feature is defined in the descending order of the value of
ngood − nbad . The indicator Ii of the ith important feature takes
the value one if it is included in the solution and 0 if not. Figure 8
shows the values of hi, which are the cumulative numbers of
appearance of features up to the ith important feature, i.e.,

hi � ∑i
j�1

Ij (17)

Note that hi � i is satisfied if all features are included in the
solution as indicated in the chain lines in Figures 8A,B. We can see
from these figures that more than half of the 50 important features
are included in the four best solutions, while only about 20% are
included in the four worst solutions. Although differences in these
ratios are small, a significant difference exists in the number of
solutions that, for example, have all four features.

Number of appearances of features corresponding to the 100
largest contributions to be predicted as approximate optimal
solutions are plotted in Figure 9A for the 1,000 approximate
optimal solutions classified by utilizing the learning results of the
12-story frame. Note that the large number (around 500–700) of
appearances correspond to “no-brace”, and the small numbers
(around 200) correspond to the existence of a specific brace that
may be doubled if symmetrically located cases are regarded as the
same. Figure 9B shows the difference in number of appearances
using results of the 12-story frame and direct learning of the 24-story
frame, where the latter has larger numbers for all features. It is seen
from the figure that the number of appearances for the two cases are
almost the same (themaximumdifference is four). Therefore, we can
conclude that the properties of the approximate optimal solutions of
the 24-story frame can be successfully extracted using the machine
learning results of the 12-story frame.

CONCLUSION

Amethod has been presented for extracting important features of
the approximate optimal types and locations of braces for a large-

TABLE 5 | Components of matrix H.

0.19 0.31 0.16 0.34
0.15 0.22 0.01 0.31 0.17 0.14

0.02 0.00 0.29 0.30 0.04 0.34 O
0.08 0.05 0.34 0.09 0.22 0.22

0.00 0.09 0.26 0.16 0.14 0.35
0.00 0.01 0.21 0.41 0.32 0.05

0.32 0.00 0.34 0.08 0.01 0.26
0.00 0.25 0.11 0.32 0.18 0.14

0.20 0.28 0.10 0.34 0.08 0.00
O 0.65 0.00 0.28 0.03 0.01 0.03

0.04 0.38 0.01 0.23 0.08 0.25
0.27 0.36 0.25 0.11

TABLE 6 | Machine learning results of 24-story frame.

(A) Utilizing results of the 12-story frame

Error FN FP Correlation coefficient R
2.30% 20/1,000 26/1,000 −0.9115

(B) Direct learning of the 24-story frame

Error FN FP Correlation coefficient R
1.60% 6/1,000 26/1,000 −0.9263
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scale steel plane frame. A process of seismic retrofitting is
assumed and the maximum stress against horizontal seismic
loads is minimized under constraints on the maximum
interstory drift angle and the number of braces in each story.

The SVM is used for classifying the solutions into approximate
optimal and non-optimal solutions. The features representing the
types and locations of the braces of a large-scale frame are

converted to those of a small-scale frame using a
condensation matrix, and its components are identified by
minimizing (maximizing the negative value) the correlation
between the score and the objective function value. The sum
of squares of the score values in the FN and FP solutions are also
included in the objective function to determine the appropriate
bias value.

FIGURE 7 | Four best and worst solutions in 10,000 samples considering symmetry condition.

FIGURE 8 | Cumulative numbers of appearance of important features existing in the approximate optimal solutions; (A) approximate optimal solutions, (B) non-
optimal solutions.

FIGURE 6 | Relation between maximum stress of the 24-story frame and the score; (A) linear kernel, (B) RBF kernel.
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A method has also been proposed for identifying the important
features of the approximate optimal solutions classified by SVM
with RBF kernel functions, where the approximate increase of the
score value due to the existence of the specific feature is utilized.
Accuracy of this estimation method has been confirmed using the
machine learning results of a 12-story frame. The appropriate value
of the box parameter has also been investigated.

It has been shown in the numerical examples that the machine
learning results of a small-scale (12-story) frame can be successfully
used for estimating the properties of the approximate optimal and
non-optimal solutions of a large-scale (24-story) frame. A clear
difference exists in the cumulative number of appearances of the
important features in the approximate optimal solutions and the
non-optimal solutions, and each important feature exists in a large
number of approximate optimal solutions estimated by utilizing
the learning results of the small-scale frame.

The proposedmethod can be effectively used in the design process
of a large-scale braced frame. The results may be utilized for
optimization using a heuristic approach in the same manner as
our previous study (Tamura et al., 2018). Application to various
types of optimization algorithmswill be studied in our future research.
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