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A Monte Carlo Simulation Approach
in Non-linear Structural Dynamics
Using Convolutional Neural Networks

Franz Bamer*†, Denny Thaler*†, Marcus Stoffel and Bernd Markert

Institute of General Mechanics, RWTH Aachen University, Aachen, Germany

The evaluation of the structural response statistics constitutes one of the principal tasks

in engineering. However, in the tail region near structural failure, engineering structures

behave highly non-linear, making an analytic or closed form of the response statistics

difficult or even impossible. Evaluating a series of computer experiments, the Monte Carlo

method has been proven a useful tool to provide an unbiased estimate of the response

statistics. Naturally, we want structural failure to happen very rarely. Unfortunately, this

leads to a disproportionately high number of Monte Carlo samples to be evaluated

to ensure an estimation with high confidence for small probabilities. Thus, in this

paper, we present a new Monte Carlo simulation method enhanced by a convolutional

neural network. The sample-set used for this Monte Carlo approach is provided by

artificially generating site-dependent ground motion time histories using a non-linear

Kanai-Tajimi filter. Compared to several state-of-the-art studies, the convolutional neural

network learns to extract the relevant input features and the structural response behavior

autonomously from the entire time histories instead of learning from a set of hand-chosen

intensity inputs. Training the neural network based on a chosen input sample set

develops a meta-model that is then used as a meta-model to predict the response

of the total Monte Carlo sample set. This paper presents two convolutional neural

network-enhanced strategies that allow for a practical design approach of groundmotion

excited structures. The first strategy enables for an accurate response prediction around

the mean of the distribution. It is, therefore, useful regarding structural serviceability. The

second strategy enables for an accurate prediction around the tail end of the distribution.

It is, therefore, beneficial for the prediction of the probability of failure.

Keywords: Monte Carlo method, non-linear structural mechanics, elastoplastic structure, convolutional neural

networks, machine learning, earthquake engineering, probability of failure

1. INTRODUCTION

Deciding whether a structure subjected to ground motion is or is not safe is a delicate task in
engineering. One big issue is the high level of uncertainty when considering a ground excitation
time history relevant to structural design. This fact forces us to apply probabilistic methodologies
to design structures and infrastructures (Der Kiureghian, 1996; Bucher, 2009).

Failure usually occurs in the non-linear range of structural behavior, making an analytic or
closed form of the response statistics difficult or even impossible. In this context, the equivalent
linearization method was proposed to approximate the response statistics, which is generally quite
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accurate around the mean of the distribution (Roberts and
Spanos, 1990). To also provide accurate response statistics for
infrequent events, the tail equivalent linearization method was
proposed (Fujimura and Der Kiureghian, 2007).

The general Monte Carlo method is helpful to provide the
response statistics of non-linear systems. The strategy is based
on a series of computer experiments and provides an unbiased
estimation for the probability of failure of a non-linear system
(Hurtado and Barbat, 1998).

However, considering that each computer experiment
includes a time history analysis of a complex high-dimensional
finite element model, the Monte Carlo method turns out to be
computationally expensive. As engineers, we have to ensure that
structural failure should happen extremely rare, as it is generally
accompanied by severe societal and economic loss. Thus, a
disproportionately high number of computer experiments must
be performed to estimate the occurrence of low-probability
events with high confidence. This fact makes the application
of the crude Monte Carlo method unfeasible for non-linear
high-dimensional problems. A promising strategy to overcome
this issue is to use model order reduction methods (Bamer and
Bucher, 2012; Bamer and Markert, 2017; Bamer et al., 2018).
This strategy enables one to decrease the computational burden
for each sample computation significantly, and it is particularly
efficient if only one reduced-order basis is applied during the
whole Monte Carlo simulation run (Bamer et al., 2017).

In the context of computational speed-up andmeta-modeling,
the application of neural networks has proven to be a promising
strategy (Stoffel et al., 2018, 2019, 2020a,b) for problems in non-
linear structural mechanics. In particular, the incorporation of
recurrent neural network architectures for elastoplastic problems
leads to representations of the non-linear structural behavior
revealing accurate and efficient solution functions (Koeppe et al.,
2019, 2020).

With special emphasis on problems in earthquake
engineering, Sun et al. (2021) has summarized the incorporation
of machine learning approaches to response, damage, and failure
prediction. Convolutional neural networks and deep learning
have been used to predict the whole response time history of the
structure subjected to a transient excitation (Zhang et al., 2020)
and wavelet transformation-based response prediction (Lu et al.,
2020, 2021; Liao et al., 2021). Thaler et al. (2021a,b) proposed a
machine leaning-enhanced Monte Carlo method using a simple
feed-forward neural network. In doing so, they used a selected
choice of intensity measures from the time history data as a set
of input parameters to predict the response of the structure.
However, representing the whole time history data by a few
hand-chosen scalar values only, much information regarding the
excitation function can get lost.

In this paper, we present an extended Monte Carlo approach
using convolutional neural networks so that it is not necessary
to extract hand-designed input features, e.g., intensity measures,
for the neural network. Furthermore, in order to assure high
reliability of the neural network predictions in the tail of the
distribution, an extended training strategy is applied.

The structure of this paper is goal-oriented and
straightforward. In section 2, we firstly present an overview

of convolutional neural networks followed by the presentation
of the new Monte Carlo simulation strategy. Subsequently,
in section 3, we present the new strategy using an illustrative
numerical example. The efficiency, as well as advantages and
disadvantages, are discussed. Finally, in section 4, the conclusion
is drawn.

2. METHODS

2.1. Feedforward and Convolutional Neural
Network Architectures in a Nutshell
Machine learning strategies have been applied to a wide range
of tasks in engineering. This section briefly introduces the basic
theory of the twomachine learningmethods applied in this paper,
i.e., feedforward and convolutional neural networks.

The feedforward neural network consists of at least three
layers: input, hidden, and output layer. Every layer contains a set
of neurons. The input layer receives the initial data. The data is
passed forward, layer by layer, until the output layer is reached
from this layer. Every neuron of a certain layer, which is not
the output layer, is connected to every other neuron of the next
layer during one forward step. As a result of this, each neuron-to-
neuron link has its corresponding weight value. A weight matrix
can then represent the set of all connections. Thus, the output of
the previous layer yi−1 is the input of the actual layer xi. The input
is then multiplied by the weight matrix Wi, and additionally,
summed up by a bias vector bi. The sum is transferred by an
activation function fact which is then the output yi of a layer:

yi = fact(Wixi + bi) . (1)

This operation is repeated until the output layer, which
constitutes the prediction of the neural network. In our paper,
we apply supervised learning, where the prediction is compared
to a known target output for regression tasks. The error is used
to optimize the weight matrices and the bias of all the layers
using back-propagation.

The convolutional neural network is a specific type of
architecture that is used to process data. It is specialized for
input data that show a correlation of neighboring data points.
Thus, typical applications of convolutional neural networks
are image data. However, as presented during this paper,
convolutional neural networks can also effectively be applied to
extract the main features of earthquake time histories. Using
convolutional layers improves the machine learning system
by sparse interaction and parameter sharing. Consequently, a
reduction of the total number of trainable parameters, and
therefore, decreased computational effort. Convolutional neural
networks are composed of two main operations: convolution
and pooling.

The convolution is the basic mathematical operation of this
neural network type. Regarding one dimensional discrete data,
such as earthquake time histories for example, the convolution
operation < ∗ > of two vectors or one-dimensional tensors, g
and h, is written as:

(g ∗ h)i =
∑

n

gi−nhn . (2)
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FIGURE 1 | Exemplary spatial reduction of the top data array using pooling

functions (pool size = 3, stride size = 2); output data reduced by maximum

pooling (bottom left); output data reduced by average pooling (bottom right).

The convolutional operation is usually followed by a non-
linear activation function fact . The output yi of the convolution
operation, the so-called feature map, is written as:

yi = fact(xi ∗ wi + bi) . (3)

In this equation, wi denotes a weight vector with the spatial size
k of the kernel, which slides over the one-dimensional input data
array xi.

In the next step, pooling improves the statistical efficiency
by reducing the spatial size of the data. As shown in Figure 1,
pooling summarizes the input space. Looking at this illustrative
example, one can see that the pooling procedure summarizes
three values to one output value. As a result of this, the decrease in
the total number of values, i.e., the compression of information, is
dependent on the stride size, which is the step increment at which
the kernel moves over the data array. For the example in Figure 1,
the stride size is two. Two different types of pooling procedures
are considered in this paper: max-pooling and average-pooling.
As expected from the nomenclature, max-pooling extracts the
maximum of all values within the moving kernel, and average
pooling extracts the average of the values within the moving
kernel. Even though convolutions and pooling are individual
operations, it is often referred to as a convolutional layer, whereby
the operations are carried out in different stages.

Similar to the weight optimization procedure of fully
connected layers, the values of the convolutional kernels are
optimized during training, which allows for the extraction of
features of the input data. Different features can be extracted from
the initial data by using multiple kernels within the convolutional
layer. A convolutional neural network usually consists of several
convolutional layers, followed by feedforward layers. The choice
of the architecture depends on the complexity of the data and the
task to solve (Kruse et al., 2015; Goodfellow et al., 2016).

2.2. Machine Learning Enhanced Monte
Carlo Simulation
The probability of structural failure Pf can be expressed in terms
of a multiple integral:

Pf =

∫

· · ·

∫

g(x)<0

fX(x) dx1 . . . dxn , (4)

where g(x) is the limit state function that divides the entire
domain into the save region g(x) ≥ 0 and the failure
region g(x) < 0. Dependent on the complexity of the limit
state function, the solution of this integral is generally not
straightforward. However, one approach to solve this integral is
provided by theMonte Carlo simulation. One performs a series of
computer experiments by artificially generating a set of random
inputs (Hurtado and Barbat, 1998). The integral describing the
probability of failure in Equation (4) is rewritten as:

pf =

∫ ∞

−∞

∫ ∞

−∞

. . .

∫ ∞

−∞

Ig(x1, . . . , xn)

fX1 ,...,Xn (x1, . . . , xn) dx1 . . . dxn , (5)

with Ig(x1, . . . , xn) being an indicator function defining a safe or
failure state:

Ig(x1, . . . , xn) = 1 if g(x) ≤ 0 (structural failure) (6)

Ig(x) = 0 if g(x) > 0 (save) . (7)

Thus, the probability of failure is provided by a consistent
unbiased estimate in terms of an expected value:

pf =
1

m

m
∑

k=1

Ig(x
(k)) . (8)

The standard deviation of the estimation of the probability of
failure is evaluated as:

σ 2
pf

=
pf

m
−

p2
f

m
≈

pf

m
⇒ σpf =

√

pf

m
, (9)

which means that the variance of the probability of failure
increases with a decreasing number of samplesm. In engineering,
we obviously want the probability of failure to remain a low
value. Thus, the reliability of the estimate of a small probability
of failure is considerably low using the Monte Carlo method
and m must be chosen to be a disproportionately high number.
In other words, extensive relevant earthquake record data must
be collected in order to reliably design structures. A rule of
thumb may be that a number of 105 excitation records should be
considered for structural design with a desired failure probability
of 10−4—obviously an impossible task, as the number of recorded
relevant ground excitations around the respective building site is
inherently limited. Therefore, we suggest to artificially generate a
sufficiently high number of random ground excitations using the
metadata from one relevant record. In doing so, site-dependent
structural design is possible. In order to realize artificial site-
dependency, we consider the incorporation of a non-linear
Kanai-Tajimi filter (Bamer and Markert, 2017). To extract the
important information from a ground excitation record, a time
window of size tw is defined that moves over the excitation time
history, as shown in Figure 2. For the numerical example in this
paper, a severe earthquake, recorded in Kobe Takarazuka in 1995
(Kobe, 2016), is chosen as benchmark time history.

In this paper, we extract two time-dependent identification
parameters, which are the intensity ê(t) and the number of zero
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FIGURE 2 | (A) Moving time window to extract relevant metadata from acceleration records; (B) extracted intensity and (C) extracted lowest frequency content.

crossings n̂(t) of the time history, as shown in Figure 2. The first
parameter is evaluated by the integration of the squared ground
acceleration ẍr of the benchmark record from t − tw

2 to t + tw
2 :

ê(t) =

∫ t+ tw
2

t− tw
2

(ẍr)
2 dt . (10)

The second parameter leads to the time history of the lowest
ground frequency of the benchmark record. Equivalently to
the procedure in Equation (10), the ground frequency ω̂g(t) is
evaluated by considering the number of zero-crossings n̂(t) in the
time period

[

t − tw
2 , t +

tw
2

]

:

ω̂g(t) =
n̂(t)

tw
2π . (11)

Polynomial functions approximate the extracted data, which
results in the representations of the intensity e(t) and the
frequency content ω(t), highlighted in red in the respective plot
of Figure 2.

The non-linear Kanai-Tajimi filter is used to model the
movement of the ground. In this context, the filter is represented
by a non-linear single degree of freedom system that is subjected
to a stationary Gaussian random white noise w(t):

ẍf + 2ζgωg(t)ẋf + ω2
g (t)xf = w(t) . (12)

The damping parameter ζg and the time-dependent frequency
ωg(t) are both related to site-dependent ground properties. The

response of the filter xf is evaluated using numeric integration,
the filtered ground acceleration is then written as:

¨̂xg = −2ζgωg(t)ẋf − ω2
g (t)xf . (13)

In order to consider the extracted intensity, the obtained
filter acceleration ¨̂xg is finally multiplied by the intensity
polynomial e(t):

ẍg = ¨̂xg e(t) . (14)

The result of this procedure, using our benchmark ground
acceleration, is depicted in Figure 3. Here the benchmark
excitation, recorded in Kobe, is depicted in Figure 3A and one
respective sample excitation is presented in Figure 3B. One can
observe the similarity regarding both frequency and intensity
time histories while preserving the required level of randomness
required for the Monte Carlo simulation.

Theoretically, the procedure is straightforward, as shown in
Figure 4. One creates a set of ground excitation time histories S
based on which the response set R is evaluated. Considering the
limit state function g(x), every response function leads then to its
corresponding indicator function value I:

S = < ẍ(1)g , · · · , ẍ(m)
g > −→ R < x(1)(t), · · · ,

x(m)(t) > −→ I < Ig(x
(1)), · · · , Ig(x

(m)) > (15)

The evaluation of the response set R is realized by numeric
integration. In this paper, the Newmark method is used to
evaluate the response function sample-by-sample (Bamer et al.,
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FIGURE 3 | Ground acceleration time histories; (A) real acceleration record measured in Kobe (2016) as the benchmark earthquake; (B) artificially generated

earthquake that inherits the properties from the benchmark earthquake.

FIGURE 4 | (Top) Crude Monte Carlo simulation workflow; (Bottom) Machine-learning-enhanced Monte Carlo simulation workflow.

2021). However, due to relation (9), the number of samples
m must be chosen disproportionately high to obtain a reliable
response statistics for small probabilities of structural failure.

Therefore, a realization of the crude Monte Carlo method
becomes unfeasible if the system is high-dimensional and
complex. In order to reliably estimate small probabilities of
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structural failure, we propose a strategy where a neural network
is trained to learn the response behavior using a smaller training
sample subset ST ⊂ S, as shown in the bottom plot of
Figure 4. Subsequently, the neural network can predict the full
response and indicator sample sets, R and I. One significantly
benefits from the superior computational efficiency of the neural
network meta-model, as it practically constitutes a series of
subsequent multiplications. This strategy has one downside:
the occurrence of extreme events in the sample subset ST is
unlikely if the number of training subset samples is considerably
smaller than the number of total samples. Neural networks will
then not accurately predict the most relevant extreme events
for a reliable estimation of structural failure. One measure to
avoid this problem is to significantly increase the number of
training subset samples, which would significantly decrease the
numerical efficiency of the proposed strategy. Therefore, we
pursue a different approach: we extend the training sample subset
ST by introducing an additional random parameter α for the
extracted intensity ẍr , presented in Equation (10). The extension
is written as:

ˆ̂e(t) =

∫ t+ tw
2

t− tw
2

(αẍr)
2 dt . (16)

As shown later in the results, a unified distribution for α between
0.8 and 1.5 is a good choice for the problems in this paper.
Using this extension allows us to train the neural network with
a significantly higher portion of extreme events in the tail end of
the distribution. The neural network is then later able to predict
such relevant extreme events accurately. Instead of using a few
hand-designed intensity parameters (Morfidis and Kostinakis,
2018), we use the whole excitation history as input for the neural
network, as shown at the left side of Figure 5. As a result, any
loss of information that could influence the structural response is
avoided. In this paper, the output quantity of interest is chosen as
the peak story drift ratio (PSDR) of the ground floor. However,
if necessary, one can adopt the output quantity of interest.
A convolutional neural network architecture is chosen for the
enhanced Monte Carlo simulation method. The convolutional
layers allow for automatic extraction of the time-dependent
relevant patterns of the excitation time input and a breakdown
of the time history information to flattened characterization
parameters (see Figure 5). The subsequent fully-connected layers
lead then to one output quantity of interest—the PSDR.

3. NUMERICAL RESULTS

The numerical demonstration of the new strategies is
presented on a three-story two-bay frame structure subjected
to the set of ground motions, as depicted in Figure 6. One
ground motion sample is presented in Figure 6A and the
structure is presented in Figure 6B. For the columns, beam
elements with a squared hollow cross section (0.3 × 0.3 m,
thickness 0.03 m) are chosen. For the beams, beam elements
with a rectangular cross section (0.3 × 0.4 m, thickness 0.03
m) are chosen. Every column and beam is discretized by four
fiber beam elements leading to a total number of 188 degrees of

freedom (Bamer and Bucher, 2012; Bamer and Markert, 2017;
Bamer et al., 2017). An elastoplastic material law with kinematic
hardening is considered using the following material parameters:
initial Young’s modulus . . . 2.1× 1011Nm−2, hardening stiffness
. . . 2.1× 1010Nm−2, yielding stiffness . . . 2.4× 108Nm−2,
density . . . 7.850 kgm−3. Additionally, point masses of a value of
5.000 kg are added to every finite element node belonging to the
beams of the frame structure in order to roughly consider the
structural setting. We used our python and C++ based in-house
tool to perform the numerical calculations.

Using the Newmark algorithm for numeric integration, the
response of the structure to the generated ground excitation
(Figure 6A) is evaluated. The absolute displacement of the left
corners of all three stories is depicted in Figure 6C, based on
which the PSDR is extracted. One can see that the structure
experiences plastic deformation due to this sample excitation, as
a plastic drift-off remains after the whole integration time period.
We confirmed the level of plasticity by observing the material
hystereses on the Gauss-Integration point level. Plasticity mainly
occurs around the frame corners of the first floors. For this
example, the major displacement always occurs on the first floor,
leading to the decision to take the PSDR of the first floor as the
design quantity of interest.

We performed a rigorous hyperparameter search to find
a neural network setup that leads to predictions of a high
level of accuracy. In doing so, we found that an optimum
architecture is dependent on the number of samples. If the
chosen neural network architecture is chosen complex enough to
extract all relevant features, a larger number of samples leads to
higher accuracy of the neural network predictions. Concerning
the efficiency of the proposed approach, we decided to keep
the number of samples small. Therefore, the convolutional
neural network architecture can also be kept simple to extract
only the most relevant features. The chosen neural network
architecture receives the sample excitation time history as
input. Subsequently, three convolutional layers are implemented,
followed by two fully connected layers, which lead to the PSDR
prediction. Each convolutional layer consists of eight filters. As
a result, a kernel size of 32 and a stride size of 3 have been
found useful for the first convolutional layer. Regarding the
second convolutional layer, the kernel size reduces to 16 with
a stride size of 2. The last convolutional layer has a kernel
size of 8 and a stride size of 1. After each convolutional stage,
max-pooling summarizes the outputs using a pooling size of
2 and the same stride size. After passing the filters of the last
convolutional layer, the outputs are averaged before the values
are flattened and forwarded to the fully connected layers. The two
fully connected layers consist of ten neurons each. The rectified
linear activation function is applied to the convolutional stages
and the fully connected layers. This architecture has shown the
best accuracy if the number of samples within the sample subset
of ST is 5 × 103. Using the standard training strategy, the mean
absolute error of a validation set using 103 samples shrinks down
to 1.9 × 10−3 after 200 epochs of training. Using the extended
set for the training procedure, the mean absolute error after 200
training epochs is slightly higher with a value of 2.1 × 10−3.
During the hyperparameter search, the number of convolutional
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FIGURE 5 | Convolutional neural network architecture for the enhanced Monte Carlo simulation method.

FIGURE 6 | Structural response of a frame structure subjected to ground excitation; (A) time history of one artificially generated earthquake; (B) illustrative frame

structure used for the numerical demonstration and visualization of the story drifts (SD); (C) displacement time history of the left corner of every story of the frame

structure.

layers was varied between one and six using up to 32 filters with
kernel sizes between 3 and 64. Furthermore, the pooling sizes
within the convolutional layers were varied, and both previously
presented pooling functions were applied. A more extensive
hyperparameter search might result in better prediction accuracy
of the neural network, with high probability, if using an increased
number of training samples. However, this convolutional neural
network architecture can predict the PSDR accurately enough

for this study. We used the Python-based library TensorFlow to
implement the neural network meta-model.

The Monte Carlo simulation results are depicted in Figure 7.
Within the subplots of this figure, the crude Monte Carlo
simulation using 105 samples is depicted by the gray dotted
lines, the enhanced Monte Carlo simulation is depicted as the
red lines, and the green lines depict the extended enhanced
Monte Carlo simulation. We performed the numerical example
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FIGURE 7 | (A) Probability density function (PDF), (B) cumulative distribution function (CDF), and (C) logarithmic plot of the complementary cumulative distribution

function applying the crude Monte Carlo method (black, dotted line), the neural network-enhanced Monte Carlo method using the standard training strategy (red line),

and the neural network-enhanced Monte Carlo method using the extended training strategy (green line).

on a computer with an Intel Xeon E5-2643 processor running
at 3.3 GHz. The operating system is Linux Ubuntu 16.04
with 60 GB of working memory available, which is by no
means required for the simulation. For the example in this
paper, the crude Monte Carlo simulation requires a calculation
time of ∼1 week, while the prediction procedure of the
two neural network-enhanced strategies requires only a few
seconds. However, to provide a fair speed-up measure, one must
consider evaluating the training sample set, the hyperparameter
fitting, and the training procedure. Considering those factors,
we chose a fair speed-up measure for the new strategies
by dividing the number of full samples by the number of
training samples. The numerical demonstration results in a
value of 105 samples for the full set and over 5 × 103

samples for the training set, which results in a speed-up factor
of 20.

Figure 7A presents the probability density function (PDF) in
terms of a histogram over the displacement intervals. At first
sight, one can see that the enhanced Monte Carlo simulation
method using the extended scheme is not as accurate as the
enhanced Monte Carlo using the standard training scheme. Also,
regarding the cumulative distribution function (CDF) prediction,
shown in Figure 7B, the enhanced Monte Carlo simulation
scheme using the standard training algorithm seems to be more
accurate than the enhanced Monte Carlo method using the
extended training scheme. This is not surprising as the neural
network is better trained around the mean using standard sample
subset ST then using the extended subset ŜT . However, accuracy
around the mean is not that relevant in structural engineering
design, as, for obvious reasons, we want structural failure to
happen very rarely. Therefore, we present the tail end of the
complementary cumulative distribution function (CCDF) in
Figure 7C, which shows the occurrence of exceeding a certain
PSDR in a logarithmic plot. Here, the clear advantage of the
enhanced Monte Carlo simulation using an extended sample
subset becomes clear, as it outperforms the standard, enhanced

Monte Carlo simulation in the crucial region around the tail end
of the distribution. Evaluating the probability of exceedance for
a PSDR over 3.5× 10−2m results in a reliable approximation
using the extended neural network enhanced strategy, while the
neural network enhanced method using the standard training
becomes gradually more inaccurate until the method entirely
fails for predicting the probability of a PSDR exceeding a value
of 4.2× 10−2m.

4. CONCLUSION

In this paper, we proposed a new Monte Carlo simulation
method enhanced by a convolutional neural network. Using a
non-linear Kanai-Tajimi filter, site-dependent ground conditions
were taken into account. Two convolutional neural network-
enhanced strategies were proposed. The first strategy uses a
standard training procedure by considering samples from the full
excitation sample set. The second strategy uses a sample set with
increased variance regarding intensity to train the neural network
more around the tail end of the distribution. In the presented
numerical example, the PSDR is the output quantity. However,
the proposed strategy can be adapted to predict other output
features. The investigation on a more sophisticated damage
prediction using multiple output quantities is of high interest for
future research.

We have shown that both strategies reveal outstanding
efficiency when compared to the crude Monte Carlo simulation.
Structural design that incorporates non-linear behavior has
practically not been realized using the Monte Carlo method as
it was yet not possible in a feasible amount of time. However,
the new strategies allow for Monte Carlo simulations in a
feasible amount of time that can now be incorporated into a
practical design environment. The accuracy of the convolutional
neural network is dependent on the number of training samples.
Accordingly, one always makes a trade-off between the accuracy
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of the predictions and the computing time for evaluating the
training samples.

The two types of convolutional neural network enhanced
Monte Carlo simulation strategies have different advantages and
disadvantages. The first type of the new method applying the
standard training strategy shows a high accuracy around the
mean of the distribution. One can conclude that they will be
more useful for estimations of the response regarding structural
serviceability. The second type of the new method applying the
extended training strategy reveals to be rather more inaccurate
around the mean of the distribution than the first type. However,
it reveals an outstanding accuracy around the tail end of the
distribution, where the first method fails. It is, therefore, highly
appropriate to be applied to practical engineering procedures
that involve the design of structures considering the low target

probability of failure that is, especially, required for engineering
structures in an urban built environment.
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