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In the maintenance of cable structures, such as cable-stayed bridges and extra-dosed
bridges, it is necessary to estimate the tension acting on the cables. The safety of a cable is
confirmed by checking whether the tension acting on the cable is within the allowable
value. In current Japanese practice, the tension of a cable is estimated using the vibration
method or the higher-order vibration method, which considers the natural frequencies of
the cable. However, in recent years, the aerodynamic vibration of cables caused by wind
has become a problem owing to the recent increase in the cable length and low damping
performance of the cable itself. To suppress the aerodynamic vibration of cables, dampers
are installed onto the cables. Because the damper changes the cable’s natural
frequencies, the vibration method and higher-order vibration method are inappropriate
for measuring the tension of a cable with a damper. In this paper, a new tension estimation
method for a cable with a damper is proposed. To model a cable with a tensioned
Bernoulli-Euler beam, theoretical equations for estimating the natural frequencies were
derived. The proposed method inversely estimates the tension and bending stiffness of the
cable and damper parameters, simultaneously, from the natural frequencies. The validity of
the proposed method was confirmed by conducting numerical simulations and
experiments. In the numerical verification, the performance of the proposed method
was investigated using 80 numerical models. In the experimental verification, the
estimation accuracy of the proposed method was investigated by considering 16 test
cases. Thus, it was confirmed that the tension estimation accuracy was high, whereas the
bending stiffness and damper parameter estimation accuracy was unsatisfactory. The
tension estimation error was within 10% in all experimental cases, and within 5% if two test
cases are excluded. The results obtained by the numerical and experimental verifications
confirmed the effectiveness of the proposed method in tension estimation.
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INTRODUCTION

In the maintenance of cable structures such as cable-stayed bridges and extra-dosed bridges, the
estimation of tension acting on the cables plays an important role. The tension of cables is measured
either using a direct measuring method with devices such as a load cell or hydraulic jack, or using an
indirect estimation method that considers the cable’s vibration characteristics. The former method is
difficult to apply in practical situations owing to the high cost and required installation of

Edited by:
Miguel Angel Astiz,

Polytechnic University of Madrid,
Spain

Reviewed by:
Behzad Shekastehband,

Urmia University of Technology, Iran
António José Reis,

University of Lisbon, Portugal

*Correspondence:
Aiko Furukawa

furukawa.aiko.3w@kyoto-u.ac.jp

Specialty section:
This article was submitted to

Bridge Engineering,
a section of the journal

Frontiers in Built Environment

Received: 08 September 2020
Accepted: 15 February 2021

Published: 08 April 2021

Citation:
Furukawa A, Hirose K and Kobayashi R
(2021) Tension Estimation Method for

Cable With Damper Using
Natural Frequencies.

Front. Built Environ. 7:603857.
doi: 10.3389/fbuil.2021.603857

Frontiers in Built Environment | www.frontiersin.org April 2021 | Volume 7 | Article 6038571

ORIGINAL RESEARCH
published: 08 April 2021

doi: 10.3389/fbuil.2021.603857

http://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2021.603857&domain=pdf&date_stamp=2021-04-08
https://www.frontiersin.org/articles/10.3389/fbuil.2021.603857/full
https://www.frontiersin.org/articles/10.3389/fbuil.2021.603857/full
https://www.frontiersin.org/articles/10.3389/fbuil.2021.603857/full
http://creativecommons.org/licenses/by/4.0/
mailto:furukawa.aiko.3w@kyoto-u.ac.jp
https://doi.org/10.3389/fbuil.2021.603857
https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/journals/built-environment#editorial-board
https://doi.org/10.3389/fbuil.2021.603857


complicated devices. Therefore, the latter method is used in
practice because it is easy to implement and achieves high
estimation accuracy.

In current practices in Japan, the tension of cables is mainly
estimated using the vibration method proposed by Shinke et al.
(1980) or the higher-order vibrationmethod proposed by Yamagiwa
et al. (2000), which considers the cable’s natural frequencies.

The vibration method proposed by Shinke et al. (1980) is based
on theory of strings, whereby the tension of the cable is
proportional to the square of the frequency. However, the
actual cable is not a pure thread, and the effect of the bending
stiffness is not negligible. Therefore, the effect of the bending
stiffness is considered in the form of a correlation factor. In this
method, it is necessary to determine the bending stiffness of the
cable in advance. However, the correct bending stiffness is difficult
to determine because bridge cables are typically PC (prestressed
concrete) steel strands rather than single steel wires.

To address this problem, Yamagiwa et al. (2000) proposed a
higher-order vibration method based on the tensioned Bernoulli-
Euler beam theory. In this method, the natural frequency of the
ith mode is expressed by a polynomial of mode order i with the
bending stiffness and the tension as coefficients. The tension and
the bending stiffness of the cable are simultaneously estimated
using the natural frequencies of multiple modes, and the bending
stiffness does not need to be determined in advance. Currently,
this method is more frequently used for estimating tension.

In addition to the abovementioned studies, various studies based
on modal data have investigated cable estimation techniques. For
example, studies have employed methods using mode shapes,
methods dealing with complicated boundary conditions (Chen
et al., 2016; Chen et al., 2018; Yan et al., 2019), methods dealing
with inclined cables (Kim and Park, 2007; Ma, 2017), methods using
genetic algorithm and particle swarm optimization (Zarbaf et al.,
2017) and methods using neural networks (Zarbaf et al., 2018).
Studies are also conducted to relate tension to the natural frequencies
of tensegrity structures using a finite element formulation (Ashwear
and Eriksson, 2014; Ashwear and Eriksson, 2017).

In recent years, the length of bridges and the length of the
installed cables has also been increasing. Because the damping
performance of the cable itself is small, the vibration caused by
the wind is notable. To suppress the aerodynamic vibration of cables,
dampers are installed onto the cables. In the maintenance of cables
with dampers, the direct use of the vibrationmethod or higher-order
vibration method is inappropriate because the damper changes the
natural frequencies. Typically, the damper increases the cable’s
natural frequencies. Because a cable with a larger tension force
has higher natural frequencies, the tension will be overestimated if
the vibration-based method is directly applied to the cable with a
damper. Therefore, in practice, the damper is detached from the
cable; then, the natural frequencies of the cable without a damper are
measured, and the damper is attached to the cable again. Because the
process of detaching and attaching the damper is time consuming
and labor intensive, it is useful to develop a tension estimation
method for a cable with a damper to estimate the cable tension
without detaching the damper from the cable.

Previous studies on cables with dampers have mostly focused
on optimal design methods for dampers to suppress the cable

amplitude (Pacheco et al., 1993; Lazar et al., 2016; Shi and Zhu,
2018; Javanbakht et al., 2019), and have not dealt with the tension
estimation method. Krenk (2000) derived a theoretical equation
to obtain the complex eigenfrequencies, from which the natural
frequencies and the damping ratios were obtained. However, the
cable was modeled as a string and the effect of the cable’s bending
stiffness was ignored. Therefore, these equations cannot be used
to estimate the tension of a cable with bending stiffness.

With this background, the objective of this study was to develop a
new tension estimation method for a cable with a damper. Using the
higher-order vibration method, which is based on the tensioned
Bernoulli-Euler beam theory, this study derived a theoretical
equation for estimating the natural frequencies of a cable with a
damper. The natural frequencies estimated by the theoretical equation
depends on the tension and bending stiffness of cable and damper
parameters. Therefore, by inversely solving the theoretical equation,
the tension and bending stiffness of cable and damper parameters can
be estimated from natural frequencies. The bending stiffness of cable
and the damper parameters do not need to be determined in advance
and can be estimated simultaneously with cable tension.

In Tension EstimationMethod, the higher-order vibrationmethod
for estimating the tension of a cable without a damper is first
described. Next, a new estimation method is proposed to estimate
the tension of a cable with a damper.Numerical Verification presents
the numerical verification of 80 numerical models. The natural
frequencies of the cable with a damper were calculated by the
eigenvalue analysis of the finite element method, and input to the
proposed method. The estimated tension is compared with the
assumed value, which was input to the eigenvalue analysis, and
the accuracy and validity of the proposed method are discussed.
Experimental Verification presents the experimental verification of
the proposed method. The estimated tension is compared with the
tensionmeasured by the load cell, and the accuracy and validity of the
proposed method are discussed.

TENSION ESTIMATION METHOD

Vibration Equation of Tensioned
Bernoulli-Euler Beam
This section explains the cable vibration equation. If the cable is
considered as a tensioned Bernoulli-Euler beam, the following
partial differential equation can be established.

ρA
z2y(x, t)

zt2
+ EI

z4y(x, t)
zx4

− T
z2y(x, t)

zx2
� 0 (1)

where y(x,t) is the deflection, which is a function in terms of
position x and time t; ρ is the density, A is the cross-sectional area,
EI is the bending stiffness, and T is the tension.

The partial differential equation can be solved using the
variable separation method. The deflection y(x,t) is
transformed as follows.

y(x, t) � Y(x)exp(jωt) (2)

where Y(x) is the modal function for position x ; j is the imaginary
unit; ω is the circular frequency.
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By substituting Eq. (2) into Eq. (1), the following ordinary
differential equation for function Y(x) can be derived.

−ρAω2Y(x) + EI
d4Y(x)
dx4

− T
d2Y(x)
dx2

� 0 (3)

The general solution of Eq. (3) is obtained as follows.

Y(x) � C1cosαx + C2sinαx + C3coshβx + C4sinhβx (4)

where C1, C2, C3, and C4 are the integration constants; α and β are
expressed, respectively, as follows.

α �

��������������������������������( T
2EI

)2

+ ρAω2

EI

√
− T
2EI

√√
(5)

β �

��������������������������������( T
2EI

)2

+ ρAω2

EI

√
+ T
2EI

√√
(6)

Higher-Order Vibration Method for
Estimating Cable Tension Proposed by
Yamagiwa et al. (2000)
Theoretical Equation for Obtaining Natural
Frequencies
This section explains the higher-order vibration method
proposed by Yamagiwa et al. (2000). Let us consider a cable
with length L and pinned supports at the two ends, as shown in
Figure 1A. Since the displacement is 0 and the second derivative

of displacement is also 0 at the two ends with pinned supports,
four boundary conditions are established.

By substituting Eq. (4) into the four boundary conditions, four
simultaneous equations are obtained for the integral constants C1,
C2, C3, and C4. Let us introduce the matrix notation for the
simultaneous equations, as follows:

[XC]{C1 C2 C3 C4 }T � 0 (7)

where [Xc] is the 4 × 4 coefficient matrix of the simultaneous
equations.

If the solutions of Eq. (7) are zero ( C1 � C2 � C3 � C4 � 0),
the modal function Y(x) also becomes zero. To obtain any
non-zero solution, the determinant of the coefficient matrix
must be zero.

From this, the following equation is obtained.

sinαL � 0 (8)

In Eq. (8), there are infinite solutions for α. These solutions
can be expressed with a positive integer i, as follows.

αiL � iπ i � 1, 2, . . . (9)

By substituting Eq. (5) into Eq. (9), the natural circular
frequency ωi of the i

th mode can be obtained as follows.

ω2
i �

π4EI
ρAL4

i4 + π2T
ρAL2

i2 i � 1, 2, . . . (10)

Finally, the theoretical equation for estimating the natural
frequencies f ti of the i

th mode can be obtained as follows.

f ti �
���������������
π2EI
4ρAL4

i4 + T
4ρAL2

i2

√
i � 1, 2, . . . (11)

From the cable parameters, such as ρ, A, L, EI, and T, the ith

mode natural frequencies f ti can be calculated using Eq. (11).

Optimization Problem
In the higher-order vibration method, T and EI are inversely
estimated from ρ, A, L, and i, and the measured natural frequency
fmi of the ith mode. The objective function becomes as follows.

minimize F(T , EI) � ∑n
i�1

{( π2EI
4ρAL4

i4 + T
4ρAL2

i2) − (f mi )2}2

(12)

where n is the number of natural frequencies and must be at
least equal to two because there are two unknowns, T and EI.
The least squares error between the square of the theoretical
natural frequencies and the square of the measured natural
frequencies for several modes is minimized. Because this is a
linear optimization problem, it is easy to estimate the two
unknowns T and EI.

Generally, the natural frequencies of the cable are measured
from the Fourier spectrum or Power spectrum of the acceleration
history after hitting the cable with a hammer. To accurately
measure natural frequencies of several modes under traffic and
wind loads, the power spectrum method is used in practice (Kim

FIGURE 1 | Analytical model: (A) cable model; (B) cable model with
damper.
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and Park, 2007; Yang et al., 2015) and the advanced method has
been proposed (Feng et al., 2010).

The advantage of the higher-order vibrationmethod is that the
bending stiffness EI is estimated simultaneously with tension T,
and the pre-evaluation of the bending stiffness is not needed.

Proposed Method for Estimating Tension of
Cable With Damper
Theoretical Equation for Obtaining Natural
Frequencies
This section explains the new tension estimation method proposed
in this paper. Figure 1B shows the analytical model for a cable with
a damper and pinned supports at the two ends. The damper shown
in Figure 1B is the viscous shear damper with a spring constant k
and damping constant c. The distance from the damper position to
the left and right ends is L1 and L2(�L−L1), respectively. The
deflection of the cable on the left and right sides with regard to the
damper position x is denoted as y1(x,t) and y2(x,t) , respectively.
The deflection is expressed similarly to Eq. (2), as follows.

y1(x, t) � Y1(x)exp(jωt) (13)

y2(x, t) � Y2(x)exp(jωt) (14)

where Y1(x) and Y2(x) are the modal functions on the left and
right sides of the cable with regard to the damper position.

The general solutions of Y1(x) and Y2(x) are as follows.

Y1(x) � D1cosαx + D2sinαx + D3coshβx + D4sinhβx

(0≤ x ≤ L1)
(15)

Y2(x) � D5cosα(x − L1) + D6sinα(x − L1) + D7coshβ(x − L1)
+ D8sinhβ(x − L1)

(L1 ≤ x ≤ L)
(16)

where D1, D2, D3, D4, D5, D6, D7, and D8 are the integration
constants, and α and β are expressed by Eqs. 5, 6, respectively.

Next, the following boundary conditions are established.

Y1(0) � 0 (17)

d2Y1(0)
dx2

� 0 (18)

Y2(L) � 0 (19)

d2Y2(L)
dx2

� 0 (20)

Y1(L1) � Y2(L1) (21)

dY1(L1)
dx

� dY2(L1)
dx

(22)

d2Y1(L1)
dx2

� d2Y2(L1)
dx2

(23)

EI
d3Y1(L1)

dx3
− EI

d3Y2(L1)
dx3

� kY1(L1) + jωcY1(L1) (24)

where Eqs. (17–20) express the pinned supports at the two ends, and
Eqs. (21–24) express the continuity conditions at the damper position.

By substituting Eqs. 15, 16 into the eight boundary conditions
expressed by Eqs. (17–24), eight simultaneous equations can be
obtained for the integral constants D1, D2, D3, D4, D5, D6, D7,
and D8. The following matrix notation is used for the simultaneous
equations.

[XD]{D1 / D8 }T � 0 (25)

where [XD] is the 8 × 8 coefficient matrix of the simultaneous
equations.

To obtain any non-zero solution, the determinant of the
coefficient matrix must be zero.

det[XD] � 0 (26)

From Eq. (26), the following equation is obtained.

sinαL{(α2 + β2) + kp

EI
(sinαL1cosαL1

α
− sinhβL1sinhβL2

βsinhβL
)}

− cosαL(kp
EI

sin2αL1

α
)

� 0

(27)
where kp is the complex stiffness of the damper. A unified notation
kp is used to model various types of dampers. In the case of the
viscous shear damper, the complex stiffness kp is written with a
spring constant k and damping coefficient c, as follows.

kp � k + jωc (28)

In the case of the high-damping rubber damper, the complex
stiffness kp is written with ku and kv, which are the real and
imaginary parts of the complex stiffness, as follows.

kp � ku + jkv (29)

The viscous shear damper is a damper that utilizes the shear
resistance of a viscos material. The high-damping rubber
damper uses high-damping rubber as a damper, which is
made by adding rubber or filler showing high damping to
natural rubber. The imaginary part of the complex stiffness is
proportional to the frequency in the case of the viscous shear
damper and constant in the case of the high-damping rubber
damper.

Then, Eq. (27) is transformed into the following equation.

sin(αL − θ) � 0 (30)

where

tanθ �
kp

EI
sin2αL1

α(α2 + β2) + kp

EI
(sinαL1cosαL1

α
− sinhβL1sinhβL2

βsinhβL
) (31)

In Eq. (30), there are infinite solutions for α. These solutions
are expressed with a positive integer i.

αiL − θi � iπ i � 1, 2, . . . (32)

By substituting Eq. (5) into Eq. (32), the natural circular
frequency ωi of the i

th mode can be obtained as follows.
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ω2
i �

π4EI
ρAL4

(i + θi
π
)4

+ π2T
ρAL2

(i + θi
π
)2

i � 1, 2, . . . (33)

Finally, the theoretical equation for estimating the natural
frequencies fti of the ith mode, and the relevant equations are
expressed as follows.

f ti �

���������������������������
π2EI
4ρAL4

(i + θi
π
)4

+ T
4ρAL2

(i + θi
π
)2

√√
i � 1, 2, . . . (34)

tanθi �
kpi
EI

sin2αiL1
αi(α2

i + β2i ) + kpi
EI (sinαiL1cosαiL1

αi
− sinhβiL1sinhβiL2

βisinhβiL
) (35)

αi �

����������������������������������������( T
2EI

)2

+ ρA(2πf ti )2
EI

√
− T
2EI

√√
(36)

βi �

����������������������������������������( T
2EI

)2

+ ρA(2πf ti )2
EI

√
+ T
2EI

√√
(37)

kpi � { k + j(2πf ti )c (viscous shear damper)
ku + jkv (high − damping rubber damper)

(38a), (38b)

From the cable parameters, such as ρ, A, L, EI, and T, and the
damper parameters k and c or ku and kv, the ith mode natural
frequencies f ti can be calculated using Eqs. (34–38). Interestingly,
Eq. (34) of the proposed method becomes identical to Eq. (11) of
the higher-order vibration method when the damper parameters
are zero (kpi � 0).

Notably, the natural frequency f ti of the i
th mode is included on

the right-hand side of Eqs. (36,37,38a). Therefore, Eqs. (34–38)
must be simultaneously satisfied and iteratively calculated.

Because the complex stiffness of the viscous shear damper kpi
depends on the frequency, the value is different for each mode
number i, whereas the complex stiffness of the high-damping
rubber damper is the same regardless of the mode number.

Furthermore, fti in Eq. (34) has a complex value if kp is complex.
Therefore, this study considers fti as a complex natural frequency to
distinguish it from the general natural frequencies of the real
values. The time term of Eq. (2) can be divided into the
vibration part and amplitude decaying part as follows.

exp(jωit) � exp[j{Re( f ti ) + jIm( f ti )}t
2π

]
� exp{jRe( f ti )t

2π
}exp{ − Im( f ti )t

2π
} (39)

where the real part of the frequency Re(fti) corresponds to the
vibration frequencies, and the imaginary part of the frequency
Im(fti) corresponds to the amplitude decaying part.

Hence, it is determined that the real part Re(fti) comprises the
natural frequencies of the cable with a damper, and can be
obtained by measurement. Therefore, Re(fti) is equivalent to
the measured natural frequencies (fmi ).

The imaginary part Im(fti) is difficult to measure. In theory, it is
possible to measure the imaginary part from the waveform of
each mode’s free vibration. However, it is difficult to clearly
obtain the free vibration waveform by decomposing each mode.
Therefore, the estimated accuracy of the imaginary part is
presumably low. Hence, this study measured only the natural
frequencies of each mode, that is, the real part of the theoretical
complex natural frequency Re(f ti).

Optimization Problem
The proposed method inversely estimates T, EI, k, and c for the
viscous shear damper, or T, EI, ku, and kv for the high-damping
rubber damper from ρ, A, L, i, and the measured natural
frequency f mi of the ith mode.

Here, an optimization problem arises and must be solved
using Eqs. (34–38). However, as mentioned previously, the
natural frequency f ti on the left-hand side of Eq. (35) is
included on the right-hand side of Eqs. (36,37,38a).
Therefore, iterative calculation is needed to determine the
natural frequency f ti . This means that the objective function,
which must be iteratively calculated, includes a function that also
requires iterative calculation. Therefore, the computation time
becomes enormous and convergence is often difficult to obtain.
Hence, this study proposes a simple approximation method.
Because the damping factor of each mode caused by the
damper is not very large, this study proposes the substitution
of the measured natural frequencies f mi to f ti in Eqs. (36,37,38a).
This means that the imaginary part of the natural frequency fti is
partially ignored, and the natural frequency f ti can be calculated
non-iteratively. The effect of partially ignoring the imaginary part
of the natural frequency is discussed in the next section.

The approximated parameters, such as f ti , are denoted with an
overline. To summarize the procedure, the approximated natural
frequency f ti is estimated by performing one-way calculation
using Eqs. (40–44).

αi �

�����������������������������������������( T
2EI

)2

+ ρA(2πf mi )2
EI

√
− T
2EI

√√
(40)

βi �

�����������������������������������������( T
2EI

)2

+ ρA(2πf mi )2
EI

√
+ T
2EI

√√
(41)

kpi � { k + j(2πf mi )c (viscous shear damper)
ku + jkv (high − damping rubber damper)

(42a),(42b)

tanθi �
kpi
EI

sin2αiL1
αi(αi

2 + βi
2) + kpi

EI(sinαiL1cosαiL1
αi

− sinhβiL1sinhβiL2
βisinhβiL

) (43)

f ti �

�����������������������������
π2EI
4ρAL4

⎛⎜⎜⎝i + θi
π
⎞⎟⎟⎠4

+ T
4ρAL2

⎛⎜⎜⎝i + θi
π
⎞⎟⎟⎠2

√√
i � 1, 2, . . . (44)

Additionally, the objective function is expressed as follows.
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minimize G(T , EI, k, c) � ∑n
i�1

{Re(f ti ) − f mi }2

(high − damping rubber damper) (45a)

minimize G(T , EI, ku, kv) � ∑n
i�1

{Re(f ti ) − f mi }2

(high − damping rubber damper) (45b)

where n is the number of natural frequencies and must be at least four
because there are fourunknowns, namely,T,EI, k, and c, orT,EI, ku, and
kv. The least squares error between the theoretical natural frequencies
and the measured natural frequencies for several modes is minimized.

Because this is a nonlinear least squares problem, there may be
multiple local minimum solutions, although the global minimum
solution is preferable. The solution depends on the initial points
(initial parameters for the unknowns). Therefore, this study used
the MultiStart algorithm (MathWorks, 2020), wherein the solver
attempts to find multiple local minima solutions to a problem by
starting fromvarious initial points. Thefinal solution is the onewith the

best objective function value amongst the local minimum solutions.
Although there is no guarantee that this algorithm will always find the
global minimum solution, it can still find a better solution than the
general nonlinear least squares method using only one starting point.

The advantage of the proposed method is that the bending
stiffness EI and damper parameters k and c, or ku and kv are
estimated simultaneously with tension T, and the pre-evaluation of
the bending stiffness and damper parameters is not required.

In Japan, the higher-order vibration method is used to
estimate tension of cables without damper. The proposed
method follows the same experimental procedure as the
higher-order vibration method. Therefore, the application of
the proposed method to actual structures is feasible.

NUMERICAL VERIFICATION

Overview
The validity of the proposed method was verified by numerical
simulation, as described in this section. First, the values for the

TABLE 1 | Analytical parameters.

(a) Cable parameters

No. Mass per unit length Length Tension Bending stiffness

ρA (kg/m) L (m) T (kN) EI (kN·m2)

10 30.1 25 1,650 106.4
20 30.1 25 3,300 106.4
30 30.1 200 1,650 106.4
40 30.1 200 3,300 106.4
50 94.7 200 5,340 1,111
60 94.7 200 10,680 1,111
70 160.1 500 9,030 3,175
80 160.1 500 18,060 3,175

(b) Damper parameters

No. Damper
position L1 (m)

Viscos shear damper High-damping rubber damper

Spring
constant k (kN/m)

Damping coefficient c (kN·s/m) Real part of
complex stiffness ku

(kN/m)

Imaginary part of
complex stiffness kv

(kN/m)
Cable no

10 20 30 40 50 60 70 80

0 0 0.0 0 0 0 0 0 0 0 0 0.0 0.0
1 7 0.0 10 7 81 57 80 57 200 141 0.0 298.5
2 7 280 5 4 41 29 40 28 100 71 236.9 149.3
3 2 560 10 7 81 57 80 57 200 141 473.8 298.5
4 4.5 560 10 7 81 57 80 57 200 141 473.8 298.5
5 7 560 10 7 81 57 80 57 200 141 473.8 298.5
6 7 1,120 20 14 162 115 160 113 400 283 947.6 597.0
7 7 560 0 0 0 0 0 0 0 0 560.0 0.0
8 7 560 6 4 48 34 47 33 118 83 531.8 175.5
9 7 560 15 11 121 85 119 84 297 210 341.4 443.9

(c) Range of varied parameters in sensitivity analysis of model No. 45

Parameters Assumed value Smallest value Largest value Interval

Tension T (kN) 3,300 500 6,000 50
Bending stiffness EI (kN·m2) 106 10 500 5
Spring constant k (kN/m) 560 0 1,000 10
Damping coefficient c (kN·s/m) 57 0 100 1
Real part of complex spring ku (kN/m) 474 0 1,000 10
Imaginary part of complex spring kv (kN/m) 299 0 1,000 10
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cable parameters (ρ, A, L, L1, T, and EI) and damper parameters
(k and c, or ku and kv) were assumed. Next, the natural
frequencies of the cable with a damper were calculated
through the eigenvalue analysis of the finite element method.
Then, the calculated natural frequencies were input into the
proposed method to estimate T, EI, k, and c, or T, EI, ku, and
kv. The estimation accuracy was investigated by comparing the
estimated values to the assumed values.

Analytical Conditions
Analytical Cases
The cable parameters are listed in Table 1a, and the damper
parameters are listed in Table 1b. These values were set to cover a
wide variety of cables and dampers. Since the damper is installed
near the girder in practice, the damper location, L1, was set to be a
small value compared to the cable length, L.

Two damper types were compared, namely, a viscous shear
damper and a high-damping rubber damper.

For the high-damping rubber damper, the values of the real
part ku and imaginary part kv of the complex stiffness kpi are listed
in Table 1b.

For the viscous shear damper, the spring constant kwas set to the
same value as |kpi| of the high-damping rubber damper. The damping

coefficient c was determined such that the imaginary part of the first
mode complex stiffness kp1 was approximately the same for the two
damper models. The values of k and c are listed in Table 1b.

By combining eight cable models and 10 damper models, 80
numerical models were created in total. The model number is
defined as the sum of the cable number and damper number. For
example, the analytical model No. 15 consists of the cable model
No. 10 and damper model No. 5.

Finite Element model
The natural frequencies calculated through the eigenvalue
analysis of the two-dimensional finite element method were
input to the proposed method.

For the viscous shear damper model, the real mass, damping,
and stiffness matrices were constructed, and regular complex
eigenvalue analysis was conducted to obtain the eigenvalues. For
the high-damping rubber damper, the real mass and complex
stiffness matrices were constructed, and the complex eigenvalues
were calculated. Then, the natural frequencies were calculated
from the complex eigenvalues.

In the development of the finite element model, the cables
were divided into 500 elements, such that the approximation
accuracy of the finite element method was sufficiently high.

FIGURE 2 | Estimation accuracy of viscous shear damper model: (A) tension; (B) bending stiffness; (C) spring constant; (D) damping coefficient.
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The boundary conditions at the two ends are pinned supports,
and the degree of freedom in the cable’s axial direction was
ignored.

Number of Natural Frequencies Used in Estimation
As has been mentioned, there are four unknowns in the proposed
method, T, EI, k, and c for the viscous shear damper, and T, EI, ku,
and kv for the high-damping rubber damper. Therefore, at least four
natural frequencies are required to estimate the four unknowns.

From the authors’ previous experience in measuring the natural
frequencies of a cable with a damper, it is known that there are cases
wherein the natural frequencies can be measured only up to the 7th

mode. The natural frequencies of the higher modes are occasionally
difficult tomeasure because the highermode vibration rapidly dissipates
owing to the existence of dampers. Therefore, the natural frequencies of
the first seven modes can be used to estimate the unknowns.

Nonlinear Optimization
As mentioned in the previous section, the combination of the
MultiStart algorithm with the nonlinear least squares method was
used to estimate the unknowns. The estimation accuracy depends
on the number of initial points and the lower and upper bounds
of each unknown.

This study randomly generated 10,000 sets of initial points for
the four unknowns to avoid a local minimum solution. For the
lower and upper bounds of the unknowns in the search for
solutions, only the lower bounds were considered. For tension
T, the lower value was set to 1. For the bending stiffness EI, the
lower value was set to 0.0001. For the damper parameters (k, c, ku,
and kv), all lower values were set to zero. The lower value of EI was
not zero because Eqs. (35–37) include division by EI. Additionally,
the lower value T was not equal to zero because, in some cases, the
solution did not converge if the lower value was set to zero.

The linear least squares method is used in the higher-order
vibration method. Because the method is linear, a unique solution
is obtained. Additionally, the lower and upper bounds are not
considered in the higher-order vibration method.

Comparison Between Estimation Accuracy
of Proposed Method and Higher-Order
Vibration Method
Results of Tension Estimation
The first to seventh mode natural frequencies calculated by the
eigenvalue analysis were input into the proposed method and
higher-order vibration method.

FIGURE 3 | Estimation accuracy of high-damping rubber damper model: (A) tension; (B) bending stiffness; (C) real part of complex stiffness; (D) imaginary part of
complex stiffness.
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The comparison of the estimation accuracy for tension T
between the proposed method and the higher-order vibration
method is presented in Figures 2A and 3A. Figure 2 presents
the results for the viscous shear damper model and Figure 3
presents the results for the high-damping rubber damper. The
horizontal axis is the model number. The vertical axis is the ratio
of the estimated tension value to the assumed tension value in
Table 1a. A vertical axis value closer to 1.0 means that the
estimation accuracy is higher. Previous studies have reported
that, for a cable without a damper, the tension estimation
accuracy of the higher-order vibration method is 5% (Shinko
Wire Company Ltd, 2020). Therefore, in this study, the target
accuracy of the proposed method for a cable with a damper was
set to 5%.

Models No. 10, 20, 30, 40, 50, 60, 70, and 80 are the cases
without a damper. In these cases, both methods produced
approximately the same results with high accuracy. However,
the estimation accuracy of the higher-order vibration method was
lower when a damper existed. Particularly, in cases wherein the
cable length was short or the damper stiffness was large, the
accuracy of the higher-order vibration method was low because

the damper exerted strong influence. The estimation accuracy of
the proposed method was quite high regardless of the model
number and damper type. In all cases of both damper models, the
estimation error of the proposed method was smaller than 5%,
and the comparison revealed that the proposed method has a
notable advantage.

Results of Bending Stiffness Estimation
The comparison between the bending stiffness, EI, estimation
accuracy of the proposed method and higher-order vibration
method is presented in Figures 2B and 3B. The advantage of the
proposed method over the higher-order vibration method is
clear. Moreover, the accuracy of the higher-order vibration
method is notably low. In the case of the higher-order
vibration method, the estimated bending stiffness was
negative for some models because a lower bound value was
not set for the unknowns when the linear least squares method
was applied according to current practices.

Notably, the proposed method has higher accuracy compared
with the higher-order vibration method for the bending stiffness.
However, the bending stiffness estimation accuracy was low

FIGURE 4 | Effect of partially ignoring imaginary part of complex natural frequency in viscous shear damper model: (A) tension; (B) bending stiffness; (C) spring
constant; (D) damping coefficient.
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compared with the tension estimation accuracy, because only
the low frequencies from the first to the seventh modes were
used in the estimation. As can be seen from Eq. (34), the
sensitivity of the bending stiffness EI over the natural
frequencies fti was low, because the EI coefficient was much
smaller than the T coefficient in the lower mode. Therefore, to
estimate the bending stiffness with high accuracy, it is
necessary to use higher-order natural frequencies.
However, considering that the higher-mode vibration
rapidly dissipates owing to the existence of the damper, it
is difficult to measure the higher-mode natural frequencies in
practical situations. Therefore, it is concluded that estimating
the bending stiffness with high accuracy is difficult in actual
situations.

Results of Damper Parameter Estimation
The damper parameter estimation accuracy of the proposed
method is presented in Figures 2C and D and Figures 3C
and D. Because the true value of k and ku is zero for damper
Nos. 0 and 1, these results were omitted. Identically, because the
true value of c and kv is zero for damper Nos. 0 and 7, these results
were also omitted. However, the tendencies in the results are the
same as those in the other cases.

An accuracy as good as that of tension estimation is difficult to
achieve for the damper parameter estimation because the value kpi is
not independent from the bending stiffness EI, as follows from Eq.
(35). The kpi/EI ratio is an independent parameter; therefore, the
accuracy of the damper parameter estimation depends on the
accuracy of the bending stiffness estimation. Because the accuracy
of the bending stiffness estimation is not high, the accuracy of the
damper parameters is also not high.

Effect of Partially Ignoring the Imaginary Part of the
Complex Frequency
As mentioned in the previous section, this paper proposes the
substitution of the measured natural frequencies fmi to fti in Eqs.
(36,37,38a). This means that the imaginary part of the natural
frequency fti is partially ignored. This section discusses the
influence of partially ignoring the imaginary part of the
natural frequency fti by comparing the estimation accuracy of
the case wherein the imaginary part was partially ignored to that
of the case wherein the imaginary part was considered.

Figures 4 and 5 present the comparison of the estimation
accuracy between the case wherein the imaginary part was
partially ignored and the case wherein the imaginary part was
considered. Considering the imaginary part means that the

FIGURE 5 | Effect of partially ignoring imaginary part of complex natural frequency in high-damping rubber damper model: (A) tension; (B) bending stiffness; (C)
real part of complex stiffness; (D) imaginary part of complex stiffness.
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complex natural frequency fti was obtained by the eigenvalue
analysis and input into Eqs. (40,41,42a), instead of fmi .

The effect of partially ignoring the imaginary part of the
complex frequency was very small. Additionally, it was found
that the low accuracy of the bending stiffness and damper
parameter estimation did not result from partially ignoring the
imaginary part of the complex stiffness.

Sensitivity Analysis
Analytical Condition
The two previous sections discussed that the high accuracy
achieved in the tension estimation. However, the estimation
accuracy of the other three parameters was not as high as the
tension estimation accuracy.

This section presents the sensitivity analysis results for the four
unknowns. The first to seventh natural frequencies were calculated by
only changing one parameter while keeping the other three parameters
fixed. Model No. 45 is considered as an example. Table 1c lists the
assumed values, the range of the varied parameters (the smallest and
largest values), and the interval for each parameter.

Results of Sensitivity Analysis
The relationships between the varied parameter and the first to
seventh natural frequencies are shown in Figures 6 and 7. Only

the parameters in the horizontal axis varied while the other
parameters were fixed to the assumed value.

For both dampermodels, the natural frequencies increased with
the tension. However, the natural frequencies were approximately
constant regardless of the bending stiffness value and all damper
parameters. Thus, the tension sensitivity was high, whereas the
sensitivity of the other three parameters was very small.

Because tension is the only parameter with sensitivity to the
natural frequencies, it is considered that the proposed method is
capable of estimating the tension with high accuracy. Even
though the accuracy of estimating the other parameters was
low, this did not affect the tension estimation accuracy.

Effect of Measurement Noise on Tension
Estimation Accuracy
Analysis Condition
When measuring the vibration of an actual bridge cable, the
natural frequencies always contain measurement noise.
Therefore, this section discusses the effect of measurement
noise on the tension estimation accuracy. Artificial
measurement noise was added to the natural frequencies
calculated by eigenvalue analysis, and the tension, bending
stiffness, and damper parameters were estimated. Because the

FIGURE 6 | Sensitivity analysis results for viscous shear damper: (A) tension; (B) bending stiffness; (C) spring constant; (D) damping coefficient.
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bending stiffness and damper parameter estimation accuracy was
not satisfactory in the case without measurement error, only the
estimation accuracy of the tension was considered.

First, the natural frequencies fti were calculated by eigenvalue
analysis for 80 models and for two damper types. Then, a
uniform random number, rand, between −1 and 1 was
generated. When the noise ratio was η, the natural
frequencies with artificial measurement error were calculated
as follows according to the approach used by Thyagarajan et al.
(1998).

f noisei � (1 + η rand)Re(f ti ) i � 1, 2, . . . (46)

The effect of measurement noise with a noise ratio η, from 0 to
0.1 was investigated.

Then, the tension was estimated using the higher-order
vibration method and proposed method by inputting the
natural frequencies with measurement noise. The accuracy can
be expressed in the form of the root mean squares error ratio
(RMSER), as follows:

RMSER �
���������������������
1
n
∑n
i�1

(Testimated
i /Ttrue

i − 1)2√
(47)

where i is the model number, n is the total number of models
equal to 80, Ti

estimated is the estimated tension of model number i,
and Ti

true is the assumed true tension of model number i.
Moreover, the natural frequencies with measurement noise of

the cable without a damper (model Nos. 10, 20, 30, 40, 50, 60, 70,
and 80) were also input to the higher-order vibration method,
and the estimated tension was input to Eq. (47), where n � 8.

Results
Figure 8 shows the relationship between the noise ratio η and the
RMSER. In both damper types, the estimation error in the form of
the RMSER increased with the noise ratio. The estimation error of
the proposed method was smaller than that of the higher-order
vibration method when a damper existed. For the proposed
method, the effect of measurement noise on the tension
estimation accuracy was not large. When the measurement
noise was less than 0.03, the estimation error was smaller than
0.05. Even in the case wherein the noise ratio was 0.1, the tension
estimation error was 0.12 or 0.15. Therefore, if the noise ratio was
kept within 3%, the target error of 5% was obtained. Because the
RMSER of tension was slightly larger than the error ratio, the
proposed method is considered to be robust against
measurement error.

FIGURE 7 | Sensitivity analysis results for high-damping rubber damper: (A) tension; (B) bending stiffness; (C) real part of complex stiffness; (D) imaginary part of
complex stiffness.
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Next, the RMSER obtained by the proposed method in the
case with a damper is compared with the RMSER obtained by
the higher-order vibration method in the case without a damper.

The estimation accuracy of the proposed method was
approximately twice as large as that of the higher-order
vibration method. Therefore, the robustness of the proposed
method in tension estimation is considered to be inferior to that
of the higher-order vibration method without a damper. The
reason for this may be that the proposed method has two
additional unknowns.

EXPERIMENTAL VERIFICATION

Experimental Condition
This section describes the experimental validation of the
proposed method. The experimental setting is shown in
Figure 9. The experiment was conducted using a horizontal
cable with a length of 16.78 m. The distance between the two
ends was considered as the cable length. A load cell was
installed at the left end. The tension value measured by the
load cell was considered as the true tension of the cable. The
cable was hit by a hammer between the damper position and
the right end. Additionally, the acceleration histories were
measured by accelerometers. The natural frequencies were
measured by reading the peak frequencies of the
acceleration Fourier spectra.

The cable parameters are presented in Table 2a. The PC
(prestressed concrete) steel strand was used for the cable,
because it is used in actual bridge cables.

The damper parameters are listed in Table 2b. Two damper
types were used, and both types were modelled with a high-
damping rubber damper.

The test cases are listed in Table 2c and d. Table 2c lists nine
cases, from No. 1 to No. 9, with a tension of approximately
80 kN. Table 2d lists seven cases, from No. 11 to No. 17, with a
tension of approximately 180 kN. Cases No. 1 and No. 11 are the
cases without a damper. The stiffness of the damper was
changed by combining two or four sets of dampers.
Moreover, two cases were considered with regard to the
damper position. Because the damper is typically placed close
to the cable end, in the experiment, the damper positions were
set close to the left end.

Table 3 lists the first to seventh measured natural frequencies.
The seventh mode natural frequency of No. 15 is blank because it
was difficult to read.

Results
The measured natural frequencies were input into the
proposed method, and the cable’s tension, bending
stiffness, and damper parameters were estimated.
Figure 10 shows the results obtained for the cases with a
tension of approximately 80 kN. Figure 11 shows the results
obtained for the cases with a tension of approximately
180 kN. The estimation accuracy of the tension is
expressed as the ratio of the estimated values to the true
values, which are measured directly by the load cell.
Moreover, the bending stiffness and damper parameter
estimation accuracy is expressed as the ratio of the
estimated value to the design value. The design values

FIGURE 8 | Effect of measurement noise on estimation accuracy: (A)
viscous shear damper; (B) high damping rubber damper.

FIGURE 9 | Experimental setting.
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were calculated using the design equation. The tension and
bending stiffness results obtained by the higher-order
vibration method were also considered for comparison.

First, the tension estimation accuracy is discussed. In the case
without a damper (Nos. 1 and 11), the accuracy achieved by the
higher-order vibration method was approximately the same as that
achieved by the proposed method, and also quite high. In both
cases with a tension of 80 and 180 kN, respectively, the accuracy of
the higher-order vibration method decreased as the stiffness of the
damper increased and the damper position increased, because the
higher-order vibration method is the method without a damper. In
contrast, the accuracy of the proposed method was much higher in
the case with dampers, and the estimation error was within 10%. If
the two cases of Nos. 16 and 17 are excluded, the estimation error is
within 5%.

Next, the estimation accuracy of the other three parameters is
discussed. Similarly to the results obtained by numerical
verification, the estimation accuracy of the bending stiffness and
damper parameters was low. Therefore, it is concluded that the
proposed method can only be used for tension estimation.

If the damper is detached from the cable and the tension is
estimated using the higher-order vibration method, the tension
can be estimated more accurately compared with the proposed
method. However, with the proposed method, it is possible to
estimate the cable tension without detaching the damper. The fact
that the cable does not have to be detached is a great advantage in
terms of work efficiency.

In this paper, the experimental verification was conducted
rather than the verification using measurement data of the real
bridges in order to test many cases with different damper

TABLE 2 | Parameters of test specimen and test cases in experimental verification.

(a) Cable parameters

Cable material PC steel strand

Outer diameter (m) 0.0152
Mass per unit length ρA (kg/m) 1.101
Bending stiffness EI (kN·m2) 0.172
Cable length L (m) 16.78

(b) Damper parameters

Damper name Real part of
complex stiffness ku (kN/m)

Imaginary part of
complex stiffness kv (kN/m)

Damper A 31.8 3.2
Damper B 27.1 17.1

(c) Test cases for cable tension of approximately 80 kN

No. Cable Damper

Tension T (kN) Damper name No. of
damper

Real part
of complex

stiffness ku (kN/m)

Imaginary part
of complex

stiffness kv (kN/m)

Position L1 (m) L1/L

1 80 No damper 0 - - - -
2 82.9 Damper A 2 63.7 6.4 0.963 0.057
3 82.9 Damper A 4 127.4 12.7 0.963 0.057
4 82.9 Damper B 2 54.1 34.1 0.963 0.057
5 82.9 Damper B 4 108.3 68.2 0.963 0.057
6 82.9 Damper A 2 63.7 6.4 1.690 0.1
7 82.9 Damper A 4 127.4 12.7 1.690 0.1
8 82.9 Damper B 2 54.1 34.1 1.690 0.1
9 82.9 Damper B 4 108.3 68.2 1.690 0.1

(d) Test cases for cable tension of approximately 180 kN

No. Cable Damper

Tension T (kN) Damper name No. of
dampers

Real part
of complex

stiffness ku (kN/m)

Imaginary part
of complex

stiffness kv (kN/m)

Position L1 (m) L1/L

11 180.3 No damper 0 - - - -
12 180.3 Damper A 2 63.7 6.4 0.963 0.057
13 180.3 Damper B 2 54.1 34.1 0.963 0.057
14 180.3 Damper B 4 108.3 68.2 0.963 0.057
15 180.3 Damper A 2 63.7 6.4 1.690 0.1
16 180.3 Damper B 2 54.1 34.1 1.690 0.1
17 180.3 Damper B 4 108.3 68.2 1.690 0.1
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location, damper parameter and tension force. In the future
study, the verification by the field measurement of real bridge
would be conducted.

CONCLUSION

This paper proposes a method for estimating the tension of a
cable with a damper using the natural frequencies. In the
proposed method, the damper does not have to be removed
from the cable, and the cable tension is estimated
simultaneously with the cable bending stiffness and damper
parameters.

In Tension Estimation Method, the equations for calculating
the natural frequency of a cable with a damper were derived
from the vibration equation of a beam in tension. Owing to the
existence of the damper, the theoretical natural frequency was
determined as a complex value, that is, as a complex natural
frequency. The real part of the complex natural frequency was
an actual natural frequency, as measured in the experiment.
The imaginary part of the complex natural frequency was
determined as a term related to the envelope function of
free vibration. Therefore, the equation for estimating the
cable tension from the measured natural frequencies was

TABLE 3 | Measured natural frequencies.

(a) Test cases for cable tension of approximately 80 kN

No. Measured natural frequencies (Hz)

1st 2nd 3rd 4th 5th 6th 7th

1 8.1 16.3 24.4 32.5 40.7 48.8 57.3
2 8.5 16.9 25.4 33.9 42.3 50.6 59.1
3 8.5 17.1 25.6 34.1 42.6 51.1 59.8
4 8.5 17.0 25.7 34.4 43.8 51.7 60.6
5 8.6 17.2 25.9 34.6 43.4 51.9 60.9
6 8.9 17.7 26.5 35.3 43.8 51.9 58.9
7 9.0 17.9 26.9 35.8 44.6 53.3 61.2
8 8.9 17.9 27.1 36.1 45.5 54.4 62.8
9 9.0 18.1 27.1 36.2 45.3 54.4 63.5

(b) Test cases for cable tension of approximately 180 kN

No. Measured natural frequencies (Hz)

1st 2nd 3rd 4th 5th 6th 7th

11 12.1 24.2 36.3 48.4 60.4 72.6 85.1
12 12.4 24.8 37.1 49.3 61.4 73.3 85.6
13 12.6 25.2 37.9 50.7 63.0 76.3 89.1
14 12.6 25.4 38.1 50.8 63.4 76.1 89.1
15 12.8 25.6 38.1 50.4 62.2 73.5 -
16 13.2 26.4 39.6 53.1 65.6 79.9 94.2
17 13.3 26.7 40.0 53.4 66.8 80.0 93.4

FIGURE 10 | Estimation accuracy for Nos. 1–9 (80 kN): (A) tension; (B) bending stiffness; (C) real part of complex stiffness; (D) imaginary part of complex stiffness.
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developed such that the real parts of the complex natural
frequencies matched the measured natural frequencies. This
paper presents the procedure for estimating the tension from
the natural frequencies. The proposed method adopts the
method whereby the imaginary part of the complex stiffness
is partially ignored, which makes the optimization problem
simpler.

InNumerical Verification, the validity of the proposed method
was investigated using numerical simulations. The natural
frequencies of a cable with a damper were calculated by the
eigenvalue analysis of the finite element method, and input to the
proposed method. The estimation accuracy was investigated by
taking the ratio of the estimated value to the true value, which was
then input to the eigenvalue analysis. In total, 80 numerical
models were established with eight cable models and 10
damper models.

The cable tension was estimated with high accuracy, but
the other three parameters, namely, the bending stiffness
of the cable and the two damper parameters, were difficult
to estimate with high accuracy. The effect of partially
ignoring the imaginary part of the complex natural
frequency was investigated, and it was found that the

estimation accuracy did not degrade by partially ignoring
the imaginary part.

Then, sensitivity analysis was conducted. The estimation
accuracy of the bending stiffness and damper parameters was
low because these parameters had low sensitivity to the natural
frequencies. Moreover, the tension estimation accuracy of the
proposed method was high because the sensitivity of tension to
the natural frequencies was also high, whereas the sensitivity of
the other parameters was low.

The influence of the measurement error on the tension
estimation accuracy was investigated. The proposed method
achieved excellent tension estimation accuracy, even with the
existence of measurement noise. Even when the measured
natural frequencies contained 3% error, the tension
estimation error was approximately 5%.

Finally, as described in Experimental Verification, the
validity of the proposed method was confirmed by an
experiment using a cable with a length of 16.78 m. There
were 16 cases: two cases without a damper and 14 cases
with a damper. Among the 14 cases with a damper, the
tension estimation error of 12 cases was within 5% and that
of the two remaining cases was within 10%.

FIGURE 11 | Estimation accuracy for Nos. 11–17 (180 kN): (A) tension; (B) bending stiffness; (C) real part of complex stiffness; (D) imaginary part of complex
stiffness.
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The proposed method’s tension estimation for a cable with a
damper is not as good as that of the higher-order vibration
method for a cable without a damper. However, with the
proposed method, it is possible to estimate the cable tension
without detaching the damper. The fact that the cable does not
have to be detached is a great advantage in terms of work
efficiency.

In this study, the proposed method was verified for 80
numerical models and 17 experimental cases. However, the
proposed method has not been verified for cases other than
these 97 cases. In the future, the applicability of the proposed
method to more cases would be verified. Furthermore, the
verification using measurement data of real bridge would be
also conducted.
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