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Attenuator barriers, in contrast to conventional safety nets, tend to smoothly guide
impacting rocks instead of absorbing large amounts of strain energy arresting them. It
has been shown that the rock’s rotation plays an important role in the bearing capacity of
these systems. Although experimental tests have to be conducted to gain a detailed insight
into the behavior of both the structures and the rock itself, these tests are usually costly,
time-consuming, and offer limited generalizability to other structure/environment
combinations. Thus, in order to support the engineer’s design decision, reinforce test
results and confidently predict barrier performance beyond experimental configurations
this work describes an appropriate numerical modeling and simulation method of this
coupled problem. For this purpose, the Discrete Element Method (DEM) and the Finite
Element Method (FEM) are coupled in an open-source multi-physics code. In order to
flexibly model rocks of any shape, sphere clusters are used which employ simple and
efficient contact algorithms despite arbitrarily complicated shapes. A general summary of
the FEM formulation is presented as well as detailed derivations of finite elements
particularly pertinent to rockfall simulations. The presented modeling and coupling
method is validated against experimental testing conducted by the company
Geobrugg. Good agreement is achieved between the simulated and experimental
results, demonstrating the successful practical application of the proposed method.
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1 INTRODUCTION

Rock impact is an exceptional load case due to many factors. The shape, the density and the motion
process itself of the impacting object can be arbitrary and difficult to predict. The additional
dynamics and arbitrariness of the impact point make it impossible to determine a generally valid load
assumption formula. This raises the question of how to design protective structures for such load
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cases. During rock impact events, protective structures are
generally engineered to deform greatly, which reduces peak
system decelerations and safely dissipates large amounts of
energy.

In order to allow the protective structure to undergo large
deformations, a wide variety of details (such as ring elements and
braking elements in Figure 1B) are installed, the direct finite
element modeling of which represents a demanding task.

Rockfall protective structures may be divided into two
different categories: active and passive measures. While near-
surface nets (see Figure 1A) for slope stabilization represent a so
called active measure and are easier to dimension, passive
protective measures are installed as soon as the cause of the
rockfall cannot be prevented. Passive protection structures are the
focus of the present work and can in turn be divided into self-
cleaning and non-self-cleaning (see Figures 1B,C). In the course
of this work an experiment of an Attenuator barrier protective
structure (illustrated in Figure 1D) is numerically replicated. The
principle of an Attenuator is to intercept rockfall trajectories and
attenuate their kinetic energy, while guiding the rockfall to a
designated catchment area. These systems have been employed
for several decades as described in Muhunthan et al. (2005) and
were the subject of many field tests (Arndt et al., 2009; Glover and
Ammann, 2016; Wyllie et al., 2016). An Attenuator barrier
rockfall experiment program conducted by the company
Geobrugg in 2017 is the primary experimental focus in this work.

Experiments confirm that the rotation of the impacting object
has a substantial influence on the performance of Attenuator
barriers. This behavior is further investigated with the help of
numerical simulations in the present work. Throughout the
experimental program, an accelerometer was installed in the
center of the test objects and recorded data such as

accelerations and angular velocities. Since the exact orientation
of the rock at impact cannot be determined precisely, these data
are only compared in terms of their general trends instead of
exact values (see section 5.2). In order to better understand the
interaction between impacting objects and highly flexible
protective structures and to better answer practice-oriented
questions, numerical methods are used. These allow a detailed
insight into the structure, its utilization and have the potential to
show optimization possibilities. By employing coupled
simulations, different numerical methods, each with their
individual strengths and domain of application, may be
brought together to model and analyze the interaction of
different physical problems.

The present work couples the Discrete Element Method
(DEM) with the Finite Element Method (FEM) to simulate the
interaction between impacting objects and highly flexible
protective structures. The DEM is used to simulate the
impacting object while the FEM is used to calculate the
appropriate dynamic structural response. The advantages of
this choice of simulation methods are explained in the
following sections. To demonstrate the accuracy and
applicability of the aforementioned coupling strategy the 2017
Geobrugg experimental program is modeled and simulated. The
resulting data show good agreement with the experimental data
demonstrating the efficacy of the numerical method, as well as
confirming the effectiveness of the Attenuator barrier design.
Two different experiments are simulated to guarantee the validity
and applicability of the method presented here.

The discrete element method is a discrete particle method with
unique strengths in analyzing the movement and interaction of
individual particles. The method was first proposed by Cundall
and Strack (1979) and has been increasingly adopted since.

FIGURE 1 | All photos are property of Geobrugg (www.geobrugg.com). (A) Banya railway rockfall protection. (B) Monserrate walking path. (C) Kaikoura State
Highway, Attenuator barrier. (D) Attenuator barrier after impact. Photo of the experiment discussed in section 3.
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Matuttis and Chen (2014) describe in detail the underlying
theories of DEM while many publications deal with the
precise analysis of contact formulations. Special mention
should be made of Shäfer et al. (1996) who has done some
fundamental work in this topic. Building on this, Schwager
and Pöschel (2007); Cummins et al. (2012); Thornton et al.
(2012) have described improved formulations and contact
models, contributing to the current state of the art. A detailed
description of contact search and calculation of contact between
discrete spherical particles and boundary conditions discretized
by finite elements was provided by Santasusana (2016),
Santasusana et al. (2016) which lay the foundation for the
present work. Gao and Feng (2019) extended this idea by
exchanging the FEM with the isogeometric method, however,
this is not expected to confer any advantages for this paper’s
scope. Irazábal et al. (2019) conducted a detailed investigation of
suitable time integrators, especially with regard to the integration
of the rotational motion, which is of great importance in the
present case. Specifically related to the case of rockfall Chau et al.
(2002) studied the appropriate coefficient of restitution for
rockfall events. The use of simple spherical particle clustered
together to describe arbitrarily shaped objects in DEM was
formulated by Madhusudhan et al. (2009) and subsequently
employed by Sautter et al. (2021) for the analysis of rotation-
free rockfall events. This flexible modeling strategy, employed in
this paper, allows the use of simple contact algorithms without
sacrificing the approximate modeling of irregular rock
geometries. As already mentioned, experiments confirm that
the rotation of the impacting objects has a large influence on
the overall behavior of the impact, which is why the shape of the
rock has to be taken into account. Disc shaped one for example
have normally much higher rotational energy compared to cube
shaped blocks.

The FEM is used to numerically solve partial differential
equations to analyze continuous, deformable bodies. For the
interested reader, notable FEM references include Basar and
Weichert (2000), Belytschko et al. (2000), Holzapfel (2010). A
general FEM summary follows in subsection 2.2 that also
includes a detailed derivation of the finite element
formulations used in this work.

The coupling of the finite element and discrete element
numerical methods builds on the work of Santasusana (2016),
Santasusana et al. (2016) and was continued in Sautter et al.
(2020). The implementation is in an open source multi-phyiscs
code called KRATOS based on the work of Dadvand et al. (2010),
Dadvand et al. (2013); Ferrándiz et al. (2020). The importance of
an open source solution for the analysis and assessment of natural
events such as rockfall [studied in detail by Volkwein (2004),
Volkwein (2005); Zhao et al. (2020b)], strong wind [fluid-
structure interaction described by Wüchner (2006)] and debris
flows [discussed in detail by Wendeler (2008), von Bötticher
(2012), Zhao et al. (2020a)] cannot be overemphasized. In
combination with the detailed description of element
formulations, contact algorithms, and coupling methods this
work offers the possibility to carry out independent analyses
of any rockfall events and the evaluation of suitable protective
structures.

In principle, it is conceivable to employ other particle
methods for the analysis and simulation of the impacting
objects. In contrast to DEM, the Material Point Method
(MPM) and the Particle Finite Element Method (PFEM)
are continuum-based particle methods. Due to their
continuum-based approach, both methods possess
particular strengths compared to DEM, for example, in the
modeling of debris flows or avalanches. Due to the properties
of rockfall, DEM is preferable in this case [see also Lisjak and
Grasselli (2010), Lisjak et al. (2010). Further information on
MPM can be found in Zhang et al. (2016), Chandra et al.
(2019), Larese et al. (2020), Wilson et al. (2020), while Salazar
et al. (2015), Larese (2016) describe PFEM.

A comprehensive review and prospective on the subject of the
simulation of rockfall protection systems is given in Volkwein
(2004), Volkwein (2005) and represents the basis for the current
state of the art. The work lead to Escallon et al. (2015) describing
highly detailed modeling of flexible protection structures and
their components. The exact modeling of the individual
components often turns out to be overhead, especially when
the global structural behavior is of interest. In order to reduce the
complexity of the simulations while accurately analyzing
protection structure components at selected local areas, a
hybrid model is described in Tahmasbi et al. (2019). The idea
is to use a simple element formulation in the boundary regions of
the protective structure while local locations of interest are
modeled with the formulations from Escallon et al. (2015).
Other works by Sasiharan et al. (2006), Dhakhal et al. (2011),
Mentani et al. (2018) among others, also employ the concept of
representing the complex protection structure with a simpler
surface description composed of shell and isotropic membrane
elements (Tahmasbi et al., 2019). In the present work, we will take
up the idea of membrane elements, and incorporate the
anisotropic material law of Münsch and Reinhardt (1995) to
represent the different behavior in the two main directions that
can be observed in experiments.

From a formal point of view, the structure of the paper is as
follows:

• Section 2 briefly describes the underlying coupling theory
and the respective components in this multi-physics
simulation. A summary and description of the finite
element formulations used within this work is added in
subsection 2.2.

• Section 3 discusses the 2017 Geobrugg experiment used for
validation and calibration.

• Section 4 presents the modeling of the numerical
simulation used to replicate the experiment. Both the
modeling of the structure itself (in subsection 4.1) and
the modeling of the impacting object (in subsection 4.2) are
covered.

• Section 5 illustrates the numerical examples and their
results across displacements (in subsection 5.1),
translational velocities (in subsection 5.3), and angular
velocities (in subsection 5.2).

• Section 6 finalizes this work with a conclusion and an
outlook for future research.
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2 DEM-FEM COUPLING

To realize the coupled simulation, the DEM and the FEM are
coupled in a staggered framework, summarized in subsection 2.3
[refer to Sautter et al. (2020) for full details], which allows the use of
any two standalone solvers for the DEM and the FEM components.
In principle, many different methods can be used to analyze the
problem at hand. In order to find the combination of suitable
methods, one has to think about the general characteristics of the
problem at hand. Rockfall is a discrete event, so one must be able to
model discrete objects. This can be solvedwith the FEM, as shown by
Volkwein (2004), Volkwein (2005), Sasiharan et al. (2006), Dhakhal
et al. (2011), Escallon et al. (2015); Mentani et al. (2018), Tahmasbi
et al. (2019). The surface of the discrete objects is modeled with the
help of points, lines, and surfaces. If one now wants to find the
contact to a structure that is also modeled with points, lines, and
surfaces, very complex contact algorithms are necessary. The contact
between surface/surface, surface/line, and line/line is sometimes very
demanding and computationally intensive. If, on the other hand, a
particle method is used that represents/approximates the discrete
objects as simple spheres, the contact check is extremely simplified,
see the work by Santasusana (2016), Santasusana et al. (2016).
Contact algorithms for the combination sphere/surface, sphere/
line, and sphere/vertex are very effective and fast to perform. By
using clusters of spherical particles, arbitrarily shaped objects can be
modeled despite the efficient contact algorithms for spheres (Sautter
et al., 2021) describes the successful application of these clusters
already for the simulation of other types of rockfall protection
systems]. To decide on the appropriate particle method, it is
again helpful to look at the discrete characteristics of the rockfall
event. Other particle methods such as MPM [first proposed by
Sulsky et al. (1994)], PFEM (Cremonesi et al., 2020), or Smoothed-
Particle Hydrodynamics(SPH) [first proposed by Gingold and
Monaghan (1977), Lucy (1977)] are particularly suitable for the
simulation of non-discrete natural events such as debris flows,
avalanches, or shallow landslides. For this reason, DEM is chosen
to model and simulate the impacting objects (in this case rocks). To
model the structure the FEM is used, as it has proven to be very
effective and well established. It allows to model special structural
elements and to effectively assess structural stress and deformation
states. With the help of the coupling environment in KRATOS [see
Dadvand et al., (2010), Dadvand et al., (2013), Ferrándiz et al.
(2020)], which we co-developed, these methods can be efficiently
combined with each other, providing a suitable simulation
environment for the problem at hand. Subsection 2.1 briefly
describes the DEM and introduces key aspects to give a general
overview of the topic. The FEM is briefly summarized in subsection
2.2which includes detailed descriptions of the element formulations
employed in this study. Throughout this work, bold symbols indicate
tensors while italics denote scalars.

2.1 DEM
In contrast to continuum-based particle methods like the MPM
(Zhang et al., 2016; Chandra et al., 2019; Larese et al. 2020;Wilson
et al. 2020]) or the PFEM, the DEM is a numerical method to
simulate the motion and interaction of discrete particles. Since
Cundall and Strack (1979) introduced the first considerations

regarding DEM, the method has been increasingly adopted for
the analysis of discrete particles both in research and industry.
The motion and interaction between particles and also between
particles and finite element discretized boundary conditions can
be simulated very effectively, see Santasusana (2016), Santasusana
et al. (2016). In the present work only spherical particles are used
which reduces the effort of contact search with arbitrary
geometries enormously and thus leads to a very efficient
simulation method. Although spherical particles are unable to
model complex geometries by themselves, this work combines
spherical particles together into clusters to model complex rock
geometries while still using the simple contact search of the
spherical particles. Madhusudhan et al. (2009) has studied
these in detail and Sautter et al. (2021) has already used
clusters of spheres for simple rockfall events. Chapter 4.2
describes in detail how this strategy is used in the simulation.

The search for contact with spherical particles has been
studied in detail and is exhaustively discussed in Santasusana
(2016), Santasusana et al. (2016). Each particle has a radius Ri and
a geometrical center Ci. Contact is found when the distance
between Ci and another object (particle, line, area or vertex) is
smaller than the respective radius Ri.

As soon as contact is detected, contact forces are calculated.
There are a number of different contact laws available, and the user
has to select the most appropriate for the current case at hand. In
this work a Hertz-Mindlin spring-dashpot contact model was used
(abbreviated with HM + D). The corresponding rheological model
is shown in Figures 2A,B. To calculate the contact force, the
normal and tangential spring stiffness kn and kt , the normal and
tangential damping coefficients cn and ct , and the friction
coefficient μ must be determined. μ is used to limit the
tangential force to Coulomb’s friction limit.

Finally the equation of motion according to Newton’s second
law is integrated in time and one advances to the next time step.

More detailed descriptions of the DEM can be found in
Santasusana (2016), Santasusana et al. (2016). Matuttis and
Chen (2014) provide an overview of the whole method and
also discuss the use of non-spherical particles. A detailed
discussion of appropriate time integrators may be found in
Irazábal et al. (2019) while Schwager and Pöschel (2007),
Cummins et al. (2012), Thornton et al. (2012), Shäfer et al.
(1996) discuss the modeling of non-elastic collisions and the
appropriate choice of the coefficient of restitution.

2.2 FEM
The FEM is used in this work to discretize the protective
structure. As described in Belytschko et al. (2000), Holzapfel
(2010), the virtual work δW is set up with the involvement of the
d’Alembert forces, the external virtual work δWext , and the
internal virtual work δWint ,

δW � ∫
Ω0

S : δε dΩ0

︷�����︸︸�����︷δWint

+ ∫
Ω0

ρ€u · δu dΩ0 − δWext � 0. (1)

As depicted in Eq. 1 the second Piola-Kirchhoff stress S, its
energy-conjugate Green-Lagrange strain ε, the density ρ as well as
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the degrees of freedom u (here the displacements) and their second
time derivative €u � z2u

zt2 are integrated over the reference area Ω0.
This equilibrium is solved numerically with a Newton’s type

iterative solution technique operating on linearized virtual work
components as discussed in Belytschko et al. (2000). Internal
element forces Fint,r are expressed with respect to each degree of
freedom r in the system, according to,

Fint,r � δW
δur

. (2)

Additionally, the tangent stiffness matrix K,

Krs � zFint,r
zus

, (3)

is often needed for Newton’s type solution schemes [see also
Belytschko et al. (2000), Holzapfel (2010)].

In the subsequent sections lower case symbols represent
quantities in the current configuration (x) while capital letters
describe quantities in the reference configuration (X).

In view of complex protective structures, such as Attenuator
barriers, the structure must be modeled accurately with attention
to detail. This work introduces the application of two unique
finite element formulations to be used in the simulation of such
structures: the sliding cable element and the plane-stress
membrane element.

2.2.1 Sliding Cable Element
Compliant structures, such as Attenuator barriers rely on the
ability of large deformations to reduce peak decelerations and
withstand impacting objects. One feature which is used to realize

large deformations is the “loose” connection of the net to upper
ropes as illustrated in Figure 3. The net is connected orthogonal
to the dark blue support rope but is allowed to slide along the
rope, impeded only by friction.

To properly model this behavior in a FEM simulation a
sliding cable element formulation [Volkwein (2004), Boulaud
and Douthe (2017)] is employed, which also enables to
integrate a deflection roller into the simulation (left side of
Figure 3A).

Instead of single linear cable elements connecting the nodes ni
and ni+1 (see Figure 3B) the element formulation used in this
work considers all discrete nodes along a predefined path in one
single element. This is realized by computing the total strain of
the whole cable element with respect to the total length l instead
of the single lengths li. According to Volkwein (2004), Boulaud
and Douthe (2017) the total length l in the current configuration
and the total length L in the reference configuration are calculated
as the sum of the respective line segments,

l � ∑nlines
i

li, L � ∑nlines
i

Li. (4)

As described in Belytschko et al. (2000), Holzapfel (2010) these
quantities are used to express the 1-dimensional Green-Lagrange
strain ε, and the 1-dimensional 2nd Piola-Kirchhoff stress S,

ε � 1
2
l2 − L2

L2
, S � E · ε, (5)

with the help of the Young’s Modulus E. Including the prestress Spre
the virtual internalwork δWint as stated in subsection 2.2 is expressed,

δWint � ∫
Ω0

(Spre + S) · δε dΩ0,

� (Spre + E · ε) · A · L · δε,
(6)

where A represents the reference cross-section of the cable
element. Following the derivation in Boulaud and Douthe
(2017) an explicit formulation for δWint is developed,

δWint � l
L
· A · (E · ε + Spre) · T · δu. (7)

Equation 7 describes the virtual internal work of the sliding cable
element with the help of the ratio between the total current length
l and the total reference length L, including the vector of nodal
virtual displacements δu and the direction of internal forces at
each discrete node of the element assembled in vector T,

FIGURE 2 | (A) DEM-DEM rheological model adapted from Santasusana (2016). (B) DEM-FEM rheological model adapted from Santasusana (2016).

FIGURE 3 | Upper support rope. (A) Installation taken from Geobrugg
(2019). (B) Sliding cable element, FEM discretization.
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T1 � [−Δx1
l1

−Δy1
l1

−Δz1
l1

],
Ti � [Δxi−1

li−1
− Δxi

li

Δyi−1
li−1

− Δyi
li

Δzi−1
li−1

− Δzi
li

],
Tn � [Δxn−1

ln−1

Δyn−1
ln−1

Δzn−1
ln−1

].
(8)

Here n denotes the total number of nodes and the coordinates
x, y, z describe the current configuration and the nodal coordinate
distances, e.g., Δxi � xi+1 − xi.

Additionally, the friction is included and needs to be evaluated
at each discrete node in the element by first calculating an equal
and opposite force Fi �

∣∣∣∣Fint,i∣∣∣∣ and subsequently using this force
to calculate a friction force ΔNi � μFi according to the friction
coefficient μ. Volkwein (2004) discusses that this force must now
be considered in addition to the normal elastic forces in the rope.

To validate the correct implementation of the sliding cable
element, a simple gravity driven impact simulation is illustrated
in Figures 4A,B, demonstrating the expected large sliding
deformation of the net shackles.

Alternative solutions to enable the sliding of nodes along a
cable element can be achieved using the penalty method [see
Bauer et al. (2018)], Lagrange multipliers [see Holzapfel
(2010)], or multi point constraints (MPC) as described in
Abel and Shephard (1979). While the first two methods
minimize the orthogonal distance between an arbitrary node
and the axis of the sliding cable, the MPC approach directly
couples degrees of freedom in such a way that the node travels
along the desired path. Compared to these abstracted
approaches, the sliding cable formulation, which inherently
represents sliding nodes in its formulation, is the most robust
solution to the problem presented and adopted in this work.

2.2.2 Plate in Membrane Action
As described in Sasiharan et al. (2006), Dhakhal et al. (2011),
Sautter et al. (2021) membrane finite elements are suitable to
approximate the behavior and response of rock-fall cable nets.
With respect to the mesh geometry illustrated in Figure 6C, an
anisotropic material law defined in Eq. 11 appropriately describes
the net’s direction-dependent behavior and is employed
henceforth.

Derivation of the 2-dimensional plane-stress membrane
element within 3-dimensional space commences by defining

the general covariant base-vectors that span an arbitrary
angled local coordinate system {Gi} and {gi} expressed by,

Gi � zNj

zθi
· Xj, 2D : θ1, θ2,

gi �
zNj

zθi
· xj, 2D : θ1, θ2,

(9)

in which the standard FEM shape functions Ni are employed
(Belytschko et al., 2000). As the element is always a 2-dimensional
plane within a 3-dimensional frame, the base-vectors G3 and g3
are constructed as a unit vector normal to that plane.

Belytschko et al. (2000) notes that these arbitrary base-vectors
are not necessarily orthonormal and are used to calculate the
Green-Lagrange strain tensor ε,

ε � εijG
i ⊗Gj � 1

2
(gij − Gij)Gi ⊗Gj, (10)

where Gij and gij is the metric of the respective configuration and
Gi expresses the reference contra-variant base-vectors.

In order to express the elastic stress-strain relation S � C : ε in
clear matrix notation the stress and strain are arranged in Voigt
notation {•} yielding {~S} � ~C · {~ε}.C describes a 4th order material
tensor, while ~C is of 2nd order.

The anisotropic elastic consistent linearized tangent modulus
~C from Münsch and Reinhardt (1995) dependent upon the
Young’s Moduli Ex Ey , Poisson’s ratios ]xy , ]yx , and the shear
modulus G is expressed as,

~C � 1
1 − ]xy]yx

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Ex ]xyEx 0

]yxEy Ey 0
0 0 (1 − ]xy]yx)G

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, (11)

]xy
Ey

� ]yx
Ex

. (12)

Since the {Gi} basis is not necessarily orthonormal, the strains
naturally defined in that basis must be transformed to a local
orthonormal basis {Ai} � {Ai}. The construction of such a basis is
achieved by normalizing G1 and G3 creating A2 such that it is
orthonormal to A1 and A3,

A1 � G1

|G1|, A3 � G3

|G3|,

A2 � G2 − G2 · A1A1

|G2 − G2 · A1A1|.
(13)

FIGURE 4 | Sliding cable elements on two opposing sides applying the tension field theory, described by Nakashino and Natori (2005), to exclude compression
stiffness from the plate in membrane finite elements. (A) Reference configuration, fixed on four corner nodes. (B) Sliding cable element formulation allows for a sliding of
the discrete element nodes.
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The covariant strain coefficients ~εij in the local orthonormal basis
{Ai} transform by the following rule, given in Kiendl (2011),

~εkm � εij · (Ak · Gi) · (Gj · Am). (14)

2.3 Coupling Procedure
A partitioned coupling approach is employed to couple
independent discrete element and finite element methods
together in this work. Felippa et al. (2001) note that
partitioned solution schemes possess the notable benefits of
software modularity and also application of the most
appropriate discretization and solution techniques to each
individual component. Although this approach allows the use
of arbitrary DEM and FEM codes, the user must consider the
coupling of the two. Santasusana (2016) has already discussed this
in detail and Sautter et al. (2020) has continued this coupling by
introducing an additional Gauss-Seidel loop on the interface Γ
level to ensure the convergence of the interface. The basic idea of
the coupling method is the exchange of data between the two
independent solvers. The solver of the DEM calculates contact
forces Fcontact which are dependent on the displacements u and
velocities _u of the particles P and the discretized boundary
conditions ΩD. These forces are mapped [see e.g., Tianyang
(2016)] to the finite element mesh of the structure ΩS and by
means of FEM the displacements and velocities are calculated
which are finally mapped to the boundary conditions of the DEM
solver. Multiple studies Wüchner (2006), Winterstein et al.
(2018), Sautter et al. (2020) have confirmed that the simple
exchange of this data can lead to divergence of the interface
conditions,

uΩD,Γ(t) − uΩS,Γ(t) � 0, (15)

_uΩD,Γ(t) − _uΩS,Γ(t) � 0, (16)

Fcontact(uΩD,Γ(t), _uΩD,Γ(t), uP(t), _uP(t))
− Fcontact(uΩS,Γ(t), _uΩS,Γ(t), uP(t), _uP(t))
� 0, (17)

all of which are dependent on the time t. Figure 5 describes the
use of additional iteration loops at each time step to achieve the

convergent strong coupling as described by Sautter et al. (2020)
(which also includes more details of the coupling).

The steps in Figure 5 are summarized below:

1. Solve DEM component to obtain the contact force.
2. Map the forces to the structure.
3. Solve the structure with FEM to obtain nodal
displacements, velocities and accelerations.

4. Map displacements, velocities and accelerations back to
the discretized boundary in the DEM solver.

5. If necessary: Calculate interface residuals as described by
Küttler andWall (2008), Winterstein et al. (2018), Sautter
et al. (2020) among others.

6. If necessary: Repeat steps 1–5 until Eqs 15–17 are satisfied
to a given tolerance.

7. Advance in time to next time step.

3 2017 GEOBRUGG ROCKFALL
EXPERIMENTS

In 2017 the Swiss company Geobrugg conducted an experimental
program to confirm the effectiveness of a novel SPIDER mesh
(Geobrugg, 2020). The following section is a brief summary of key
test aspects relevant for numerical replication, refer to Hofmann
et al. (2019) for full testing details.

3.1 Test Site
The test site was a near-vertical approximately 60 m high slope
situated in a disused granite quarry in British Columbia, Canada.
The Attenuator design investigated was the hanging net style with
limited slope contact of the netting as per Figure 6A. The test set
up consisted of three 8 m steel posts set 9 m apart and anchored to
the slope with six retention ropes, two lateral support ropes, and
one top rope penetrating through the post heads. The netting is
attached to the top rope with shackles in each mesh opening as
detailed in Figure 3A. Three principal zones of attenuation were
investigated by varying the impact, transition, and collection
zones of the high tensile steel wire nets. The experiments of
2017 are described in greater detail in Hofmann et al. (2019).

FIGURE 5 | Strong coupling communication diagram from Sautter et al. (2020). With t as the current time and Δt as the time step size.
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3.2 Site Survey and Rockfall Modeling
A terrain survey of the site was performed by Truline Survey in
2016 which was used as basis for rockfall modeling to adapt the
Attenuator geometry between the testing series of 2016 and 2017.
Particularly relevant to this paper, Sautter et al. (2020)
demonstrates how such terrain models may be incorporated
into simulations to further enhance accuracy and predictive
confidence.

3.3 Impacting Object
The rocks used for testing were either granite blocks of various
characteristic shapes (such as cubic, angular, and disc-like) or
prefabricated concrete blocks with a special housing in the center
for rock motion sensors (see Figure 6B). The blocks and rocks
were then released by an excavator on top of the slope. The rocks
bounced 3–4 times on the granite slope before impacting the
netting.

3.4 Instrumentation
Experimental instrumentation included load-cells in all ropes,
high-speed cameras filming the block’s trajectory from different
angles and rock motion sensors in the concrete blocks. This work
will predominantly focus on the trajectory path, translational
velocity and rotational velocity experimental data collected.

3.4.1 High Speed Cameras
Analysis of the high speed camera videos with a sampling rate
of 500 fps facilitated quantification of the rockfall dynamics.
By tracking the position of the block through time a
translational velocity could be obtained and the tracking of

every 90+ rotation of the block served as an indicative
quantification of angular velocity. The cameras were
located so as to have a frontal view on the mesh and a
perpendicular view on the mesh. This allowed also to
determine in which plane the block was moving.

3.4.2 Rock Motion Sensors
The rock motion sensors measured the accelerations and
rotations of the block about its three axes for the duration of
each test. A comparison of the angular velocity obtained from the
video analysis and the rock motion sensor shows good agreement
and therefore provides confidence in the translational velocity
data estimated by video analysis.

3.5 Tests Used for Numerical Validation
The tests used to validate the modeling and simulation used a
Geobrugg SPIDER S4/130 mesh [described in Geobrugg (2020)
and visualized in Figure 6C]. Additional weights in the form of
steel bars were shackled to the bottom of the mesh (see Figure 6A)
to increase the inertia and vertically pre-tension the system and is
incorporated in the simulation with additional point masses
(discussed in subsection 4.1.1). The middle post was slightly
bent after sustaining two rock impacts in previous tests, but the
integrity and function of the system was not compromised,
accordingly testing was continued, but it was chosen to
incorporate it anyway in the modeling of the structure. The
blocks used during the test, were a near-cubic 626 kg concrete
block with an initial volume of approximately 0.75 × 0.75 ×
0.75m3 called T092 and a 278kg granite block with an initial
volume of approximately 0.75 × 0.51 × 0.48m3 called T089. Since

FIGURE 6 | Experiment setup. (A) Additional weight at the bottom of the protection net to ensure a more controlled structural deformation. (B) Photo of the
impacting object T092 (some damage can be observed). The visible metal cap covers the housing of the motion sensors. (C) Technical drawing of the SPIDER

®
S4-130,

taken from Geobrugg (2020), DL � 8.6mm.
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the blocks were used for several tests and accumulated greater
damage after each run (see Figure 6B for T092), the mass before
and after each run was the characterizing measurement (instead
of volume).

Key experimental data pertinent to numerical replication
including translational and rotational velocity at the time of
netting impact and the rock’s path and mass are summarized
in subsection 4.2.

4 NUMERICAL MODELING

4.1 Structural Modeling
Figure 7 is adapted from Geobrugg (2019) and depicts the
respective participants in the simulation, each of which are
discussed below.

Due to the small time steps necessary to resolve the impact, an
explicit time integration scheme was selected (instead of an
implicit scheme). The central-difference explicit scheme as
described by Belytschko et al. (2000) was used to conduct the
numerical time integration of the structural response with a time
step of dt � 5 · 10− 5s.

4.1.1 Point Masses
The additional weights at the bottom of the protection net,
depicted in Figure 6, are modeled with single point masses
(summing to an additional total mass of Madd � 358kg)
equally distributed along the lower boundary of the membrane
mesh (see Figure 7). Including these masses is critical to properly
model both the gravitational forces and the additional dynamic
inertia.

4.1.2 Sliding Cable Element
Modeling of the upper support rope, illustrated in Figure 3,
demands a sophisticated element formulation, which is

discussed in subsection 2.2.1. This formulation allows
internal nodes to slide along the element, while internal
forces are calculated based on the change of the total
length, as discussed in Volkwein (2004); Boulaud and
Douthe (2017). The following structural properties, based
on construction plans in Geobrugg (2019), were applied in
the simulation: Young’s Modulus E � 1.130 · 1011[N/m2], cross
area A � 1.645 · 10− 4[m2], density ρ � 7.850 · 103[kg/m3], and
the friction coefficient μ � 0.25.

4.1.3 Standard Cable Element
Bracing cables, modeled with standard cable elements, are
anchored in the rock and connected to strategically selected
points on the supports of the protective structure. As presented
in Belytschko et al. (2000), a 1-dimensional truss element
formulation is applied and combined with an additional
check for compression stresses in the element. If such
stresses are detected the elemental stiffness contribution is
temporarily eliminated from the global system of equations.
Realistic structural properties were also obtained from
construction plans provided in Geobrugg (2019) and listed
in the following: Young’s Modulus E � 1.100 · 1011[N/m2],
cross area A � 1.160 · 10− 4[m2], and density ρ � 7.850 ·
103[kg/m3].

4.1.4 Posts
The posts, which predominantly carry vertical loads to support
the protective structure, are simply supported in the rock. At the
top they are connected to both the upper support rope as well as
the bracing cables (seeFigure 3). In accordance with Belytschko
et al. (2000), these posts may be suitably modeled as 1-
dimensional truss elements (neglecting any initial damaged
bending), with the following data: Young’s Modulus
E � 2.100 · 1011[N/m2], cross area A � 2.010 · 10− 3[m2], and
density ρ � 7.850 · 103[kg/m3].

FIGURE 7 | Participants in the FEM model, adapted from Geobrugg (2019).
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4.1.5 Protection Net
Due to the set-up of the experiment, similar to the set-up in
Sautter et al. (2021), and the complicated geometry of the SPIDER
net system (see Figure 6C), the net has been idealized as a closed
homogeneous surface discretized with plane-stress membrane
finite elements. Publications such as Mentani et al. (2018),
Tahmasbi et al. (2019) suggest shell elements to be used,
although they introduce additional complexity and
computational expense compared to membrane elements. In
the interest of simplicity, membrane elements described in
subsection 2.2.2 were employed, which, considering the good
agreement achieved with experimental results in section 5,
appear sufficiently accurate for the present study.

The following properties, determined from the mesh technical
drawing in Figure 6C, technical data sheets (Geobrugg, 2020) and
proprietary Geobrugg experimental tensile tests, were applied to
membrane elements for the simulation: Thickness
8.600 · 10− 3[m], Young’s Modulus Ex � 0.23 · 108[N/m2],
Young’s Modulus Ey � 1.40 · 108[N/m2], shear
modulus G � 0.81 · 108[N/m2], Poisson’s ratio ]xy � 0.30, and
density ρ � 5.814 · 102[kg/m3].

Although the material behavior is in principle non-linear, the
large deformations are predominantly rigid and accompanied by
small strains, justifying the assumption of linear elastic material
behavior.

By comparing Figures 8A,B a perfect agreement between
the reference computer model and the real structure cannot
be achieved as some posts in Figure 8B are already
damaged. Additionally, the position and alignment of the
supporting structure is unlikely to exactly match
construction plans.

4.2 Impacting Object
In contrast to preceding works, such as Volkwein (2004),
Volkwein (2005), Mentani et al. (2018) this work follows
Sautter et al. (2021) to flexibly model arbitrary objects with
discrete spherical element clusters. The advantage compared to
standard finite element discretized objects is the simplified
contact detection between arbitrary boundary objects and
single spheres contained in the cluster as described by

Santasusana et al. (2016). Figure 9 presents the DEM cluster
models used within this work, and Figure 6B shows the real
impacting object. While the clusters in Figures 9A,B represent
the test object T092, Figures 9C,D show the cluster
approximation of the test object T089. A study on the proper
refinement level of such clusters can be found in Sautter et al.
(2021). Special algorithms are required to create the refined cluster
file, with this work employing the algorithms described in Bradshaw
and O’Sullivan (2002), Bradshaw and O’Sullivan (2004) available in
an online toolkit [http://isg.cs.tcd.ie/spheretree/].

Within this work several DEM particle properties are varied
and their influence on the simulation result is studied, namely the
friction, coefficient of restitution, and Young’s Modulus.
Contrasting this, the following physical properties are constant
throughout all simulation runs:

- T092
- Mass � 6.26 · 102[kg],
- Dimension ≈ 0.75 × 0.75 × 0.75[m3],
- Impact translational velocity horizontal _uz � 10.01[m/s],
- Impact translational velocity vertical (gravity
direction) _uy � −12.08[m/s],

- Impact rotational velocity ω � 22.0[rad/s].
- T089

- Mass � 2.78 · 102[kg],
- Dimension ≈ 0.75 × 0.51 × 0.48[m3],
- Impact translational velocity horizontal _uz � 13.78[m/s],
- Impact translational velocity vertical (gravity
direction) _uy � −12.78[m/s],

- Impact rotational velocity ω � 10.0[rad/s].

Comparing Figures 6B, 9A it can be observed that the testing
objects have already suffered damage from previous experiments.
When comparing the simulation results with the ones obtained
by the experiment in section 5 this unavoidable difference should
be considered.

An explicit central-difference scheme as described by Matuttis
and Chen (2014) was used to conduct the numerical time
integration of the translational velocity of the cluster with a
time step of dt � 5 · 10− 5s. As presented in Irazábal et al.

FIGURE 8 | Deformation panel after dead-load equilibrium (before impact). (A) Simulation. (B) Experiment photographed just before impact.
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(2019), a more sophisticated time integration approach was used
to integrate the rotational velocity using quaternions (Hamilton.
1844), which is especially critical due to the non-uniform
geometry of the impacting clusters as shown in Figure 9.

5 VALIDATION

The following section presents the simulated Geobrugg 2017
experiment results to ascertain the practical applicability and
accuracy of the aforementioned numerical modeling approaches
and technologies.

For clarity, key assumptions and uncertainties discussed in the
preceding sections are summarized below:

- The exact impact location was estimated from video
records.

- The model of the protective structure is taken from
construction plans. However, it can be seen from
photos and video recordings that the actual structure is
partially crooked and already shows damage.

- The reference angular orientation αDE of the impacting
object describes the rotation around the main axis of the
impacting object at the time of impact. It cannot be
determined and is therefore included in the following
investigation as an unknown variable. This also means
that the angular velocities cannot be absolutely
compared. The orientation of αDE is visualized in
Figure 9A.

- Three further DEM specific parameters cannot be taken
unambiguously from the test and have to be varied to
study their influence. Young’s Modulus EDE , coefficient of
restitution ϵDE and friction μDE are partly problem-
dependent and their influence is not well researched
with regard to Attenuator barriers.

- As visualized in Figure 6B the impacting test object
already shows damage, which will be neglected in the
modeling of the DEM sphere cluster.

The rock trajectory and the general trends of angular and
translational velocities are used for comparison with the experiment.

5.1 Trajectories
The most reliable and functionally-important comparison is the
simulated versus experimental rock trajectory. Attenuator

barriers are used to protect exposed areas such as motorways
from falling rocks, therefore the path of the object is of particular
interest. In the following investigation the unknown model
parameters were varied to check their influence on the results
of the test run T092. To validate the results the test T089 was
simulated subsequently with the best suitable parameters
obtained from the investigation of T092. Figures 10, 11
illustrate the influence of the DEM parameters for T092

FIGURE 9 | Cluster of spheres to model impacting objects. (A) Test object T092 front view. (B) Test object T092 perspective view. (C) Test object T089 front view.
(D) Test object T089 perspective view.

FIGURE 10 | Visualization of object path for varying parameters for
T092. (A) Coefficient of restitution. The result data for 0.2,0.3, 0.4, and 0.6 are
nearly identical and thus hardly distinguishable in the graph. (B) Friction.
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(which are not clearly defined and have to varied to study their
influence).

- In Figure 10A the coefficient of restitution is varied
between 0.2 − 0.6 while the Young’s Modulus
EDE � 2000000N/m2, the friction μDE � 0.4, and the
reference angular orientation αDE � 146.25+.

- In Figure 10B the friction is varied between 0.15 − 0.4
while the Young’s Modulus EDE � 2000000N/m2, the
coefficient of restitution ϵDE � 0.6, and the reference
angular orientation αDE � 146.25+.

- In Figure 11A the Young’s Modulus is varied between
500000N/m2 − 2000000N/m2 while the coefficient of
restitution ϵDE � 0.6, the friction μDE � 0.4, and the
reference angular orientation αDE � 146.25+.

- In Figure 11B the reference angular orientation is varied
between 0+ − 135+ while the Young’s Modulus
EDE � 2000000N/m2, the coefficient of restitution
ϵDE � 0.6, the friction μDE � 0.4.

While the deformation of the impacting object is not of interest for
this study the so-called Young’s Modulus EDE represents only an
algorithmic parameter in the calculation of the DEM contact forces

(see subsection 2.1). The range of EDE in this work does not represent
the physical properties of concrete but proved to result in the best
fitting results. This could also be observed when the obtained
parameters were used to simulate the test run T089 (see
Figure 12B). Figure 11A demonstrates that EDE does not heavily
influence this kind of simulation and further studies showed that
choosing a EDE to be near the physical value of the Young’s Modulus
of concrete does not influence the simulation result butwill lead to the
necessity of much smaller times steps, contradicting the purpose of
this work to offer a fast, efficient, simplified model and simulation of
the Attenuator barriers.

An initial observation is that all variations give very good
agreement with the test results for T092 and accurately predict
the final position of the rock with a maximum error of +10%.
While varying the reference angular orientation seems to have the
least influence (see Figure 11B) the proper choice of a suitable
friction value strongly influences the simulation as shown in
Figure 10B. This sensitivity is expected as this experiment heavily

FIGURE 11 | Visualization of object path for varying parameters for
T092. (A) Young’s Modulus [N/m2]. (B) Angular reference orientation [+].

FIGURE 12 | Visualization of object path. Additionally, the free fall
trajectory is added to demonstrate the correctness of the object path at the
beginning of the simulation and the effectiveness of the Attenuator barrier. (A)
The three optimal parameter combinations for T092. The solution for
parameter set B is very similar to the one for parameter set A and thus not
easily distinguishable. (B) T089 with parameter set C.
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FIGURE 13 | The test object impacts with a certain angular velocity, stops rotating, slides for a short time period and starts rotating in the opposite direction
subsequently. (A) Photos from the experiment. (B) Simulation.
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depends on the rotation of the impacting object. The variation of
the Young’s Modulus in Figure 11A as well as the variation of the
coefficient of restitution in Figure 10A show little influence, likely
since the Attenuator barrier primarily retards via kinetic energy
instead of strain energy.

In the following, only the three best parameter variants for T092
will be discussed, as the quality of the trajectories allows direct
conclusions to be drawn about the correctness of the respective
velocities. The three optimal parameter combinations are presented
in the following list and their trajectories are visualized in Figure 12A
together with the path of a free falling object to demonstrate the
efficacy of the Attenuator barrier.

- Parameter set A:
- Friction μDE � 0.4,
- Coefficient of restitution ϵDE � 0.6,
- Young’s Modulus EDE � 1 · 106[N/m2],
- Reference angular orientation αDE � 146.25[+].

- Parameter set B:
- Friction μDE � 0.4,
- Coefficient of restitution ϵDE � 0.6,
- Young’s Modulus EDE � 2 · 106[N/m2],
- Reference angular orientation αDE � 168.75[+].

- Parameter set C:
- Friction μDE � 0.4,
- Coefficient of restitution ϵDE � 0.3,
- Young’s Modulus EDE � 2 · 106[N/m2],
- Reference angular orientation αDE � 45[+].

The data obtained from the simulations is not only in strong
accordance with the experiment results but also clearly
demonstrates the effectiveness of the herein presented
Attenuator barrier. A rock at height of 12m with an initial
vertical velocity in gravity direction of 12.08m/s (as it is the
case for T092) would need,

12.00m � 12.08
m
s
· t + 1

2
· 9.81m

s2

︷��︸︸��︷gravity

· t2 → t � 0.76s,

(18)

0.76s to reach the ground. In combination with an initial
horizontal velocity of 10.01m/s the stone will have traveled a
horizontal distance of 10.01m

s · 0.76s ≈ 7.6m. This results in a
potential risk area that is approximately three times as large as for
the protective installation (compare Figure 12A).

The results, which are shown in Figure 12B relate to the
simulation of T089 with the parameter set C of T092. It can be
clearly seen that the experimental results are properly re-
produced without any further need of parameter investigation.
This ensures that this parameter set can be used to recalculate
further scenarios and creates confidence in the accuracy and
applicability of the study presented here.

5.2 Angular Velocity
The experimental observations presented in Figure 13A illustrate
the impacting object angularly decelerating and subsequently
accelerating in the opposing angular direction. Unfortunately,
the experimental data do not provide any information about
predominate rotation axis, the individual rotation components of
each axis, or the rotational orientation of the specimen at the time
of impact. Nevertheless, it is useful to compare the general
rotation behavior with the simulation results, with Figure 13B
illustrating the simulation exhibits the same rotational trend as
the experiment in Figure 13A. Additionally, Figure 14A
visualizes the angular velocity about one of the main axes of
the impacting object, which clearly illustrates the time period in
which the aforementioned deceleration and subsequent
acceleration take place. The same behavior can be observed in
Figure 14B, which depicts the general trend of the angular
velocity obtained from the experiment.

FIGURE 14 | Visualization of angular velocity about one of the main axis of the impacting object T092. (A) Simulation. (B) General trend from experiment.
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5.3 Translational Velocity
The translational velocity of the three optimal parameter sets (as
per subsection 5.1) and the experiment are illustrated in
Figure 15A. It can be seen that the deceleration of the
impacting rock in the horizontal direction (perpendicular to
the protection net) is accurately modeled by the simulation.
This is of particular importance for the design of protection
structures, since the management of horizontal momentum is the
primary arresting mechanism. Although experimental results for
the vertical (gravity) direction are substantially scattered, the
simulation demonstrates a good agreement with the general
trend of the experimental data.

Just as in subsection 5.1, the velocity components of the
simulation and the experiment of T089 are also compared in the
following. Figure 15B shows that these data could also be
reproduced with very good agreement and thus allows suitable

statements to be made about future rockfall events in Attenuator
barriers.

6 CONCLUSION

This work has applied an advanced modeling and simulation
approach to characterize the behavior of Attenuator barriers.
Two independent numerical methods were coupled within an
open-source multi-physics code to analyze the interaction of the
impacting object and the protective structure. The impacting
objects were simulated using DEM whereby arbitrarily shaped
rocks were flexibly modeled as clusters of single spherical particles.
This effective procedure allows the simultaneous use of simple
contact algorithms and the possibility to consider the influence of
arbitrary rock shapes. The structure itself was simulated using FEM
employing a variety of advanced element formulations appropriate
for each structural component. A homogeneous anisotropic
membrane element was used to simplify the complicated
protection mesh. As in Sautter et al. (2021), this simplification
was found to be applicable when the global deformation behavior
has to be investigated. A sophisticated yet elegant sliding cable
formulation was applied to model the sliding nodes on the support
ropes, allowing the boundary kinematics of the net to be fully
resolved. Due to the robust implementation in the open-source
code KRATOS [see Dadvand et al. (2010), Dadvand et al. (2013);
Ferrándiz et al. (2020)], this work allows engineers and researchers
alike to perform independent analyses of any rockfall event and the
evaluation of suitable protection structures.

Another objective of this work was evaluating the performance
of Attenuator barriers. It was demonstrated that this type of flexible
protective structure offers dramatically increased protection
against rockfalls by retarding impacts and subsequently guiding
them to designated collection zones. In subsection 5.1 the
simulation and experimental results agree that the Attenuator
barrier considered reduced the danger zone by approximately
two thirds compared to a free falling object. The fact that the
Young’s modulus and the coefficient of restitution of the DEM
cluster have little influence on the trajectory of the impacting object
was expected, since little energy is absorbed by strains and internal
forces and the rock is instead deflected. On the other hand, the
correct choice of interface friction was found to be important, as
the experimental data is strongly influenced by the rotation of the
impacting object. To support the conclusions of this study, another
test was simulated without varying the unknown parameters. The
set of best parameters from the previous tests was applied directly.
The results of this work clearly show that with this procedure the
experimental results can be calculated with a very good agreement.
Thus, future questions regarding Attenuator barriers can be
answered confidently, quickly and efficiently. The CPU system
settings for this study is an Intel(R) Xeon(R) CPU E5-2,623 v4 at
2.60GHz, while it takes approximately 700 s (11.667 min) to run
one simulation.

Live experiments are time-consuming and very costly,
especially if every new change in the design has to be
investigated experimentally. The numerical analysis of these
tests can support the design process and thus make the

FIGURE 15 | Comparison of translational velocity for both the horizontal
direction, z and the vertical in gravity direction, y. (A) The three optimal
parameter combinations for T092. (B) T089 with parameter set C.
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development of new protective structures more cost-effective.
Considering the global change of temperature and general
environmental influences, the development and realization of
simulation methods in open-source multi-physics codes (such as
KRATOS) is of great importance and cannot be overemphasized.
A community of engineers and programmers working together
on such computer programs that are freely accessible to everyone
is of paramount importance.
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