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An explicit limit for the overturning of a rigid block is derived on the input level of the triple
impulse and the pseudo-triple impulse as a modified version of the triple impulse that are a
Substitute of a near-fault forward-directivity ground motion. The overturning behavior of the
rigid block is described by applying the conservation law of angular momentum and the
conservation law of mechanical energy (kinetic and potential). The initial velocity of rotation
after the first impulse and the change of rotational velocity after the impact on the floor due
to the movement of the rotational center are determined by using the conservation law of
angular momentum. The maximum angle of rotation after the first impulse is obtained by
the conservation law of mechanical energy. The change of rotational velocity after the
second impulse is also characterized by the conservation law of angular momentum. The
maximum angle of rotation of the rigid block after the second impulse, which is mandatory
for the computation of the overturning limit, is also derived by the conservation law of
mechanical energy. This allows us to prevent from computing complex non-linear time-
history responses. The critical timing of the second impulse (also the third impulse timing to
the second impulse) is featured by the time of impact after the first impulse. As in the case
of the double impulse, the action of the second impulse just after the impact is employed as
the critical timing. It is induced from the explicit expression of the critical velocity amplitude
limit of the pseudo-triple impulse that its limit is slightly larger than the limit for the double
impulse. Finally, it is found that, when the third impulse in the triple impulse is taken into
account, the limit input velocity for the overturning of the rigid block becomes larger than
that for the pseudo-triple impulse. This is because the third impulse is thought to prevent
the overturning of the rigid block by giving an impact toward the inverse direction of the
vibration of the rigid block.

Keywords: earthquake response, near-fault ground motion, forward-directivity input, triple impulse, rigid block,
rocking, critical response, overturning
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INTRODUCTION

The rocking behavior of rigid blocks plays an important role in
the evaluation of earthquake response of slender structures,
monuments and furniture. Since many base-isolated high-rise
buildings are being constructed in Japan and most isolators do
not have tensile resistance, the seismic risk analysis of such
slender structures is extremely focused recently.

The seismic rocking response of rigid blocks has been
investigated for long time. The work was initiated by Milne
(1885) and the detailed fundamental formulation was made by
Housner (1963). Subsequently, Yim et al. (1980) did extensive
investigation for versatile recorded ground motions following
Housner (1963) and Ishiyama (1982) classified the seismic
rocking responses into various types of nonlinear overturning
response. Many investigations were conducted continuously so
far (Spanos and Koh 1984, Hogan 1989, Shenton III and Jones
1991, Pompei et al., 1998, Zhang and Makris 2001, Prieto et al.,
2004, Yilmaz et al., 2009, ElGawady et al., 2010, DeJong 2012,
Dimitrakopoulos and DeJong 2012a; Dimitrakopoulos and
DeJong 2012b). Rather recently, DeJong (2012) and
Dimitrakopoulos and DeJong (2012a), Dimitrakopoulos and
DeJong (2012b) investigated the rocking response of a rigid
block in a more detailed manner. Casapulla et al. (2010) and
Casapulla and Maione (2016) considered the multiple sequence
of impulses for the rocking response of a rigid block and found
the resonant response. They investigated the responses under
two-type multiple impulses, ie., with gradually increasing
intervals for resonance and with equal intervals. Furthermore,
Makris and Kampas (2016) derived an important fact related to
the scale effect of blocks on the overturning limit level of
sinusoidal inputs and earthquake ground motions.

It is well known that slender structures are affected strongly by
impulsive pulse-type loading. After Northridge earthquake in 1994,
Hyogoken-Nanbu earthquake in 1995 and Chi-Chi earthquake in
1999, many earthquake structural engineers and designers focused
on the structural design under impulsive pulse-type earthquake
ground motions (Hall et al, 1995; Sasani and Bertero 2000;
Mavroeidis et al, 2004; Makris and Black 2004; Kalkan and
Kunnath 2006; Xu et al., 2007; Rupakhety and Sigbjérnsson 2011;
Champion and Liel 2012; Gerami and Sivandi-Pour 2014; Vafaei
and Eskandari 2015; Khaloo et al., 2015). The principal part of such
ground motions in the form of pulse-type waves represents the
essential features of near-fault ground motions and such principal
part was found to be classified into two types, ie., the fling-step
(fault-parallel]) and forward-directivity (fault-normal) inputs
(Mavroeidis and Papageorgiou 2003, Bray and Rodriguez-Marek
2004, Kalkan and Kunnath 2006, Mukhopadhyay and Gupta 2013a;
Mukhopadhyay and Gupta 2013b; Zhai et al., 2013, Hayden et al,,
2014, Yang and Zhou 2014, Kohrangi et al., 2018, Khansefid and
Bakhshi 2019; Khansefid 2020). Afterward, it was made clear that the
principal parts of the fling-step and forward-directivity inputs can be
represented by some wavelets or a series of harmonic waves.
Mavroeidis and Papageorgiou (2003) and some others pointed
out the remarkable characteristics of this class of ground motions
and provided some simple models. For example, the fling-step and
forward-directivity inputs were characterized by two or three
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wavelets. It was reported that these pulse-type ground motions
affect greatly the long-period building structures and large
inelastic deformations could be concentrated to lower stories.

Recently Nabeshima et al. (2016) introduced a double impulse
for the rocking vibration of a rigid block in order to substitute the
response of the rigid block to near-field ground motions. The
double impulse was proposed by Kojima and Takewaki (2015a),
Kojima and Takewaki (2016), Taniguchi et al. (2016) to express the
peculiar characteristics of near-fault ground motions. It was
clarified that the double impulse enables the derivation of the
closed-form maximum deformation of elastic-plastic SDOF
systems. Nabeshima et al. (2016) derived a closed-form solution
of the maximum critical response and a closed form expression of
the limit input velocity level for the overturning. They also made
clear that the critical timing of the second impulse is just after the
impact on the ground. Taniguchi et al. (2017) extended the work of
Nabeshima et al. (2016) dealing with the critical case (critical
timing of the second impulse which gives the maximum response
of a rigid block) to the non-critical case which is important in view
of actual situations.

In the present paper, the triple impulse as a substitute of the
forward-directivity input of near-fault ground motions and its
modified version called the pseudo-triple impulse are treated and
an explicit expression is obtained for the critical velocity amplitude
limit of the triple impulse and the pseudo-triple impulse for
overturning of a rigid block. The formulation for the pseudo-triple
impulse is presented first and it is extended to the triple impulse.

TRIPLE IMPULSE AND CORRESPONDING
1.5-CYCLE SINUSOIDAL WAVE

In this paper, it is aimed at modeling a principal part of a near-
fault ground motion into a 1.5-cycle sinusoidal wave and then
simplify such 1.5-cycle sinusoidal wave into a triple impulse
following the references (Kojima and Takewaki 2015b) as
shown in Figure 1. This is because the triple impulse has a
simple characteristic and a straightforward derivation of its
maximum response can be expected even for non-linear elastic
responses based on an energy approach to free vibrations.

Following the reference (Kojima and Takewaki 2015b),
consider a ground acceleration ii,(t) as a triple impulse, as
shown in Figure 1A, expressed by

i (£) = 0.5VE(t) - VO (t —to) + 0.5V (t — 2tp) (1)

where 0.5V is the given initial velocity and -V, 0.5V are the
second and third impulse velocity amplitude. #, is the time
interval between two consecutive impulses. The time derivative
is denoted by an over-dot. The comparison with the
corresponding 1.5-cycle sinusoidal wave expressed by Eq. 2 is
plotted in Figure 1.

. B 0.5A, sin(a)pt)
ity (1) = { A, sin(wpt)

(0<t<0.5T,, T,<t<15T,)

(0.5T,<t<T,) @

In Eq. 2, A, Tp,wp, = 271/T, denote the amplitude of the 1.5-cycle
sinusoidal acceleration wave, its period and its circular frequency. In
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FIGURE 1| Modeling of principal part of near-fault ground motion into 1.5-cycle sinusoidal wave and modeling of such 1.5-cycle sinusoidal wave into triple impulse.
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FIGURE 2 | Comparison of new method of input transformation with conventional method of oscillating model transformation. (A) Conventional method: equivalent
linearization of oscillating model for unchanged input, (B) New method: transformation of input into triple impulse for unchanged oscillating model.
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this case, the relation T, = 2¢; holds. Due to Takewaki and Kojima
(2021), the relations V, = A,/w, and V,/V = 0.62235722... hold.

The velocity and displacement of the triple impulse and the
corresponding modified sinusoidal wave can also be found in the
reference (Kojima and Takewaki 2015b). It has been confirmed
that the triple impulse is a good approximation of the
corresponding 1.5-cycle sinusoidal wave even in the form of
velocity and displacement.

The Fourier transform of the acceleration i (t) of the triple
impulse can be expressed as

Ug (@) = ro {0.5V8(t) = V& (t —ty) + 0.5V (t — 2t)}e " dt

—00

=V (0.5- €7 +0.5¢7%")
3)

While most of the previous methods utilize the equivalent
linearization of the oscillating model for the unchanged
input (see Figure 2A including an equivalent linear
stiffness) or introduce detailed nonlinear structural

models for which time-consuming response analysis is
necessary, the method proposed in the works (Kojima and
Takewaki 2015a; Kojima and Takewaki 2015b; Kojima and
Takewaki 2016) and in this paper transforms the input into
the triple or pseudo-triple impulse for the unchanged
oscillating model (see Figure 2B). It should be pointed
out that the rocking response of a rigid block includes a
complicated phenomenon, e.g., strong nonlinearity, sudden
energy loss at impact, the equivalent linearization may be
difficult to apply.

MAXIMUM ROTATION ANGLE OF RIGID
BLOCK SUBJECTED TO CRITICAL
PSEUDO-TRIPLE IMPULSE

Consider the rocking vibration of a rigid block (mass: m, width:
2b, height: 2h) subjected to a base acceleration i, (t) as shown in
Figure 3 (input of —ii,(t) does not change its essence). Slipping of
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FIGURE 3 | Modeling of rocking rigid block by rigid bar supported by
non-linear elastic rotational spring with rigid initial stiffness and negative
second slope (Nabeshima et al., 2016).
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FIGURE 4 | Moment-rotation relation for rocking response of rigid block
and timing of impulses (red solid circle is the first impulse and red solid triangle
is the second impulse) (Nabeshima et al., 2016).

the block is assumed to be ignored. The geometrical properties
are denoted by R= Vb? +h? and « as shown in Figure 3.
I(= (4/3)mR?) and g denote the mass moment of inertia
around the edge of bottom right (also bottom left) and the
acceleration of gravity, respectively. It was pointed out that
this rocking vibration can be represented by the mechanical
behavior of a rigid bar, as shown in Figure 3, which has the
same mass moment of inertia and is supported by a non-linear
elastic rotational spring with rigid initial stiffness and negative
second slope. The moment-rotation relation of the non-linear
elastic rotational spring is shown in Figure 4.

In this paper, a pseudo-triple impulse as shown in Figure 5A is
introduced where the third impulse in the triple impulse as shown
in Figure 5B is neglected. This new model is treated because the
third impulse may prevent the overturning of the rigid block by
giving an impact toward the inverse direction of the vibration of the
rigid block and the derivation of the explicit overturning limit for
the triple impulse seems to be complicated and difficult. A scenario
that the overturning occurs after the second impulse in the pseudo-
triple impulse is employed here. This scenario seems valid because
the input limit on the overturning corresponding to this scenario
provides a lower limit in general. As for more detailed scenarios, see
Ishiyama (1982) and Dimitrakopoulos and DeJong (2012b).

Figure 6 shows the overview of the rocking vibration under
the pseudo-triple impulse, consisting of the first two impulses in

7

Vy

FIGURE 5 | Input motions in numerical examples, (A) Pseudo-triple
impulse, consisting of the first two impulses in triple impulse, and the
corresponding equivalent modified 1.0-cycle sinusoidal wave, (B) Triple
impulse and the corresponding equivalent 1.5-cycle sinusoidal wave.

triple impulse. The critical acting timing of the second impulse is
at the instant of impact where the velocity of rotation attains the
maximum (see Nabeshima et al., 2016). Furthermore, it can be
shown that critical timing is just after the impact because the
velocity of rotation is reduced greatly at the impact. More detailed
verification of the critical timing of the second impulse is shown
in Nabeshima et al. (2016).

When the angle of rotation of the rigid block is denoted by
0(t), the equation of motion can be expressed by

10(t) + mgRsin{-a — 0(t)} = —mil, ()R cos{~a — O(£)} 0(t)<0
(4a)

Ié(t) + mgRsin{a — 0(t)} = —miiy () Rcos{fa — 0(¢)} 0(£)>0
(4b)

The block rotates around an edge after the uplift from the
ground. During the rotation, the position (potential) energy
increases and the block resists the input acceleration.

Let 0} max denote the maximum angle of rotation after the first
impulse and 6, . denote that after the second impulse. Since the
formulation is similar to Nabeshima et al. (2016) except the amplitude
(0.5V) of the first impulse, the formulation is explained simply. The
flowchart presented in Nabeshima et al. (2016) may be useful.

The first conservation law of angular momentum just after the
first impulse and the first conservation law of mechanical energy
after the first impulse can provide the initial rotatlonal velocity 6
after the first impulse as 01 = 3Vcos a/8R and 0.5 9 = A; where
A is the area of the trapezoid-like zone correspondmg t0 01 max
shown in Figure 4. The expression of A; in terms of 0} .y, and
use of the linear approximation sin(a —6) = (¢ —6), sina = «
lead to 0} max = a — \/o? — {3V2 cos?a/(16gR)}.

The second conservation law of angular momentum at the
impact (6,: rotational velocity just before the impact) provides
10, — 2mRb sin af; = 19 According to Housner (1963), the
rotational veloc1ty 9 just after the impact to the floor may be
expressed by 92 = \/_91 where 7 ={(1+3cos2a)/4}>. This
parameter r was defined by Housner (1963). When the surface
boundary condition between the block and the base is provided,
e.g. the surface material properties (ElGawady et al., 2010) or the
rocking of tall buildings (limited contact area), another coefficient
could be added on or incorporated into the parameter r.
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FIGURE 6 | Overview of rocking vibration under pseudo-triple impulse, consisting of the first two impulses in triple impulse, (A) Overview of rocking vibration, (B)
Mechanical energy conservation and angular momentum conservation.

The conservation law of angular momentum just after the
second impulse provides the rotational velocity change A by the
second impulse as IAO = mVR cos a. This leads to A@ = 26, and
92 = 6: +A0= 2+ )91. The rotation angle 6: is obtained
following the Housner’s formulation (conservation law of
angular momentum at the impact) and A6 is derived from the
transformation of the horizontal impulse into rotation. The second
conservation law of mechanical energy provides 0.51 62 = A, where A,
is the area of the trapezoid-like zone corresponding to 0, max
shown in Figure 4.

LIMIT INPUT LEVEL OF CRITICAL
PSEUDO-TRIPLE IMPULSE
CHARACTERIZING OVERTURNING OF
RIGID BLOCK

The overturning of the rigid block can be characterized by the
attainment of 6, . to —a as shown in Figure 7. Application of

this condition to 0.5I 62 = A, provides the following limit input
level for the pseudo-triple impulse.

we 2R 2(R - h)g )

Va _(1+0.5\/7)h\J 3

The subscript “c1” indicates “critical” for the pseudo-triple
impulse corresponding to the “1.0”-cycle sine wave. This limit
input velocity is slightly larger than the limit for the double
impulse derived in Nabeshima et al. (2016) (the coefficient 0.5 is a
new addition). The critical timing Af, can be obtained
approximately (linear approximation: see the reference
(Housner 1963)) by solving the equation of free-rocking
motion from the first impulse to the second impulse.

At, = %cosh_1 ! (6)
P 1 — fmax

where p = /mgR/I = 4/3g/(4R). While the overturning limit

input velocity expressed above was derived by the energy
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FIGURE 7 | Moment-rotation relation for rocking response of rigid block
and limit of overturning (Nabeshima et al., 2016).
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balance approach without linearizing the equation of motion, the
critical timing expressed above was instead obtained approximately
by solving the linearized equation of free rocking motion as in
Housner (1963), Nabeshima et al. (2016) and Casapulla (2015).

The limit critical timing Ay characterizing the just
overturning of the block after the second impulse under the
pseudo-triple impulse can be derived by substituting V = V'
into 0 max = @ — \Ja? — {3V2 cos?a/(16gR)} and using Egs. 5, 6
and an approximation cosa = 1 — (1/2)a?.

A < (2/p)cosh'1{ Q+vF)IN@+VT) - 1} %

The above formulation was made for the case where the third
impulse was disregarded. Figure 9 shows the overview of the
rocking vibration under the triple impulse. The overturning limit
for the complete triple impulse will be derived in the later section.
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FIGURE 8 | Comparison of time-history responses 6(t)/a at overturning limit between the pseudo-triple impulse, consisting of the first two impulses in triple impulse,
and the corresponding equivalent modified 1.0-cycle sinusoidal wave magnified by a coefficient about 1.31-1.32.
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FIGURE 9 | Overview of rocking vibration under triple impulse from the viewpoint of mechanical energy conservation and angular momentum conservation.

NUMERICAL EXAMPLES AND
DISCUSSION

Pseudo-triple Impulse and 1.0-Cycle
Sinusoidal Wave

Numerical examples are introduced here to demonstrate the
accuracy and reliability of the proposed method. Three
numerical examples of rectangular columns are considered for
the models with width (2b) = 1, 2, 4 m corresponding to the
references (Makris and Kampas 2016; Nabeshima et al., 2016).
The column height is changed parametrically.

Figure 8 shows the comparison of time-history responses 6(t)/a
at the overturning limit between the pseudo-triple impulse,
consisting of the first two impulses in the triple impulse, and
the corresponding equivalent modified 1.0-cycle sinusoidal wave
magnified by a coefficient about 1.31-1.32. The “equivalent” means
that the maximum Fourier amplitudes of the triple impulse (not
the pseudo-triple) and the 1.5-cycle sinusoidal wave have the same
value. V. indicates the value of Eq. 20 and Ay, presents the
acceleration amplitude of the modified 1.0-cycle sinusoidal wave
which gives the overturning limit. A, presents the acceleration
amplitude of the equivalent 1.0-cycle sinusoidal wave transformed
using the relation V, = A,/w, = A,T,/(2m). It can be understood
that the pseudo-triple impulse, consisting of the first two impulses
in triple impulse, attains the overturning limit accurately and the
corresponding equivalent modified 1.0-cycle sinusoidal wave
magnified by a coefficient about 1.31-1.32 indicates a rather
accurate overturning limit.

Triple Impulse and 1.5-Cycle Sinusoidal

Wave
It may be useful to investigate the response of a rigid block under
the triple impulse to study the role of the third impulse which was

disregarded in the pseudo-triple impulse. Figure 9 shows the
overview of rocking vibration under the triple impulse from the
viewpoint of mechanical energy conservation and angular
momentum conservation.

Figure 10 shows the comparison of time-history responses
0(t)/« at the overturning limit between the triple impulse and the
corresponding equivalent 1.5-cycle sinusoidal wave magnified by
a coefficient about 1.38-1.39. V. indicates the limit velocity
amplitude of the triple impulse and Ay, presents the
acceleration amplitude of the 1.5-cycle sinusoidal wave which
gives the overturning limit. It can be understood that the triple
impulse attains the overturning limit accurately and the
corresponding equivalent 1.5-cycle sinusoidal wave magnified
by a coefficient about 1.38-1.39 indicates a rather accurate
overturning limit. It can also be found that the third impulse
in the triple impulse plays a role of preventing the overturning of
the rigid block and larger amplification coefficients are required
to overturn the rigid block. This phenomenon will be investigated
further in the following part.

Comparison of Overturning Limit
Acceleration Amplitude and Overturning
Limit Velocity Amplitude

Figure 11 shows the comparison of the overturning limit
acceleration amplitude Ap among the closed-form limit and
the limit simulated by the time-history response analysis
(THRA) using the pseudo-triple impulse (consisting of the
first two impulses in the triple impulse), the limit simulated by
THRA for the triple impulse, the limits simulated by THRA for
the equivalent modified 1.0-cycle sinusoidal wave and for the 1.5-
cycle sinusoidal wave for 2b = 1, 2, 4 (m). Ap for the pseudo-triple
impulse and the triple impulse was transformed using the relation
Vp = Aplwy = ApTy/(2m). It can be found that the simulation by
THRA for the pseudo-triple impulse demonstrates the accuracy
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FIGURE 10 | Comparison of time-history responses 6(t)/« at overturning limit between the triple impulse and the corresponding equivalent 1.5-cycle sinusoidal
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of the closed-form overturning limit. Furthermore, the limit Ap
for the equivalent modified 1.0-cycle sinusoidal wave corresponds
to the level of the closed-form limit multiplied by about 1.32 and
the limit Ap for the 1.5-cycle sinusoidal wave is slightly larger
than the above-mentioned limit (modified 1.0-cycle sine). It
seems that the additional 0.5-cycle sine wave of the 1.5-cycle
sine wave prevents the overturning a little bit. In addition, the
limit for the triple impulse is slightly smaller than the closed-form
limit. This may result from the criticality of the triple impulse
(input timing) related to the relation V, = A,/w, = A,T,/(2m).
This will be clarified in the following investigation on the
velocity limit.

In Figure 11, the plot of the overturning limit acceleration
of Rinaldi Station FN shown in Figure 1 is also presented.
Only the amplitude modulation was conducted. Since the
resonant phenomenon can be found only around

2[m ]<R<3[m] for 2b = 1 (m), other plots are far from
“1.5 sine”. It can be observed that the present formulation
for the critical resonant case can capture approximately the
essential feature of near-field recorded ground motions in the
critical case.

Figure 12 presents the comparison of the overturning limit
velocity amplitude Vp among the closed-form limit and the limit
simulated by THRA using the pseudo-triple impulse, the limit
simulated by THRA for the triple impulse, the limits simulated by
THRA for the equivalent modified 1.0-cycle sinusoidal wave and
for the 1.5-cycle sinusoidal wave for 2b = 1, 2, 4 (m). V) for the
equivalent modified 1.0-cycle sinusoidal wave and the 1.5-cycle
sinusoidal wave was transformed using the relation
Vp = Aplwp = ApT,/(2m). It can be found that the simulation
by THRA for the pseudo-triple impulse demonstrates the
accuracy of the closed-form overturning limit as in Figure 11.
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FIGURE 11 | Comparison of overturning limit acceleration amplitude Ap among closed-form limit using pseudo-triple impulse (consisting of the first two impulses in
triple impulse), triple impulse limit, equivalent modified 1.0-cycle sinusoidal wave, 1.5-cycle sinusoidal wave and Rinaldi Station FN.
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FIGURE 12 | Comparison of overturning limit velocity amplitude V» among closed-form limit using pseudo-triple impulse (consisting of the first two impulses in triple
impulse), triple impulse limit, equivalent modified 1.0-cycle sinusoidal wave limit and 1.5-cycle sinusoidal wave limit.
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FIGURE 13 | Comparison of overturning limit velocity amplitude V» among closed-form limit using pseudo-triple impulse (consisting of the first two impulses in triple
impulse), triple impulse limit, equivalent modified 1.0-cycle sinusoidal wave limit, 1.5-cycle sinusoidal wave limit and closed-form limit using triple impulse.
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Furthermore, the limit Vp for the equivalent modified 1.0-cycle
sinusoidal wave corresponds to the level of the closed-form limit
multiplied by about 1.32 and the limit Vp for the 1.5-cycle
sinusoidal wave is larger than the above-mentioned limit
(modified 1.0-cycle sine). It seems that the additional 0.5-cycle
sine wave of the 1.5-cycle sine wave prevents the overturning as in
Figure 11. In addition, the limit for the triple impulse is larger
than the closed-form limit by approximately 15%. This means
that the third impulse in the triple impulse plays a role to prevent
the overturning compared to the pseudo-triple impulse. The
comparisons in terms of Ap and Vp are useful in
understanding the features of the overturning limits by various
inputs.

It should be remarked that, since the input periods of the 1.0-
cycle and 1.5-cycle sinusoidal waves used in Figures 11, 12 are
based on Eq. 23 for the pseudo-triple impulse, their criticality is not
necessarily clear. If true critical periods of the 1.0-cycle and 1.5-
cycle sinusoidal waves are sought and used, the corresponding limit
input levels may become slightly smaller ones.

ADDITIONAL THEORETICAL
INVESTIGATION FOR TRIPLE IMPULSE

In this section, a closed-form overturning velocity limit for the
triple impulse is derived. It is assumed here again that the second
impulse acts just after the impact of the rigid block on the floor. In
this case, the timing of the third impulse is prescribed.

The equation of free-vibration motion of the rigid block after
the second impulse can be described by

16 + mgRsin(—a - 0(t)) =0 (6(t)<0) (8)
Using the approximation sin(-a — 6(¢)) = — a — 0(t) as in the
previous sections, Eq. 8 leads to
10+ mgR(~a—0(t) =0 (6(t)<0) 9)
The general solution of Eq. 9 can be expressed by
0(t) = —a+ C ) 4 Cye P00 (10)

Using .the rotation  condition  O(At,) =0, Q(Atcr) =
—(+/r +2)0; at t = At,, (the impact of the rigid block on the
floor), the constants C;, C, can be determined as

G ;(Lﬂ)@l_a) )

2 p
szl(_m_a> (12)
2 p

The rotation during the free vibration after the second impulse
can then be expressed by

() =-a —%(—(W ; 20, _ oc>ep(t'“")
+ % (— @ - a)ep(‘m") (At <t <2At,)
(13)
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Here, 91 and the critical timing At were obtained in the
previous section.

From these cop*ditiqns, the rotation 9; = 0(2At.,) and the
rotation velocity 6, = 0(2At,,) just before the third impulse
can be expressed as

6 = 002At,) = —a— (M . a>epmc,

2 p
. (14)
+l< _ (\/F + 2)61 _ (x)epAt”
2 p
0: = 9(2Atg,) = —%P<M— oc)e"m"
P (15)

_1p< _ (\/7 +2)61 _ (x>epAt"
2 p

Let A5 denote the change of the rotation velocity at the
impact of the third impulse. Then the conservation law of the
angular momentum leads to

IAG; = m(0.5V)Rcos (a - 63) (16)
Therefore, A93 can be obtained as
2D, :3Vcos(a—9§) :cos(a—G’;) b, (17)
8R cos «

The rotation 5 just after the action of the third impulse can be
expressed by

0, =0, + 26, = —;p<(\/F ; 26 a>ePAf~

_1p< _ 26 ) : {( - ez>}gl
2 p

cos

(18)

Let E; and E, denote the energy (kinetic plus position energy)
just after the action of the third impulse and the position energy at
the maximum rotation 03, after the third impulse. These
quantities can be obtained as

11:“—11<('9*+Aé))2+l Ra?{1 - 1+(izz (19)
1T\ B TAY ) Ty e p

B = Lmgratd 1= (14 %mx 2
2= e a

From the energy conservation law, the following relation
holds.

(20)

El :Ez (21)

03 max can be derived from Eqs 19-21.

() (9]
“4+—] -41-|1+= (22)
a o o

emax 1
RELLLIP,

o P?
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Substitution of the overturning condition 63 max = —« into Eq.

22 provides
» LN2 2
1(&%) :<1+z)
PP\« o o

Substitution of all the derived quantities into Eq. 23 and
solution of the resulting equation for the velocity lead to the
final form of the overturning limit velocity V&',

Figurel3 shows the overturning limit velocity V7, using the
relation V,/V = 0.62235722....... among the closed-form limit
using the pseudo-triple impulse (consisting of the first two
impulses in the triple impulse), the triple impulse limit
(simulation), the equivalent modified 1.0-cycle sinusoidal wave
limit (simulation), the 1.5-cycle sinusoidal wave limit
(simulation) and the closed-form limit obtained in this section
using the triple impulse. It can be observed that the derived
closed-form expression corresponds well to the value obtained
through the time-history response analysis simulation conducted
in the previous section.

(23)

CONCLUSION

An approximate closed-form limit has been derived on the input
level of the pseudo-triple impulse as a representative of the
principal part of a near-fault ground motion for the
overturning of a rigid block. The conclusions may be
summarized as follows.

1) As in the double impulse case, the rocking vibration of a rigid
block can be formulated by incorporating the conservation
law of angular momentum and the conservation law of
mechanical energy. The conservation law of angular
momentum enables the determination of the initial
rotational velocity just after the first impulse and the
rotational velocity changes at the impact of the rigid block
on the floor and the impact due to the second impulse. On the
other hand, the conservation law of energy enables the
determination of the maximum rotational angle after the
first impulse and that after the second impulse. These
maximum rotational angles are required for the
computation of the overturning limit. These two
conservation laws are quite effective and enables us to
avoid the complicated non-linear time-history response
analysis.

The critical timing of the second impulse after the action of the
first impulse has been characterized by the time of impact of
the rigid block on the floor. The action of the second impulse
just after the impact corresponds to the critical timing as in the
case of the double impulse. Although, in most cases under the
triple impulse, the third impulse acts before the overturning
occurs, the neglect of the third impulse leads to a closed-form
expression of the overturning limit for the pseudo-triple
impulse where the third impulse in the triple impulse is
disregarded.

2)

Frontiers in Built Environment | www.frontiersin.org

August 2021 | Volume 7 | Article 731670


https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

Homma et al.

3) By introducing the condition that the attainment of the
maximum rotational angle 0, . after the second impulse
at the limit value —a of rotation characterizes the overturning of
the rigid block under the pseudo-triple impulse, the critical
velocity amplitude of the pseudo-triple impulse just inducing
the overturning of the rigid block was derived. The closed-form
expression of the area A, in the restoring-force characteristic in
the negative side enabled the derivation of the closed-form
velocity amplitude limit of the pseudo-triple impulse for
overturning with the aid of the conservation law of energy.
The limit input velocity for the pseudo-triple impulse is
slightly larger than the limit for the double impulse derived
in Nabeshima et al. (2016). This finding was enabled through
the closed-form expression of the limit input velocity.
Numerical examples including the comparison with the
numerical simulation results by the Runge-Kutta method
demonstrated the accuracy and reliability of the proposed
method. However, as for the comparison of the response to
the pseudo-triple impulse with that to the equivalent modified
1.0-cycle sinusoidal wave, a magnification coefficient (about
1.31-1.32 in this case) should be introduced for guaranteeing
the correspondence of the responses to the pseudo-triple impulse
and to the equivalent modified 1.0-cycle sinusoidal wave.

It was demonstrated that, when the third impulse is taken into
account, the limit input velocity for the overturning of the rigid
block becomes larger. This is because the third impulse may prevent
the overturning of the rigid block by giving an impact toward the
inverse direction of the vibration of the rigid block. In this case, a
magnification coefficient (about 1.38-1.39 in the present case)
should be introduced for guaranteeing the correspondence of the
responses to the triple impulse and to the equivalent 1.5-cycle
sinusoidal wave. The closed-form overturning limit velocity for the
triple impulse was also derived by using the conservation law of
angular momentum and energy.

4)

5)

6)
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