
Graph Rewriting Techniques in
Engineering Design
Lothar Kolbeck*, Simon Vilgertshofer, Jimmy Abualdenien and André Borrmann†

Chair of Computational Modeling and Simulation, TUM School of Engineering and Design, Technical University of Munich,
Munich, Germany

Capturing human knowledge underlying the design and engineering of products has been
among the main goals of computational engineering since its very beginning. Over the last
decades, various approaches have been proposed to tackle this objective. Among the
most promising approaches is the application of graph theory for representing product
structures by defining nodes representing entities and edges representing relations among
them. The concrete meaning of these structures ranges from geometry representations
over hierarchical product breakdowns to functional descriptions and flows of information
or resources. On top of these graph structures, graph rewriting techniques provide another
powerful layer of technology. By enabling the formal definition of rules for transforming
graph structures, they allow on the one hand side to formally capture the engineering
development process. On the other hand, the assembly of rewriting rules into graph
grammars allows for an exhaustive search of the solution space of the engineering problem
at hand. In combination with search strategies, an automated optimization of the design
under given constraints and objectives can be realized. The paper provides an overview of
the current state-of-the-art in graph rewriting and its applications in engineering design,
with a focus on the built environment. It concludes with a discussion of the progress
achieved and the missing research gaps.
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1 INTRODUCTION

With the advance of modern information technology, computers take over work that was considered
to be reserved for humans. Initially, repetitive and error-prone tasks in data processing were
significantly accelerated, while computation today complements human intelligence in domains
requiring creativity. To this end, graphs have proven their capabilities and flexibility to provide the
necessary representations for numerous real-world problems. As a data structure, graphs provide a
rich foundation to represent engineering product models with entities of arbitrarily abstract and
concrete meaning. In the same context, the manipulation of graphs was investigated for decades and
proven to be powerful for complex problems in various domains. Most prominently, the method of
graph rewriting is well established to capture manipulation patterns in the form of rules.

Solving a design problem by graph rewriting methods requires twofold: a graph representation of
particular world entities and rewriting rules that operate on this model to manipulate its nodes,
edges, and their attributes. The rules formalize domain knowledge by declaring design processes as
graphlets consisting each of a conditional and a rewriting pattern. Once formalized, mature software
frameworks ensure an efficient application of the rules to evolve the design representation. Graph
rewriting allows an engineer to define a design not directly as an end result, but in terms of a
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procedural construction history. Arranging the rules in a flow
they may be applied in, an engineering product can be gradually
synthesized. In order to generate an illustrative variety of a prior
unknown design, the engineer may vary the rules selected, the
matches chosen, and variable parameters along that flow. The
exploration of such a solution space may suggest creative, new
ideas and then may be further restricted. This is achieved by
either specifying the generation process or by directed stochastic
search.

Originally, all rewriting methods emerged from linguistics
(Chomsky, 1959), with fundamental branches dealing with
shapes (Stiny, 1980), biological modeling (Lindenmayer, 1968),
and later graphs (Nagl, 1979). Thanks to this background, a large
part of the terminology used is related to linguistics. A grammar is
formed when a set of rewriting rules, a rewriting system, is
complemented by a start symbol, sometimes called axiom, a
set of non-terminal symbols, and a set of terminal symbols.
The terminal and non-terminal symbols are often referred to
as vocabulary of the grammar. A defined grammar may be
applied to exhaustively generate all possible different
combinations of rule applications and parameters, constituting
the language, the constituted solution space. The linguistic theory
of formal grammars is rich and provides mathematical notations,
terminology, and taxonomy available to many specific
applications. Yet, the abstractness and extensiveness of the
field also motivated researchers to enter specialized debates. In

engineering design, expert systems were an early attempt to give a
framework to the use of rewriting rules for design tasks. The
research greatly decreased in the 1990s and is widely inactive
today, due to various reasons, ranging from the difficulty of expert
system maintenance and extensibility (Puppe, 1990).

Instead, several other frameworks emerged around the
millennium. Cagan et al. (2005) achieved to encompass several
schools of thought and several strategies for automated design
synthesis along a simple, generic framework. The four key steps
are the representation of the problem, the generation of solutions,
their evaluation, and finally the guidance of the subsequent cycle
of search. This framework is agreed to cover wide ranges of
automation efforts under the collective term computational design
synthesis (CDS). As one important stream, Chakrabarti et al. (2011)
distinguished grammar-based synthesis. In parallel to the
harmonization attempts of CDS, Rudolph (2002) motivated the so-
called graph-based design languages as a powerful graph- and graph
rewriting based methodology. Certainly complying with the broad
definition of CDS, the field of graph-based design languages can be
seen as a specification of themethod. However, it is based on a stricter
mathematical treatment of design objects and the formal design
process (Riestenpatt and Rudolph, 2019).

In this review paper, we aim to break down this broad and
extensive research field to the essential technological and conceptual
questions. At a first glance, graph rewriting methods and the covering
frameworks may appear very abstract. Yet, treating distinctly the

FIGURE 1 | Visualized outline of the review, following the cycle inherent to rewriting methods: The representation of a problem, the formulation of rules, and the
application of rules.
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essential steps of representation, rule definition, and the later
application of rules, we aim to make comprehensible associated
concepts. Following the outline shown in Figure 1, we hope to
communicate the relevancy, potentials, and challenges to a broader
audience. The review starts with a bibliography analysis where we
attempted to quantify the scientific interest to graph rewriting
methods, with special attention to the building sector. To make
current developments comprehensible to readers with little prior
knowledge, we introduce the fundamentals of graph theory and
graph rewriting in chapter 3. Chapter 4 draws attention to the
various approaches for forming a graph representation of an
engineering model with semantic and geometric meaning1.
Supports to the development and organization of rewriting rules
are introduced in chapter 5. Finally, chapter 6 focuses on issues of
automatically applying rewriting rules for design generation while

chapter 7 concludes the review by summarizing potentials and
shortcomings for further research2.

2 BIBLIOGRAPHY ANALYSIS

The terms Graph Rewriting and Graph Transformation appear in
the literature along with the keywords Engineering and Design
since the 1970s. Although combining multiple keywords reduces
the search scope, there are numerous engineering and design
domains that have investigated graph rewriting for their
challenges. Figure 2 depicts the citation network between
journals when searching for those keywords combined. The
journals of computer science and software engineering
(appearing at the center) are the most dominant journals for
this field, where graph rewriting was used as a technique for

FIGURE 2 |Bibliography analysis of citations between publication sources. Label and circle sizes correspond to the total number of documents. These results were
collected by searching Scopus1 for the keywords Graph Rewriting, Engineering, and Design. The visualization was performed using VOSViewer2.

1https://www.scopus.com/ 2vosviewer.com
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manipulating data structures, source codes, and more. Zooming
out of the center, other application domains appear, such as
biotechnology, business and engineering.

To get more insights into the involved research domains,
Figure 3 shows a grouped list of search domains and their
corresponding publication counts. The field of Information
and Computing Sciences provides a high percentage of the
publications, as graph rewriting was introduced and developed
by this domain. The rest of the domains typically adapt and
apply the techniques developed in computer science to their
particular challenges. Among others, engineering is ranked
third, with 115 publications, whereas built environment and
design is ranked eighth.

From this broad overview in engineering and design, a more
detailed literature analysis was conducted with a special focus on
publications that additionally include Building Information
Modeling as a keyword. The first papers that appeared in the
literature that included both Graph Rewriting and Building
Information Modeling are from 2010 (Tratt, 2010).
Afterward, there is a trend in increasing the number of
relevant publications per year, as shown in Figure 4, where
23 relevant papers were published in 2018 alone and 58 in total
until the year 2020.

The conducted bibliography analysis provides the necessary
ground for the reviewed publications in the following sections.

In this regard, the fundamentals of graph representations,
graph rewriting, and the used software frameworks are
described3.

3 FUNDAMENTALS

3.1 Graph Representations
3.1.1 Theoretical Specifications
All graphs G � (V, E) have in common that they consist of a set of
nodes or vertices V and edges E, with each edge being represented
by an ordered or unordered list of nodes. This generic definition
encompasses a variety of specifications. In engineering design, it
is commonly implied a typed and attributed graph, sometimes
referred to as property graph (Robinson et al., 2015). Types,
sometimes referred to as labels or tags, can serve to specify
different categories of objects within a system. In an
architectural context, this might serve to distinguish
different room types (Langenhan et al., 2013), different
building elements (Abualdenien and Borrmann, 2021), or
load-bearing elements and their joints (Vestartas, 2021).
Attributes in turn can serve to store relevant data about

FIGURE 3 | An ordered grouped list of publications according to their research categories. These results were collected by searching Scopus3 for the keywords
Graph Rewriting, Engineering, and Design.

3https://www.scopus.com/
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the objects in the form of key-value pairs. This data might be
as simple as an identifier, a reference to external data sources,
or as complex as a parametrization of geometric descriptions,
see Section 4.2. Thus, graph structures are an expressive
means to represent engineering systems as a network of
objects with rich semantic and geometric meanings.
However, most engineers find it difficult to formulate and
solve their problems employing graph theory, except for of
well-known applications like path planning. A look at two key
motivations for the use of the data structure explains the
difficulty.

One key advantage of graph theory is its ability to formally and
flexibly represent relationships between entities. Large networks
of objects can be created and queried for certain patterns of
relationship to analyze or manipulate the represented system.
However, the scale of these networks easily gets overwhelming.
Therefore, there are specialized graph types that facilitate
structuring complex domains and thus are better suited for
certain applications4. As one example, trees, are special graphs
that may serve to simplify analysis and manipulation of problems
with an inherently hierarchical structure. Such a hierarchy can be
applied to model the spatial structure of buildings, for example,
where a site may comprise multiple buildings, each building may
comprise multiple stories and each story comprises a number of
spaces or rooms (Wonka et al., 2003; Grabska et al., 2012). To give
a second example, port graphs, sometimes labeled composition

graphs (Strug et al., 2022), are special graph types that distinguish
two types of nodes: Object nodes and connector nodes. The
connector nodes, the ports, restrict how the object nodes are
allowed to be coupled to each other. This may be extremely useful
for tasks that formalize assembly processes, as in the context of
chemical reactions, bond graphs (Helms and Shea, 2012), or the
design of segmented structures (Rossi and Tessmann, 2017a;
Kolbeck et al., 2021). Many more specifications originate from
the need to efficiently depict and manage complex networks, even
leading to complex combinations like hierarchical hypergraphs
(Drewes et al., 2002) and others currently experimented within
engineering (Strug et al., 2022). Encountering all those
specifications may easily overdemand a learning person,
whereas all specifications branch off from the simple and
comprehensible notation given above.

A second key advantage is the flexibility of graphs to adapt to
arbitrary levels of scale and abstraction. For example, nodes and
edges can represent geometric vertices and edges, but may also
stand for complex objects such as walls or a building story. To
illustrate the range of semantics a graph model can have in a
design context, we discuss diverse applications in the building
sector in the next section. Thereby, we highlight the
characteristics of graph models used for the transformation of
design by a comparison to the ones used for analysis tasks.

3.1.2 Applications in Architecture and Civil
Engineering
An old stream of research aims to depict engineering systems as a
graph to perform efficient analysis of the data structure. The well-

FIGURE 4 | An ordered grouped list of publications according to their publication year. These results were collected by searching Scopus4 for the keywordsGraph
Rewriting and Building Information Modeling.

4https://www.scopus.com/
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known Dijkstra algorithm or the A* algorithm for path planning
is familiar to most engineers. For a building, this can be adopted
by translating architectural rooms and their mutual accessibility
into a navigation graph, see Figure 5. A similar graph model of a
building may be used to suggest architects preferable room

layouts when dividing a floor into spaces (Langenhan et al.,
2013). Equally, structural aspects of construction can be
represented. Vestartas (2021) used a graph model to describe
the different joints of crooked wooden beams. Braun et al. (2015)
recorded the precedence relationships of construction

FIGURE 5 | Generation of a navigation graph from building geometry (Kneidl et al., 2012).

FIGURE 6 | A precedence relationship graph represents the order of erection of individual building components and their mutual dependencies (Braun et al., 2015).
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execution in a graph, where every node represents a column,
wall, or floor and edges represent precedence relationships.
The resulting graph model, depicted in Figure 6, was
generated through a spatio-temporal analysis of the
building construction process.

From a formal point of view, graph models for the dynamic
manipulation of a design are identical to the ones for the analysis
of a static design. However, a crucial difference is that design
activities require a much greater amount of topological and
geometrical adaptivity. Property graphs commonly enable
topological extensibility while dynamic geometric
transformations pose a less common challenge. In concrete
terms, it is comparably easy to construct the system entities
and their relationships for a coffee machine (Tonhäuser and
Rudolph, 2017) or a bridge (Slusarczyk and Strug, 2017). Still, a
valid topological and semantic configuration does not guarantee
to make the components form a valid and harmonic assembly,
without collisions and gaps at emerging interfaces. In
comparison, a graph structure that merely analyzes a static
design must capture the exact geometry only once. Without
the need to dynamically change it, the geometry may even be
stored and referenced employing external databases, for example
in a point cloud format (Braun et al., 2015; Vestartas, 2021).

The characteristics of graph structures for dynamic
manipulation of design is subject to further discussion in
chapter 4. Since a representation for design is strongly linked
to the manipulation mechanisms applied to evolve it, the next
sections attempt to give a fundamental understanding of graph
rewriting methods before.

3.2 Graph Rewriting
3.2.1 Theoretical Specifications
Graph rewriting, also referred to as graph transformation,
describes the process of manipulating a graph structure by
adding, removing, and altering nodes and edges, steered by
declaratively defined rules. Each rule consists of a left-hand
side (LHS or pattern graph) and a right-hand side (RHS or
rewrite graph). Providing a host graph and a set of rules, the
matches of the LHS in this host graph can be identified and be
replaced by the RHS to generate the result graph as depicted in
Figure 7. A preservation morphism r can be defined in order to

specify that parts of the LHS are matched to the RHS to ensure
that they are preserved.

Several characteristics can increase the expressiveness of a
rewriting rule. Rules may be more concise by including attributes
and multiple labels per node. For example, a graph representation
of a building may enable a matching for objects labeled both
“wall” and “load-bearing,” with an attribute “height” at a certain
value. Further, a rule may be context-sensitive, meaning that it
specifies conditions that exclude possible matches depending on
the surrounding of the pattern. These application conditions may
concern the left or the right side of the rule (Habel et al., 1996).
Rules can be defined to be more flexible for a wider range of
applications by defining them parametrically, computing
variables instead of fixed values. In order to span a wide
solution space in a generative application of rules, variable rule
parameters may be stochastically chosen.

Rules, potentially defined with all described characteristics,
need to be applied to a host graph (H). To this end, it is necessary
to detect correctly typed and attributed matches for the LHS (or
pattern graph), as well as their rewriting to produce a valid result
graph (H’) containing the RHS (or rewrite graph) inserted. Efforts
have been undertaken to significantly improve the computational
complexity of match detection algorithms (Geiß et al., 2006; Batz
et al., 2008). As well, a variety of rewriting methods has been
researched for decades. In distinction to the algorithmic

FIGURE 7 | A graph rewriting rule, graphically described in the middle, is applied to the host graph on the left side. The result graph is depicted on the right side.
Here, the preservation morphism r is defined by the mapping of the grey nodes.

FIGURE 8 | Basic principle of graph rewriting using the Single Pushout
Approach according to Geiß (2008) and Jakumeit et al. (2010).
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approaches, the prevailing algebraic approaches consider graph
rewriting as a mapping problem between two algebras of nodes
and edges. The main algebraic methods are the single pushout
approach (SPO), shown in Figure 8, and the double pushout
approach (DPO). The fundamental difference between both lies
in the greater expressiveness of the SPO, which conducts the
rewriting in a single step. On the other hand, the DPO introduces
an intermediary gluing graph that allows a more restrictive
avoidance of problematic situations, as for dangling edges in
the result graph (Corradini et al., 1997). For further reading on
the fundamentals of algebraic graph transformation approaches,
we refer to Rozenberg (1997) and Ehrig (2006), while an
application-oriented introduction to graph rewriting can be
found in Heckel (2006).

3.2.2 Software Frameworks for Graph Rewriting
The modeling of graph representations and their transformations
can be conducted with diverse software frameworks. The term
framework describes an assembly of specialized tools. This
includes at least an interpreter that processes human-readable
descriptions of graph metamodels as well as graph rewriting rules
and gives feedback in case of errors. A compiler then translates this
into source code or libraries for further use. Most frameworks also
have some sort of graphical user interface to display graphs and
visualize rule execution. In this section, we give a short overview of
themajor frameworks that are available (see Figure 9). This list is not
meant to be complete as there exist many further frameworks,
although many of them are not maintained anymore. Extensive but
rather outdated lists are provided in Nagl et al. (2003) and Rensink
and Taentzer (2007).More recent comparisons were documented by
Aouat et al. (2012), Bak (2015) and Kahani et al. (2019). Tools
addressing graph transformation are also regularly presented
amongst others in the annual Transformation ToolContest5 that
aims to evaluate and compare the expressiveness, usability, and
performance of transformation tools for structured data.

A widely used graph transformation framework is the Graph
Rewrite Generator GRGEN.NET for the .NET environment (Jakumeit
et al., 2010; Jakumeit et al., 2021). GRGEN.NET offers declarative
languages for graph modeling, pattern matching, and rewriting.
GrGen allows users to define an object-oriented graphmetamodel, a

blueprint of the desired design representation, describing node and
edge types including attributes and inheritance. Themetamodel may
also include connection assertions that define the allowed
connections of nodes and edges in a graph. The frameworks
offers many possibilities when defining rewriting rules including
negative application conditions which may be applied with logical
and iterative control of their application. Rewriting is generally based
on the SPO approach, but also the DPO approach may be used. As
GRGEN.NET creates . NET libraries for the graph metamodel and
transformation rules defined in its own language, it can be easily
used in custom projects. A major benefit is that the software
including its documentation is regularly updated and well
maintained. A quantification of the computational efficiency of
GrGen can be found in (Geiß et al., 2006), including a relative
comparison to the following two frameworks.

The Attributed Graph Grammar AGG is a rule-based visual
language supporting an algebraic approach to graph
transformation implemented in Java (Ermel et al., 1999; Runge
et al., 2011). AGG allows the definition of attributed type graphs
with inheritance. The defined graphs may be attributed by Java
objects and types. A main feature is that the framework provides
graphical editors for graphs and rules and a text editor for Java
expressions including visual interpretation and validation. AGG
is primarily based on the SPO approach but offers the possibility
to enable rewriting based on the DPO approach. The main
functionality of the framework is provided by a graph
transformation engine that is independent of the graphical
environment. Therefore, the transformation functionalities
may also be used by other software. The last major update for
AGG has been released in 2017, whereas a patch has been
published in early 2021, so it can be considered to be maintained.

Another sophisticated and well established framework is
PROGRES (PROgrammed Graph REwriting Systems) which is
being developed at RWTH Aachen since 1989 (Schürr et al.,
1995). It is based on directed, attributed and typed graphs, which
can represent extensive and complicated issues in a clear and
structured manner. PROGRES consists on the one hand of a
specification language and on the other hand of a complex,
integrated environment. The framework allows the
specification of a graph schema with inheritance and edge
cardinalities that can be used for type-checking of
productions. Besides the graph schema, graph transformations
can be specified graphically and textually. The PROGRES

FIGURE 9 |Not all of the presented frameworks are still continued andmaintained. This figure gives an overview of the times of development and reference and use
in research projects. Smaller bars indicate that only small updates were published or references only list the tool without using it.

5https://www.transformation-tool-contest.eu/aims_and_scope.html.
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environment consists of three integrated frameworks. Graph
schema and transformations can be defined in a syntax-
controlled editor that highlights violations. The interpreter
with a corresponding graph browser assists the user in
debugging and the compiler automatically translates the
specification into C or Java source code. However, PROGRES
is not regularly maintained and has been last updated in 2005.
While it is regularly referenced in recent articles giving an
overview of graph rewriting frameworks, the last publication
that describes its use in a project dates back to 2015.

The GROOVE tool set (Graph-based Object-Oriented
VErification) is being developed since 2004 and is still regularly
updated (Rensink, 2003; Ghamarian et al., 2012). With GROOVE
simple graphs can be used for modeling the design-time, compile-
time, and run-time structure of object-oriented systems. Therefore, it
provides graph transformations as a basis for model transformation
and operational semantics. GROOVE is a general-purpose graph
transformation framework that uses simple labeled graphs and
transformation rules based on the SPO approach. The framework
is Java-based and provides an intuitive interface that allows graphical
editing of rules and graphs.

Among this rich body of available alternatives, an engineer
can deliberate the choice of a framework for specialized
applications in design. This deliberation is a problem-specific
evaluation of necessary and desirable characteristics in
modeling, development, and execution. Building upon this
fundamental understanding of both graph theory and the
implications of rewriting, we address approaches to represent
engineering products in the next chapter.

4 REPRESENTATION APPROACHES

Graph structures for design synthesis approaches require an
efficient approach to both the representation and manipulation
of the geometry of relevant design objects. In the aspect of
identifying the crucial objects and linking them elegantly to a
geometric representation, we see the key problem to the successful

use of graph rewriting methods in design synthesis. Thereby, a first
stream follows the idea of a very fine-grained representation and
control of geometry, giving the graph an intuitive geometric
meaning. The second stream attempts to further abstract
objects, making it easier to define and describe transformations
on a semantically higher level of abstraction. Both are discussed in
the following sections.

4.1 Low-Level Representation of Geometry
An engineer familiar with computational geometry would likely
associate the terms “graph” and “geometry” with well-known
classical data structures. As such, the vertex-edge-face graph,
illustrated in Figure 10, may be mentioned, used in boundary
representation approaches. Two key advantages of such graph
models with a strong linkage of topology and geometry may be
highlighted:

They give a very fine-grained control of the geometry of
objects, down to every single geodetic point. For an
engineering model with objects in such a representation,
efficient and detailed spatial-topological queries and
consistency checks exist (Borrmann and Rank, 2009; Jabi
et al., 2018). Another advantage to the low-level integration of
topology and geometry is the geometric intuitiveness of a graph
model. This is both beneficial to the development of rules, and the
analysis of structures, e.g., when evaluating them by defining cost
functions. Many applications illustrate these benefits. An early
and widely known example is the optimal truss generation
problem (Shea, 1997; Kaveh and Koohestani, 2008;
Hooshmand and Campbell, 2016). Thereby, nodes commonly
represent joins, while edges represent the beams of the truss.
Describing and manipulating more complex structures is equally
possible, as shown by the origami figures of Chen et al. (2019) or
the walls and floors described in the architectural solid grammars
by Heisserman (1994).

Despite not being specific to engineering, the implementation
of shape grammars utilizing graph models must be mentioned in
this context, too. For these implementations, graphs were
recognized to have beneficial characteristics as a model of

FIGURE 10 | A pyramid represented by a vertex-edge-face graph, illustrated geometrically (left) and topologically (right).
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geometry. On the one hand, graphs were proven capable of
implementing shape grammars that support the recognition of
emergent shapes (Knight, 2003), i.e., to cope with ambiguous
recognition problems as in the Sierpinski-triangle. More relevant
to engineering applications is the question of topological-
associative shape recognition (Grasl and Economou, 2013;
Wortmann, 2013). Instead of depending on similarity
transformations to geometrically match LHS patterns
(Krishnamurti and Earl, 1992), graphs enable efficient queries
for topological patterns of geometric entities. This enables the
formulation of much more flexible and expressive rewriting rules.
A rule defined for a quadrilateral may apply to any quadrilateral
in a shape of a design.

This leads to two significant downsides of graph models in
such a high resolution of geometry. First, what does a human
intend when he defines a rewriting pattern that consists of a
closed loop of four vertices and lines? Can the matching
algorithm assume that orthogonal and parallel lines play a
role or not? Did the human intend a void quadrilateral or may
the pattern intersect itself or be intersected by other elements?
Krishnamurti and Earl (1992) discuss why it is a very difficult
task to capture the exact designer’s intent. Recently, these
questions were revisited by Stouffs (2019). Second, is it really
necessary and desirable to have such high flexibility and
control of geometry? It must be weighed up that this comes
with the toll of defining rules that may easily become very
complex.

These two problems have been known for a very long time and
two main responses exist to remedy them. On the one hand, the
introduction of an additional layer of abstraction, i.e., a user
interface, could help humans to more intuitively express their
intentions of a rule. Such an abstraction layer may be either
graphical or textual (Dy and Stouffs, 2018), as further discussed in
Section 5.1. Another remedy is to move from a geometrical to a
more object-oriented view of design artifacts. If an architect
wanted to formulate rules for the design of a house in natural
language, likely very little would be explicitly stated about the
relations between points, lines, and faces. Instead, the architect
would reference columns, walls, and slabs (Mitchell, 1991). Many
of those symbolic objects may be sufficiently described by a fixed
or parametrized geometry. A column may be described by a
point, a diameter, and a height. Instead of a large graph pattern
with nodes representing points, lines and faces, a node with three
key-value pairs may be precise enough for the scope of many
practical problems.

This is the basic idea of a group of grammars for design that
follow an object-oriented idea of design: instead of reasoning
geometrically, set grammars discretize a design problem to a
set of comprehensible entities. Those entities are processed in
the grammar by rules that allow the set-theoretic operations of
union, intersection, and difference among them. In the context
of design problems, such entities are commonly tangible
objects like stories, walls, or windows (Wonka et al., 2003),
with complex geometry such as a parametrized solid (Alber
and Rudolph, 2003). This enables the formulation of rules on a
more natural level of abstraction and simplifies geometrical

challenges as e.g. the shape recognition problem
(Krishnamurti and Earl, 1992).

However, the relations between shape grammars and set
grammars often are unclear due to fuzzy terminology in the
field (Lienhard, 2017). Many terms circulate and may be
confusing as they treat very similar concepts. An early attempt
to give a taxonomy to the various terms encountered is found in
Krishnamurti and Stouffs (1993): all grammars with strong
geometric implications may be subsumed under the term
spatial grammar, including L-systems (Lindenmayer, 1968) as
well as classical shape grammars (Stiny, 1980). Set grammars may
be defined for a variety of objects, like strings, shapes, or graphs.
Graphs recently were also used to implement shape grammars
(Grasl and Economou, 2013; Wortmann, 2013). Our
understanding of the different terms we summarized in
Figure 11. The next section will focus on the intersection of
graph grammars and set grammars.

4.2 High-Level Representations of
Geometry
4.2.1 Set Grammar Approaches
In the former section, we discussed that many practical
engineering problems allow the system to be represented as a
composition of objects that can be sufficiently described by high-
level geometric primitives. Thereby, one may roughly
differentiate two types of object descriptions.

The first type associates an object to an individual from a set of
strictly uniform geometries. This may be a column of a fixed
diameter and height (Mitchell, 1991) or standardized, serially
prefabricated parts. The expressiveness may be increased by
discretizing the vocabulary as groups of the same object type,
e.g., by introducing five columns with slightly different heights
and diameters. Then, eventually, a wide enough solution space is
opened up, while ensuring a geometrically elegant and
comprehensible way of processing and interpreting the graph.

FIGURE 11 | Taxonomy of formal grammars utilized for engineering
design problems.
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Further, a sufficient degree of discreteness is certainly helpful to
simplify the reasoning with rules (Peyshakov and Regli, 2003).

The second type relies on geometric descriptions with a
parametrization defined by continuous or discrete variables.
As a first example, Alber and Rudolph (2003) described the
assembly of electricity pylons from a few, adaptive segments.
As a second example, Vogel (2016) developed a method to
construct exhaust filter systems by various, adaptive pieces of
tubes and joints. One example from the building sector is the split
grammar of Wonka et al. (2003), where buildings are efficiently
generated by allowing every RHS pattern to be only a subset of a
LHS object. In concrete terms, this results in a hierarchical
“sculpturing” of buildings from a mass model over stories
over walls to windows, following a strictly hierarchical order
of the vocabulary. The split grammars were brought into a
graph model by Lipp et al. (2008), with graph rewriting rules
definable and applicable according to a concept by Patow
(2012). To give a second example from the building sector,
Abualdenien and Borrmann (2021) adopted the object
parametrizations of commercial BIM software to capture
design patterns in the context of high-rise buildings. Even
though not using a graph data structure, Hoisl and Shea
(2011, 2013) implemented the spatial grammar interpreter
Spapper with a wide range of parametrized solid objects,
ranging from tori to ellipsoids.

They mention, however, that the expressiveness of the
interpreter could be further improved by including powerful
procedures like sweeps or extrusions. This is an inherent
restriction of the set grammar idea that defines vocabulary
according to the objects present in the final design
configuration (Hou and Stouffs, 2018). An alternative is to
explicitly introduce operations that apply a certain
transformation to the input objects. This idea, commonly
known by techniques like constructive solid geometry (CSG),
motivated another stream of graph structures for design
discussed in the next section.

4.2.2 Explicit Description of Operations
The use of graph models for the geometric design of engineering
products is, unconsciously, familiar to many engineers. In many
undergraduate courses, the CSG approach is commonly taught.
Intuitively, the technique allows applying Boolean operators
(union, difference, intersection) on high-level geometric
primitives. A procedural construction history based on CSG
operations may be formally depicted as a directed, bipartite
and hierarchical graph pointing toward one final geometry.
The graph is bipartite because nodes can either represent
objects or operations. Essentially, the visual programming
interfaces of computer-aided drawing (CAD) software like
Grasshopper Rhinoceros (Mc Neel and Associates, 2021) can
also be represented as a directed graph, with nodes being either
input objects or operations, performing imperative logic on the
input objects. Because these procedural parametric models abide
by the formal definitions of graph theory, they can also be refined
by graph rewriting patterns. This basic idea of refining a
procedural definition with a rule-based paradigm is illustrated
in Figure 12. Therein, a simple CSG operation is manipulated,
computing the difference between a square and a circle. The RHS
pattern of the rule replaces the square with a rectangle. The
rectangle is generated by a union operation that merges two new
leaf nodes that each represent a square.

Procedural parametric modeling approaches draw their
expressiveness from explicitly introducing operations as a part
of the grammar vocabulary. The difference to other design
grammar approaches is subtle but important. The greater part
of grammars for design declare rules as a static configuration
pattern before and after a rewriting step. When applying the rule,
an interpreter derives from the difference between the sides the
necessary procedures to take, i.e., manipulations, additions, and
removals of objects. However, some operations may be much
more intuitive to be stated in an imperative manner. To give an
example from the building sector, Vilgertshofer and Borrmann
(2017) distinguished “Sketch Nodes” and “Procedural Nodes” for

FIGURE 12 | Refinement of a CSG tree based on a graph rewriting rule.
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refining tunnel geometry, see Figure 13. The former described the
composition of sketches, e.g. describing a tunnel profile. On the
other hand, the procedural nodes enabled the transformation of
geometry, e.g., by extrusion of a tunnel profile. These
development steps are illustrated in Figure 14.

The introduction of explicit operations enables the
straightforward integration of powerful features accessible by
programming interfaces of CAD software. Silva et al. (2013) gave
another example of a graphmodel that explicitly includes operations,
in this case related to urban model generation. Thinking of a graph
model as a network of objects or operations can make graph models
in design much more expressive.

Finally, a noteworthy trend in the field of grammars and
computational geometry is the investigation of mixed
programming paradigms. Of course, it is more elegant to
define a design problem within one of the various paradigms
of procedural modeling. Yet, for considerations of efficiency, the
combination of paradigms is worth further investigation. Many of

the design grammars published partially needed to use imperative
programming techniques (Hohmann et al., 2010). Leblanc et al.
(2011) presented a modeling language based on CSG techniques,
with imperative as well as rewriting characteristics. A second
example, given by Hohmann et al. (2010), employs rewriting rules
to refine commands of the stack-based, generative modeling
language GML (Havemann, 2005). Certainly, these approaches
are difficult to classify at a first glance. However, they may be a
promising way to the pragmatic and widespread use of rewriting
rules, specialized to the situations in which they are beneficial.

In the context of grammar-based design, any representation is
just an important means for a purpose. This purpose is the
development of a design from an initial state towards a goal
state. This is performed by defining rules, which may be applied
to incrementally evolve the design representation. Unarguably,
the finding of appropriate and expressive rules is a demanding
step. Therefore, we dedicate the next chapter to research treating
the process of grammar development.

FIGURE 13 | A stage in the graph-driven design development process presented in Vilgertshofer and Borrmann (2017). Left-hand side: Graph structure consisting
of entities and procedural operations, created by graph transformation. Right-hand: Interpretation of the graph by a parametric CAD system.
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5 DEVELOPMENT OF GRAPH REWRITING
APPROACHES

The variety of grammars published is commonly described as
original pieces of handcraft. The representation chosen is
demonstrated to have captured the essence of the problem and
the rules to allow steering an efficient evolution of the system. Still,
scientifically valid questions are “polemically” (Economou andGrasl,
2018) left out: why did the engineer choose these and not other rules?
Did the developers follow certain guidelines to make the approach
transparent and extensible? Is the approach transferable to other
problems? Developing answers to such questions might be difficult,
but is indispensable to make rewriting methods better understood
and widespread. In this review, we distinguish two fields of research
that attempt to make the development of grammars more
transparent and streamlined: first, the facilitated creation of
grammars and second, the idea of using rewriting methods
within a standardized system modeling language, synthesizing a
design solution from an abstract network of functions.

5.1 Facilitated Development of Rewriting
Rules
In the practice of grammar development, a significant problem to
be remedied is that domain experts are rarely familiar with the
computational aspects of rewriting. A simple solution might be to
let developers and domain experts collaborate, which was the
strategy in expert systems research. Unfortunately, this strategy
needed to be omitted, acknowledging that experts have limited
time, motivation and that arising communication barriers may
cause frustration (Puppe, 1990).

As a first alternative, one may attempt to not let domain
experts define the grammar, but to generate the rules based on

design artifacts they produced in the past. The problem of
automatically “learning” or creating a grammar from a given
dataset is referred to as inverse procedural modeling and is
commonly assessed to be very complex (Puppe, 1990;
Lienhard, 2017). Nevertheless, a modest amount of research
has been classified by Lienhard (2017). One set of works
attempts to adapt relatively generic template grammars to a
given dataset, mostly in the context of facade parsing (Nishida
et al., 2016). This approach likely has a limited potential to
generally automate the development of grammars as any
template grammar needs to be developed a priori and
relatively specialized on the problems to be covered. Instead,
the second class of research deals with the induction of set
grammar vocabulary and rules with the help of statistical
models. These approaches were considered to require very
structured and annotated data structures, as in a hierarchical
tree structure (Leblanc et al., 2011). Otherwise, it was thought to
be impossible to identify the nodes representing the vocabulary of
the grammar (Talton et al., 2012). However, recent efforts
indicate that it might be possible to induce grammars for
more unstructured datasets, including hierarchical and non-
hierarchial, one- and more dimensional representations
(Whiting et al., 2018). Despite these efforts, this research field
is certainly still at a very fundamental level and inverse grammar
modeling is not yet applicable to a wider range of engineering
design problems.

A second alternative is to look for solutions that empower a
wide range of domain experts to develop grammars. Besides
guidelines to teach non-specialists good practices in the
definition and organization of rewriting patterns (McCormack
et al., 2008; Oster and McCormack, 2011), attention is drawn to
provide less technical interfaces. As first example of this trend,
Abualdenien and Borrmann (2021) recently proposed a method

FIGURE 14 | Gradual Refinement of tunnel geometry by means of graph rewriting and according to a level of development concept (Vilgertshofer and Borrmann,
2017).
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to graphically capture architectural detailing patterns through the
interfaces of common BIM software. The translation of these
patterns to rewriting rules and the later application of rules is
possible without knowledge of the underlying computational
processes. A conceptual sketch of the workflow is shown in
Figure 15.

Comparable in intention, Rossi (2021) developed a largely
graphical interface to define vocabulary, rules, and a geometrically
constrained search procedure for the assembly of segmented structures
(Rossi and Tessmann, 2017b). Patow (2012) made the split grammars
of Wonka et al. (2003) accessible in an interactive graph visualization
and allowed users to refine a procedure by rewriting patterns. Equally,
the interfaces of spatial grammar interpreters incrementally require less
technical knowledge to define geometrically and semantically complex
grammars. Hoisl and Shea (2011), Dy and Stouffs (2018) and Grasl
(2021) developed largely graphical interfaces to their spatial grammar
interpreters, requiring little knowledge of the underlying computational
processes. These interfaces can be advantageous when learning a
specific implementation of a rewriting formalism or for the rapid
prototyping of design grammars departing from their geometrical
frontend.

The interfaces discussed make it easier to define smaller sets of
rules. From a certain amount of rules captured, a stricter
organization or modularization of the rule sets is important. A
promising approach to this end offers the research field of
function-based design synthesis.

5.2 Function-Based Design Synthesis
Graphs have the ability to represent a system in any degree of
abstraction. This property is exploited in model-based systems
engineering (Haberfellner et al., 2019; Hick et al., 2021), also
referred to as function-based design synthesis (Cagan et al., 2005;
Chakrabarti et al., 2011). The fundamental idea is to begin the

design with a set of requirements a system needs to fulfill and to
convert respectively map them to a network of functions, the
functions to subfunctions, and finally, the subfunctions to
components, sometimes structures. Only the latter are assigned
concrete geometry. Each of those layers can be represented as a
network of objects, i.e. in a graph-based representation. The most
common modeling conventions have been adopted by standard
modeling languages like SysML (2021).

Graph rewriting can be employed within the scope of
function-based design synthesis in two ways: first, for model-
to-model transformations between the different abstraction
layers. If a subfunction can be met by different components,
different rules can be created to depict these possible
transformations. By exploring the possible options, different
concepts of an engineering system can be generated. This has
been illustrated for mechanical engineering products by Bryant
et al. (2006) or for the conceptual design of bridges by Slusarczyk
and Strug (2017). A second use of graph rewriting techniques is of
course on the structural level of abstraction, where rules can be
embedded to determine the (optimal) configuration of function-
derived elements. Tonhäuser and Rudolph (2017) show the entire
process revisiting the well-known coffee maker example.

The abstraction involved in function-based design synthesis is
a burden and a potential at the same time. Engineers naturally
tend to details and visualizations, but thereby run the risk to get
stuck in fixed ideas of design (Haberfellner et al., 2019). The
abstraction of products by requirements and functions is a
demanding and time-consuming process but may enable a
better focus on the product essentials and trigger creativity.
Further, it can simplify the definition and organization of
rewriting rules (Helms and Shea, 2012). To understand the
difference, the classification of engineering problems by Puppe
(1990) can be referred to: deriving the structural components of a

FIGURE 15 | Worfklow proposing a user-oriented interface to formalize architectural design patterns without knowledge of underlying representation and
algorithms (Abualdenien and Borrmann, 2021).
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design from a model-based representation of functionality results
in a combination of an assignment and a configuration problem.
For further search and optimization tasks, this is easier to solve
than the planning task most design grammars aim to solve.
Nevertheless, it is also possible to use a set of rules to evolve a
design through an optimized sequence of actions, traversing
various incomplete, intermediary states. Techniques to guide
such a generation process are discussed in the next chapter.

6 GENERATIVE USE OF REWRITING RULES

6.1 Classification of Approaches
A graph rewriting system represents a set of process steps,
without specifying their logic of application. Thus, besides the
rules, the process of applying them to one or a range of specific
problems must be designed. This difference is essential, whereas
often the misconception is encountered that a given grammar can
simply “crank out” (Krishnamurti and Stouffs, 1993) design
solutions. Likely, this misconception comes from the fact that
many early grammars for design, e.g., the palladian grammar
(Stiny and Mitchell, 1978), included a lot of domain knowledge.
These rules were restricted to be applied in a relatively specific
order and to relatively specific problems. Further, another set of
grammars must be taken into consideration. These grammars
have very generic rules, applicable to a variety of problems. Most
grammars that aim to solve the truss optimization problem (Shea,
1997) belong to this type. These grammars heavily rely on a sound
description of their dynamic application to a variable
environment. To highlight the difference between these two
types of grammars, Ruiz-Montiel et al. (2013) introduced the
terms expert grammars and naive grammars. This classification is
comprehensible, even though there can be observed some hybrid
approaches combining naive and expert rules (Puentes et al.,
2020).

The distinction of reasoning approaches according to the
problem-specificity of rules is certainly comprehensible but is
not the only one. Hou and Stouffs (2018) prefer to categorize
grammars according to the generation logic involved,
distinguishing an object-oriented and a goal-oriented type. The
former studies the configuration of the desired design outcome
and restricts the vocabulary to the subsystems which are finally
present, e.g., the building elements of a built house (Mitchell,
1991). This principle, found in the set grammars discussed in
Section 4.2, facilitates the definition of rules and the exploration
of design alternatives. The goal-oriented type, instead, defines
rules by reflecting the most concise design process, commonly
leading to more abstract non-terminal vocabulary and
intermediary design states. To prioritize among the many
options of action that may lead to the desired goal state, either
a global search with an evaluation of the entire design or a local
reasoning mechanism is applied. This categorization into object-
oriented and goal-oriented approaches is equally comprehensible
and applicable to most works discussed in this review.

The presented criteria enable to reflect a given grammar by it’s
specificity to one application environment and by the
characteristics of the vocabulary. However, there is no

commonly agreed taxonomy that can subsume a wide range of
grammar-based reasoning techniques or could even practically
support engineers in the design of their rule application strategy.
Of course, not every grammar needs to be utilized with a
sophisticated process control. Especially for expert grammars
and object-oriented grammars, engineers often can constrain the
search to a few variable parameters and few necessary choices. If
this is possible, the exploration of the solution space may be
achieved manually, by combinatorial methods as the enumerative
generation or black-box methods as generate and test
optimization algorithms. These three methods are commonly
understood and agreed (Cagan et al., 2005; Grasl and Economou,
2013; Ruiz-Montiel et al., 2013). Still, some research should be
mentioned that attempts to get more fine-grained control of the
generation process. Thereby, a body of research can be subsumed
into the paradigm of agent-based modeling, e.g., Heckel (2006),
Ruiz-Montiel et al. (2013), McComb et al. (2017), and Puentes
et al. (2020), another one to the use of logical descriptions
(Duarte, 2005; Stouffs, 2015; Hou and Stouffs, 2019). The cited
literature is referred to for further reading, while the following
sections are limited to the well-established approaches.

6.2 Search Strategies
6.2.1 Enumerative Generation
If the engineer is able to define a sequence of rule applications that
likely lead to valid designs, it is possible to simply enumerate all
possible outcomes. Thereby, a search tree may be used to depict
the options of generation. This tree commonly has as root the
initial design state, and as edges the applicable rewriting rules.
The linked children nodes are derived designs (Campbell et al.,
2009). Filtered for repetitive and invalid leaf nodes, the search tree
can serve for an enumerative generation of designs. This is a
relatively old idea (Stiny and Mitchell, 1978), but still popular,
due to the good impression it gives about the strictness,
respectively expressiveness of a given grammar. To remedy the
computational load and complexity of filtering the entire solution
space, some remedies exist. Lienhard (2017) proposed clustering
methods for building designs that make the solution space more
comprehensible to a user. Campbell et al. (2009) and Kumar et al.
(2014) propose to only generate a small set of possible solutions
from a search tree. Depending on the quality of the produced
designs, the later generations are optimized by updating the
probabilities of decisions that led to good designs.

This is essentially the idea of a set of optimization algorithms
that can be summarized as generate and test approaches.
Generate-and test approaches do not use search trees but
optimize only the input parameters of a generation process
based on the cost of the outcome. No formal model of the
generation process is required, wherefore one may think of it
as a black-box process. Iteratively, the configuration shall be
improved until only one or a set of few good designs remain. The
two main algorithmic ideas used are simulated annealing and
genetic programming (Ruiz-Montiel et al., 2013).

6.2.2 Optimization Algorithms
Simulated annealing optimizes a single design configuration
based on the analogy of the cooling of metal. A steadily
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decreasing “temperature” curve quantifies the willingness to
accept deteriorations of cost by a rule application. An in-depth
explanation of the algorithmic ideas is given by Cagan and
Mitchell (1993), some recent applications include the
optimization of piping systems of exhaust filters (Vogel, 2016)
or rollerblade wheels (Zimmermann et al., 2018). For simulated
annealing and a similar optimization algorithm, Königseder
(2015) introduced methods to better understand the internals
of grammars in a search process, e.g., the sensitivity and
frequency of rules used. Remedying the restriction of
simulated annealing to a single design solution, McComb et al.
(2017) or Zimmermann et al. (2018) discuss the organization of
multiple optimizations in parallel.

Genetic programming relies on a biological “survival of the
fittest” principle. In every cycle, a set of designs is created where
only the best ones are selected to go into the next phase or cycle.
During every generation process, rules can be applied to conduct
mutations of individuals. Further, the cross-over exchange of
parameters is a desirable mechanism to create diversity within a
population. The latter is desirable but very difficult as grammar-
generated designs often do not share a common configuration of
objects (van Diepen and Shea, 2019; Grzesiak-Kopeć et al., 2021).
For hierarchical and well-structured representations, the works of
Alber and Rudolph (2003), Talton et al. (2012), and Lienhard
(2017) propose a possible solution: instead of processing the
individual designs generated, it might be more promising to
consider the rules the subject of a genetic optimization.
Different variants are generated by different grammars in the
first step. In further cycles, the grammars authoring the most
successful individuals may be merged, by splitting and merging
their vocabulary. This approach requires a deeper understanding
of reasoning with grammars, but may contribute to make genetic
optimization more powerful.

This concludes the overview of approaches to the reasoning
for grammar-based design. In the last chapter, both potentials
and shortcomings for further applications in the building sector
are summarized.

7 CONCLUSION

7.1 Potentials
Graph models provide a powerful and flexible representation for
many engineering products. For engineering design, the use of
graph rewriting methods can enable the automation of complex
design sequences. To this end, a variety of representation
approaches can be distinguished, which can be classified
according to the geometric meaning of the graph entities
chosen. Low-level geometry representations give a high control
and intuitiveness regarding geometric aspects, even though they
require the introduction of higher-level textual or graphical
interfaces. Set grammar approaches allow defining the design
and design steps in a semantically more intuitive, object-oriented
way. The extension of employed graph structures to entities of
imperative logic or the combination of different programming
paradigmsmay leverage the practical applicability of grammars in
a broader context.

The development of graph rewriting systems for applications
in engineering design receives increasingly more support. On the
one hand, domain experts and learners with little knowledge
about the underlying technology are encouraged by less technical
and more graphical interfaces. In order to generate and optimize
designs based on graph rewriting systems, established approaches
can be relied on to perform an efficient search of vast solution
spaces.

7.2 Shortcomings
To date, only a few industrial applications of graph rewriting
methods have been known in engineering design. This may be
owed to several challenges we discussed. One aspect is that the
representation of a design problem by a graph model requires
abstracting the system in a suitable manner. A variety of different
approaches exists, with advantages and disadvantages. A key factor
thereby is to represent and manipulate the geometry of engineering
products properly. Approaches with a low-level representation of
geometry often have the shortcoming of not enabling the definition
of rules at a level of abstraction natural to engineers. Approaches
with a high-level representation of geometry pose the challenge to
efficiently store, transform, and interpret geometry. Despite a rich
body of applied works, there is little theoretical discussion about the
demanding task of defining a graph representation for a synthesis
problem. Ideally, guidelines should be available to support engineers
in the conceptual and technical design.

Given a meaningful representation, the efficient design of
small sets of rules is a comparably resolved challenge. Still, the
technical organization of grammars with larger rule sets to enable an
efficient but variable generation of designs is a challenge. To this end,
the use of function-based synthesis approaches seems promising, but
yet has very few applications in the building sector. Further, the design
of search methodologies in combination with a grammar is
challenging. A large set of reasoning approaches have been
described, differing by the way domain knowledge is formalized,
the type of vocabulary, or the locality of evaluation criteria. However, a
better uniform characterization and supportive guidelines could
support engineers to better understand and design the
functionalities of grammars for a generative design process.
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