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The construction and operation of buildings account for significant environmental impacts,
including greenhouse gas (GHG) emissions, energy demand, resource consumption and
waste generation. While the operation of buildings is fairly well regulated and globally
considered in the pathways to net-zero mid-century targets, a different picture emerges
when looking at the other life cycle stages, which incur the so-called embodied impacts.
These cover raw material extraction and product manufacturing through to construction
and end of life activities. Only a handful of examples exist where such embodied carbon
(EC) emissions are enshrined in law with most of the ongoing debate still around estimating
and understanding where such emissions occur and how to mitigate them. Building
structures account for a significant share of a building’s embodied emissions and they also
are the building element with the longest service life, thus presenting potential lock-in
challenges for choices made today. To support the ongoing global effort to mitigate
embodied carbon and equip engineers and designers worldwide with easy-to-use and
robust calculation tools, we describe a real-time decision-support tool to aid building
design that leverages machine learning (ML) methods from computer science to speed-up
the computationally expensive process of finite element analysis (FEA) traditionally
exploited in structural engineering. We demonstrate that replacing FEA calculations
with a model learnt using ML from a large dataset offers real time decision support
while guaranteeing the same level of confidence and accuracy that a traditional FEA-based
methodwould offer at the design stage. The tool has been developed both as a standalone
version and as a plugin for Trimble SketchUp to maximise its usability and diffusion. It offers
results correlated with uncertainty analysis in the form of probability density functions to
account for the inherent variability of input data that characterises early stages in the design
process. This research contributes to the ongoing global efforts to decarbonising the built
environment and offers an immediately implementable method and tool for doing so.
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INTRODUCTION AND PREVIOUS WORK

Buildings account for a very significant share of greenhouse gas
(GHG) emissions, consumption of raw materials and finite
resources, and waste generation. Such impacts are not
immediately visible because buildings are often ideologically
divided into their operation (the energy system) and their
components (the industrial system) (Pomponi et al., 2020a).
The two are finally being reconciled with significant advances
made in the past decade also thanks to the development of
globally applicable methodologies (BSI, 2011) and voluntary
initiatives (LETI, 2020).

However, while the operation of buildings (and its corresponding
energy demand) has been highly regulated and has received decades
of academic, industrial and political attention, the other stages in a
building’s life cycle (e.g. manufacturing, transportation, installation,
and end of life demolition/deconstruction andwaste disposal), which
incur the so-called embodied impacts, have only recently begun to
being seriously considered by all the stakeholders involved. In fact,
one might say that this stage is yet to be reached since these
embodied emissions remain vastly unregulated with the exception
of a handful of countries or sub-national states and local authorities
(DeWolf et al., 2017; Röck et al., 2020). The importance of embodied
impacts, and in particular embodied GHG emissions (so called
“embodied carbon” (EC) and measured in mass of carbon dioxide
equivalent–CO2e), is twofold. Firstly, they occur on global grids that
are far from being fully decarbonised and heavily reliant on fossil
fuels thus releasing powerful greenhouse gases that will contribute to
warming the planet in decades (e.g. methane) and centuries (e.g.
carbon dioxide) to come. Secondly, and partly as a consequence, they
occur now thus further eroding the remaining carbon budget for
meeting the mid-century climate targets (Röck et al., 2020). This has
profound social implications because each 1 kg of CO2e emitted
unnecessarily in developed economies “steals” the right of
developing economies to emit 1 kg of CO2e to lift themselves out
of poverty or to provide basic services such as sanitation to their
peoples.

The construction of buildings is flooded with such
unnecessary emissions, and this is particularly true for
building structures where the reason seems to boil down to
two main causes. First, structural systems in buildings
generally account for the largest share of the building’s mass
(De Wolf et al., 2015; D’Amico and Pomponi, 2020), thus any
inefficiency is quickly magnified. Second, due to the history of
structural design there is an inherent tradition of using rules of
thumb which result in over-design and over-dimensioning of
building structures and their constituting elements (Moynihan
and Allwood, 2014; D’Amico and Pomponi, 2018a). While this
has often been defended under the “safety” argument, it should be
noted that we do not adopt such an approach in other areas where
safety is equally, if not more, crucial (e.g. airplane design).

The issue is exacerbated by the sometimes tenfold variability
surrounding underlying data and input values for the calculation
(Pomponi and Moncaster, 2017; Moncaster et al., 2018) and the
nearly complete lack of any uncertainty analysis in the
assessments produced (Pomponi et al., 2017; Mendoza Beltran
et al., 2018). The resulting situation is that even the latest

guidance from the United Kingdom’s Institution of Structural
Engineers (IStructE, 2020) merely encourages to be open about
sources of uncertainty but numerically still produces single-value
estimates that are often used to either inform or make decisions.
Figure 1 shows the importance of characterising the uncertainty
surrounding such single-value estimates. With single value
estimates it is in fact impossible to do anything other than
comparing the two and the often well-meant decision leads to
choosing the alternatives with the lowest impact. However, that
single value could be characterised by high uncertainty and
therefore a high variability in the likely final impact that could
lead to sub-optimal decisions. This is why understanding first,
and transparently reporting then, uncertainty information is vital
to allow decision makers to access data more meaningfully so that
decisions can be better informed.

These methods can be greatly informative in comparative
analyses as they show where overlaps are and allow one to
determine with (statistical) confidence if and to what extent a
solution is better than another. They have been recently applied to
the whole life carbon assessments of the three main structural
systems used in the world (steel, reinforced concrete, and
engineered timber) demonstrating for the first time the
significant overlap that exists between the three (Hart et al.,
2021) and thus the lack of a clearly superior choice but rather
the importance of rooting decisions in an understanding of the
different building projects, local contexts and supply chains.

In fairness, however, despite such simplified methods for
uncertainty analysis within a life cycle assessment of buildings
and their products do exist (e.g. Pomponi et al., 2017), they are

FIGURE 1 | Importance of uncertainty characterisation in life cycle
assessment (LCA). A mere comparison between the average of the orange
curve and the average of the blue curve could lead to thinking that the “blue”
value is “better” but the complete characterisation of uncertainty reveals
a much more ambiguous evidence to choose from. Shaded areas represent
±1 standard deviation from the mean (dashed lines). Source: (Pomponi et al.,
2017).
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not of straightforward implementation. These have been in turn
embedded in existing and publicly available design software tools
(D’Amico and Pomponi, 2018b), which nevertheless still require
some manual implementation and basic technical knowledge. As
a result, nothing currently exists that can beat the simplicity of
multiplying two cells in a spreadsheet–the current state of the art
(IStructE, 2021). There are in addition other tools that offer the
possibility of analysing buildings from an LCA perspective. The
most prominent are OneClickLCA (Bionova, 2021), H\B:ERT\,
ECCOlab, Tally, the Carbon Planning Tool, and the Carbon
Emissions Calculator (Pomponi et al., 2020b for a detailed
review). These tools are however either proprietary and
covered by commercial licenses or developed for specific areas
of applications (e.g. infrastructure). By building on previous
fundamental research (D’Amico and Pomponi, 2018a), this
paper addresses such a gap. We present an innovative tool
that uses a surrogate-modelling technique from the field of
machine learning to replace expensive FEA calculations; this
enables estimation of the embodied carbon in a design in real-
time, allowing a user to explore multiple designs. The results are
validated against traditional finite element analysis approaches
that produce estimates equipped with probability density
function and uncertainty information in real-time.

A surrogate-model is a learned statistical model that can be used
as a replacement of a detailed simulation model, providing an
approximation of the outcome of a simulation at low
computational cost. Surrogates have been used to replace FEA in
a number of domains, ranging from modelling biomechanics of
human tissues (Liang et al., 2018) to the steering of tunnel boring
machines (Ninic, 2017). In the building domain, Westerman (2019)
provides a recent and thorough review of the use of surrogatemodels
in sustainable building design, noting that they can benefit four
design aspects: conceptual design (e.g. design space exploration);
sensitivity analysis; uncertainty modelling (e.g. fast building
performance probability distribution derivation) and accelerating
optimisation processes). Our work contributes to this growing
literature in proposing a surrogate-model to replace FEA
calculations of embodied carbon at the building design, when
considering a range of potential building materials. The model is
embodied in a freely and publicly available tool designed as a plug-in
for the popular Trimble SketchUp platform tomaximise its diffusion
and usefulness.

The paper unfolds as follows. Methods Section presents the
methods used, followed by the results in Result Section. These are
discussed in Integration of Models Into User-Friendly Tools
Section, which also concludes the articles highlighting the
main limitations of this work and suggesting avenues for
further research.

METHODS

This research builds on previous work (D’Amico and Pomponi,
2018a), where a tool was developed to evaluate the embodied
whole life carbon of steel framed building structures. This tool,
called BEETLE2 (Built Environment Efficiency Tool for Low
Environmental Externalities), requires a small set of input

parameters and allows the user to explore how variations of
the frame geometry and magnitude of applied loading would
affect the overall structural steel mass and embodied carbon
intensity. The aim is to promote material efficiency as early as
possible in the design stage when the opportunity for reduction is
maximal and impact on costs minimal. Reducing material usage
early on not only minimises resource extraction today but also
reduces the amount of waste created when buildings reach the
end of their useful life.

The tool included an internal Finite Element Analysis (FEA)
“engine” to perform structural analysis and design (i.e., dimensioning
of structural members) compliant with existing standards, therefore
allowing the same level of computation provided by commercial
software alternatives (e.g. SAP 2000). However, in doing so, the tool
was computationally expensive and while simple structures could be
assessed in amatter of secondsmore complex ones requiredminutes.
Trying out different input parameters and design options could
quickly scale up the amount of time required, thus limiting the
usefulness and applicability of the tool. Moreover, it was limited to
steel framed structures only. In order to address such limitations, we
propose to train a surrogate-model—specifically a regression
model—to predict the output of the FEA for a given design. This
is described in detail in the following sections.

Surrogate Models
We aim to learn a surrogate-model capable of predicting
embodied carbon instead of running an FEA process.
Specifically, we evaluate the use of three types of regression
model as potential surrogates: an Artificial Neural Network, a
Random Forest model and a Support Vector Regressor
(Fernández- Delgado, 2019). These methods are chosen as the
literature demonstrates that they are capable of achieving high-
performance on similar tasks (for example, Hart et al. (2019)
demonstrate that these techniques can successfully be used to
replace a wind-flow simulator in an application to forestry). A
brief description of the methods is given below.

Artificial neural networks (ANN) are loosely based on an
analogy to the function of neurons in the human-brain and are
chosen as they are capable of learning non-linear relationships
between a set of input values and one or more outputs. Given a
network architecture composed of a set of inputs and outputs
defined by the data connected via a number of hidden layers,
training a model consists of learning appropriate values for a set
of weights connecting individual neurons. Random Forests
(Breiman, 2001) are an example of an ensemble learning
method in which the results of multiple regression trees
trained using different data samples and features are
aggregated to form a prediction: this is shown to result in a
reliable estimator that is robust to noise. Finally, Support Vector
Machines (SVM) (Steinwart and Christmann, 2008) are selected
due to their prevalence in the literature. Table 1 summarises the
relative pros and cons of each method.

Data Generation
To train a model, a large set of representative data is required. We
generated a dataset of structural design samples that contained
examples of three main structural typologies (steel frames,
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reinforced concrete frames, and engineered timber frames). For
each design, we record 44 different variables describing the
primary inputs for the structural design, some easily derivable
inputs and the FEA calculated outputs. This “raw” dataset
contains 10,000 entries for individual structural systems and is
made freely available with the paper.

Data is generated for structures that use three different materials
(steel, glulam and reinforced concrete). This is done using the
previous FEM-based implementation of the tool to generate the
dataset of ground truth datapoints for training. For each structure,
we extract a fixed set of variables to be used as input to the regression
models. Input data falls into two categories: geometry of the building
and loads. The geometry inputs included primary span (in metres),
secondary span (in metres), inter-storey height (in metres), number
of primary spans, number of secondary spans and number of storeys.
The load inputs include the variable floor load (in kilonewtons per
metre squared), the finishes, ceiling, services and partitions load (in
kilonewtons per metre squared) and the envelope walls load (in
kilonewtons per metre).

For each material type, we train a model to predict a single
dependent variable. For steel, models are trained to predict 1)
optimised total mass of frame and 2) rationalised mass. For
concrete, five models are trained to predict: 1) the total mass
columns (optimised); 2) total mass columns (rationalised); 3)
total mass frames (optimised); 4) total mass frames (rationalised);
5) total mass concrete floors of beams and slabs. For glulam, four
models are trained: 1) total mass (rationalised) for columns alone,
2) total mass columns (rationalised); 3) total mass columns plus
beams and timber frames; 4) total mass of timber floors with
glulam beams and CLT slabs.

In the above description, the term “optimised” variant refers to a
structural design where maximal material efficiency has been used

(i.e. structural elements perform exactly the load-bearing function
required of them without overengineering or over-dimensioning
occurring). The “rationalised” structure, instead, aims to represent
current engineering practice where rules of thumb (carried over
from decades of standard approaches to structural design) or cost
considerations dominate the choice of viable structural solutions,
which regularly result in being over-dimensioned and materially
inefficient. Full details on the structural configurations that underpin
the results of this study are given in the supplementary data that
accompanies this article and is freely and publicly available.

The models were trained to predict the structural masses output
rather than the embodied carbon outputs because the latter is obtained
with minimum computational effort from the former (via a Monte
Carlo method). Conversely, significant computational power is
required to compute the FEM-related structural masses, hence the
motivation to replace this calculation with a surrogate model.

Model Training
Models were implemented in Python using the open-source software
library scikit-learn. Hyper-parameters of the SVM and RF models
were simply left as the defaults from the model library. The ANN
architecture was tuned using grid-search (Bergstra and Bengio,
2012). The final parameters used are given in the accompanying
supplementary material. All data was normalised before training
using a Standard Scaler by sklearn (Pedregosa et al., 2011) which
removes themean and scales to unit variance.We report results from
10-fold cross-validation applied to training each model: that is, the
dataset is split into 10 equal sizes subsets. Training is performed on
90% of the data and tested on the remaining fold. The process is then
repeated, holding out each fold in turn. The performance metric is
averaged over the 10 folds. The following metrics are used to report
performance:

TABLE 1 | Summary of main pros and cons of each of the methods.

Pros Cons

Artificial neural
networks

Capable of finding non-linear relationships in data Typically require large data-sets to train; training times can be long with
multiple hyper-parameters to tune; black box so difficult to interpret

Random forest Reduced error due to ensemble effect; good performance on imbalanced
data; handle missing values; do not suffer from overfitting; handle large
amounts of data; can extract feature important

Requires features that have predictive power; prediction of trees need to
be uncorrelated

Support vector
machines

SVM is very effective in high dimensional spaces and is memory efficient.
Outliers have little impact

Do not perform well when the classes aren’t clearly separable, or when
there is noise in the dataset. Can be slow to train; require careful setting of
hyper-parameters

TABLE 2 | Average cross-validation error for results on steel.

Variable to
predict

Algorithm Explained variance
score

Max error MAE MSE MAPE (%)

Steel—total mass (optimised) structural steel frame RF with 100 trees 0.992 477.896 43.792 4,582.268 0.045
RF with 10 trees 0.991 478.401 48.425 5,541.065 0.050
SVR 0.962 1,127.663 100.176 25,380.051 19.988
ANN 0.984 758.359 70.387 10,277.093 10.269

Steel—total mass (rationalised) structural steel frame RF with 100 trees 0.989 637.822 61.953 9,079.218 0.056
RF with 10 trees 0.987 678.829 68.184 10,886.473 0.061
SVR 0.959 1,379.723 119.619 36,454.134 21.494
ANN 0.983 941.553 85.290 14,910.190 10.944
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1) Explained variance score: Best possible score is 1.0, lower
values are worse.

2) Max error: the maximum error from the test set. The best
possible score is 0.

3) Mean Absolute Error (MAE): best score is 0. Computes mean
absolute error, a risk metric corresponding to the expected
value of the absolute error loss or l1-norm loss.

4) Mean Squared Error (MSE): best score is 0. Computes mean
square error, a risk metric corresponding to the expected value
of the squared (quadratic) error or loss.

5) Mean Absolute Percentage Error (MAPE): best possible score
is 0%. Also known as mean absolute percentage deviation
(MAPD), this metric is sensitive to relative errors. It is for
example not changed by a global scaling of the target variable.

As explained in the previous section, for each material type a
number of separate models are trained to predict the overall mass
of a relevant structural component (from which EC can be
calculated). All models use exactly the same set of input variables.

RESULTS

Results are summarised in Tables 2-4, broken down by material
(steel, concrete, glulam) and mass type. The best result for each
metric is highlighted in bold for row. For RF, we also give results
from a minimal model that contains an ensemble of 10 trees
rather than the default 1,000, as this has advantages in terms of
reduced computational storage.

TABLE 3 | Average cross-validation error for results on concrete.

Variable to
predict

Algorit hm Explained variance
score

Max error MAE MSE MAPE (%)

Concrete—total mass (optimised) columns RF with 100 trees 0.996 185.823 10.917 390.042 0.031
RF with 10 trees 0.996 158.153 12.014 421.299 0.033

— SVR 0.947 496.578 56.204 6,847.445 59.350
ANN 0.983 335.847 27.458 2090.301 13.509

Concrete—total mass (rationalised) columns RF with 100 trees 0.996 342.129 18.807 1,207.267 0.032
RF with 10 trees 0.996 294.767 20.592 1,324.500 0.035
SVR 0.937 899.821 108.288 25,408.120 108.056
ANN 0.980 599.905 51.222 7,172.938 16.520

Concrete—total mass concrete floors (beams + slabs) RF with 100 trees 0.998 1881.273 110.629 34,206.441 0.017
RF with 10 trees 0.998 2,120.939 106.811 35,108.355 0.017
SVR 0.944 6,719.737 877.729 1,865,801.398 16.693
ANN 0.963 4,485.873 683.064 878,,254.628 16.113

Concrete—total mass (optimised) concrete frame RF with 100 trees 0.998 1951.626 111.496 36,162.008 0.016
— RF with 10 trees 0.998 2,167.989 124.618 44,196.267 0.018

SVR 0.949 7,041.614 894.409 1,969,712.138 16.099
ANN 0.970 4,661.709 646.090 820,,866.796 14.115

Concrete—total mass (rationalised) Concrete frame RF 0.998 2,167.369 125.520 45,586.204 0.018
RF with 10 trees 0.998 2,644.495 140.234 57,049.505 0.020
SVR 0.946 7,713.699 957.098 2,304,069.514 16.499
ANN 0.969 4,845.086 683.664 915,,875.463 15.022

TABLE 4 | Average cross-validation error for results on glulam.

Variable to
predict

Algorithm Explai ned
varia nce
score

Max error MAE MSE MAPE (%)

Glulam—Total mass (rationalised) Columns 2 RF 0.995 49.975 4.045 46.438 0.048
RF with 10 trees 0.993 51.894 4.549 58.778 0.053
SVR 0.882 223.453 21.941 1,264.865 117.735

— ANN 0.993 69.383 5.234 66.776 22.484
Glulam—Total mass timber floors (Glulam beams + CLT slabs) RF 0.998 248.613 22.050 1,187.803 0.018

RF with 10 trees 0.998 263.708 25.126 1,511.037 0.020
SVR 0.992 455.570 51.958 6,020.717 8.667
ANN 0.993 404.420 57.673 5,963.047 7.862

Glulam—Total mass (rationalised) Timber frame RF 0.998 292.913 27.889 1871.266 0.021
RF with 10 trees 0.997 317.968 31.339 2,278.514 0.023
SVR 0.988 677.780 70.612 12,221.917 11.184
ANN 0.992 508.001 64.242 7,706.541 8.294

Glulam—Total mass (rationalised) Columns plus Beams RF 0.993 261.295 23.115 1,320.676 0.040
RF with 10 trees 0.992 275.947 26.381 1,646.988 0.046
SVR 0.960 581.844 61.648 8,895.508 22.457
ANN 0.989 329.806 34.646 2,420.057 8.588
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It is clear that RF produces the best performingmodel. The ANN
performs well for steel and glulam, with MAPE <� 10%, and <17%
for concrete. Given the suggested use of the tool at very early stages
in the design process these represent usable figures to support design
choices. Figure 2 plots an example of the predicted values against
the true values obtained from the FEM model for each material for
the total mass variable. It is clear that there is generally good
correspondence, although for all materials, there is a tendency to
underpredict at the upper end of the input range.

INTEGRATION OF MODELS INTO
USER-FRIENDLY TOOLS

The results in the previous section have demonstrated that it is
possible to use an ML model to accurately predict EC in a

structure. This represents a contribution of the paper in its
own right, and similar surrogate-models could be used in
other contexts to speed up computationally expensive FEM
simulations. Our aim here is specifically to integrate the
models into freely available tools. As well as model accuracy,
we also consider the ease of integration of the methods into
existing software platforms in order to make them easily
accessible and lower memory requirements. Selecting the most
appropriate model requires considering the trade-off between the
above factors.

Tool Description
Two tools are developed: a plug-in for SketchUp (mainly
intended for architects and designers) as well as a standalone
software (mostly aimed at structural engineers). The stand-
alone tool is written in Python in which it is straightforward to

FIGURE 2 | Actual vs predicted plots for total mass for each of the three materials.
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implement the RF. In order to minimise the software footprint
of the tool, we use the minimal RF model using only 10 trees.
This saves considerable space at the expense of reducing
accuracy only by a very small amount as demonstrated in
Tables 1-3. The SketchUp tool requires plugins to be
developed using Ruby interface. The RF model created using
sklearn cannot be imported directly into Ruby. Although it
would be in theory possible to hard-code each decision tree in
the learned RF by hand using Ruby, for practical reasons we
chose to instead incorporate the ANN as the prediction module:
the ANN can easily be implemented within Ruby/Sketchup and
although not as accurate as the RF, its output is sufficiently
accurate to be of use to designers.

The Graphical User Interface (GUI) for the SketchUp
plugin is shown in Figure 3 (inputs) and Figure 4
(outputs). As it can be seen, the input interface requires a
set of geometric and loading parameters, as well as the
carbon coefficient. This latter is inputted by the user as a
probability distribution rather than as a single value. Indeed,
if a single value is to be entered, this can be done by setting
the standard deviation to zero. The choice for inputs linked
to probability distributions is to address the single-value
issue presented in the introduction. The options to choose
from in terms of distribution are triangular (low, high and
most likely values are required), uniform (max and min
values are required), and normal (mean and standard
deviation are required). This does create the need for the
user to search for appropriate data that best reflect the
context they are examining. Data sources and appropriate

choice of distribution will vary depending on the contexts
but as a general rule of thumb:

1) A uniform distribution is used when only a range of variation
is known and potential sources could be two Environmental
Product Declarations (EPDs)—one for the low and one for the
high value;

2) A triangular distribution is used when in addition to a range
also a more likely value within that range is known and
potential sources could still EPDs but after having reviewed
a few and having determined in addition to low/high values
also the most likely one;

3) a normal distribution requires the characterisation of many
samples within a given population and potential sources could
be academic papers, reports from professional bodies and
organisations covering specific materials (e.g. concrete/steel
associations, the timber industry).

Outputs are plotted in the form of histograms representing the
probability distribution of total embodied carbon for all three
main structural types (steel, reinforced concrete and engineered
timber). Although these histograms may appear similar in shape,
their scales can be very different, depending on the predicted
structural masses and the carbon coefficient distributions
inputted by the user for each of the three main structural
materials. This is achieved through the implementation of
standard stochastic approaches (Monte Carlo simulation)
tailored to the purpose of estimating embodied carbon in
buildings (Pomponi et al., 2017).

FIGURE 3 | Graphical user interface of the plugin implemented for SketchUp. Input parameters are organised in three main categories: geometric, loading and
embodied carbon coefficients. The input sliders allow the user to select a specific value in a range that has been previously defined by subject matter experts (FP and BD),
which was used to train the ML algorithms.
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Time Performance
In order to highlight the real-time nature of the tool, 100 different
instances with randomly chosen parameters were run and measured
for both the plugin and the standalone versions of the tool. The
testing machine contained an Intel Core i5-6500 CPU. Three
separate times (measured in milliseconds) were recorded:

1. The time taken to read in the parameters, calculate the output
for the rationalised and optimised structural masses and run
monte carlo simulation (TOTAL).

2. The time taken to calculate the output for the optimised
structural masses (OPTIMISED).

3. The time taken to calculate the output for rationalised
structural masses (RATIONALISED)

Results are shown in Table 5. Most of the time is spent on
performing the Monte Carlo simulation (TOTAL). This is
required to combine the predicted output range of structural
masses (whose lower/upper limits are the optimised/rationalised
mass estimates) with the distributions of embodied carbon
coefficients in order to obtain the TOTAL output, namely, the
embodied carbon histograms of the whole structure as shown in
Figure 5. Regardless of its implementation as a SketchUp plugin
or standalone, the programme generates outputs in under 0.03 s,
which is deemed more than sufficient to enable real-time user
interaction.

Comparison With Previous Version
In addition to implementing a ML model–using the previous
FEM-based implementation of the tool to generate the dataset of
ground truth datapoints for training–a new GUI was also
programmed. This is shown in Figure 6, whereas Figure 5
shows the original GUI. This latter was implemented as a
plugin for the CAD software Rhinoceros 3D.

Aesthetically, the new version is simpler, more elegant and
more user friendly, as it is easier to move sliders to select the
values than manually inputting each value, hence risking
inputting values in the wrong format (e.g., text characters
instead of numbers).

The histogram in the second version is didactic and displays
information about it as the cursor is moved above it, while the
previous version of the tool generates a static image of the
embodied carbon histogram.

In terms of functionality, the previous version of the tool relies
on a FEM algorithm to compute structural masses and hence it
requires a few seconds time to output the results, whereas this

FIGURE 4 | Outputs of the plugin implemented for SketchUp.
Histograms of the overall embodied carbon estimates are plotted for each
of the three structural types, namely: (A) Steel frame; (B) Reinforced
Concrete frame and (C) Engineered timber frame. Please note the
plots do not refer to the same structure or underlying assumptions so
numbers on the x-axis do not represent a comparison between the three
structural materials. These are only shown to exemplify the potential
outputs users would get and the possibility of the tool to assess structures
with very low [e.g. panel (A)] as well as very high [e.g. panel (B)] embodied
carbon.

TABLE 5 | Computing times of the SketchUp plugin and standalone version
implementations.

TOTAL OPTIMISED RATIONALISED

SketchUp plugin 22.23 (average) 4.27 (average) 4.26 (average)
1.78 (st. dev.) 0.47 (st. dev.) 0.26 (st. dev.)

Standalone 30.28 (average) 1.00 (average) 0.83 (average)
3.70 (st. dev.) 0.10 (st. dev.) 0.08 (st. dev.)
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FIGURE 5 | Graphical User interface of the FEM-based tool, implemented as a plugin for Rhinoceros 3D.

FIGURE 6 | Graphical User interface of the newly implemented tool as a plugin for SketchUp.
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second version of the tool uses the pre-trained machine learning
model, therefore enabling it to make instant predictions. It should
be noted however that since this ML based version of the tool has
been trained on a dataset generated from the previous (FEM-
based) version, its output suffers from the inherent estimation
error, as described in Section 3.

DISCUSSION AND CONCLUSION

Mitigating embodied carbon emissions is one of the greatest
challenges that lies ahead to decarbonise built environments
globally and progress towards mid-century climate goals. With
a projected increase of over 75 billion m2 in floor area through to
2050 it is imperative to accelerate our capability to accurately
estimate and effectively mitigate the embodied emissions linked
to building structures.

While many tools currently exist, these are either based on
simplified spreadsheets that rely on single-value multipliers for
different construction products and building materials or are
laborious to run and use due to both computational and time
requirements. In this article we present a novel method, and
accompanying tools, based on machine learning (ML). This
enables real-time support at early design stages to estimate the
embodied carbon emissions of building structures for three
different typologies: reinforced concrete, steel frames, and
engineered timber. Results obtained from the tool have been
validated against commercial finite element analysis (FEA)
software packages–showing good agreement. The embodied
carbon estimates are presented in the form of probability
density functions, to show the variability and uncertainty
associated with material choices and global supply chains.
Additionally, the tool also offers a valuable 3D representation
of the structural frame to allow the user to quickly check that the
variation of the input parameters in the user interface produces
the desired result.

To maximise usability and practicality to the professions
the tool has been developed in two versions: as a plug-in for
Trimble SketchUp and as a standalone tool for designers that

operate on different platforms. As such it can cater for
multiple professional entities in the complex and multi-
faceted domain of the stakeholders involved in the design
process of a building.

As noted in the introduction, previous research has adopted
the use of surrogate-modelling in various phases of building
design. However, most of this research has directed the use of
such models towards estimating performance of a building, for
example with respect to energy demand (e.g. Ritter, 2015;
Østergård, 2017) rather than estimating the mass of embodied
carbon in the structure itself. Hence to the best of our
knowledge this is the first use of such as technique to speed
up the estimation of embodied carbon in the design phase,
accommodating a range of building materials. This can aid an
architect/engineer in providing a real-time real-time decision-
support tool.
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