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Over the past 2 decades, the use of artificial intelligence (AI) has exponentially

increased toward complete automation of structural inspection and

assessment tasks. This trend will continue to rise in image processing as

unmanned aerial systems (UAS) and the internet of things (IoT) markets are

expected to expand at a compound annual growth rate of 57.5% and 26%,

respectively, from 2021 to 2028. This paper aims to catalog the milestone

development work, summarize the current research trends, and envision a few

future research directions in the innovative application of AI in civil

infrastructure health monitoring. A blow-by-blow account of the major

technology progression in this research field is provided in a chronological

order. Detailed applications, key contributions, and performance measures of

each milestone publication are presented. Representative technologies are

detailed to demonstrate current research trends. A road map for future

research is outlined to address contemporary issues such as explainable and

physics-informed AI. This paper will provide readers with a lucid memoir of the

historical progress, a good sense of the current trends, and a clear vision for

future research.
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1 Introduction

Civil infrastructure is one of the main engines that drive economic growth and ensure

a high standard of living in any country. Therefore, it is of paramount importance to

ensure that the country’s critical infrastructure systems are in sound condition to support

vital economic activities and to preempt any sudden infrastructure failure that may

engender catastrophic consequences. This makes it essential to continuously monitor the

integrity of infrastructure so that any structural deficiency caused by environmental or

loading conditions can be detected early and necessary follow-up measures can be taken

promptly, significantly reducing the repair and rehabilitation costs. Recent advancements

in sensor technologies have led to many low-cost but efficient solutions for procuring

long-termmonitoring data from instrumented structural systems. The collected field data
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should be subsequently converted to meaningful physical

indicators to assess the in-service infrastructure condition and

enable informed retrofit decision-making. However, the real-

time data generated by such automated systems are beyond the

scope of manual excavation due to the enormity of the collected

data and the complexity of the information retrieval process.

With the advancements in information technologies and

computing hardware, recent years have seen the emergence of

a new computational method called artificial intelligence (AI),

which seeks to simulate human cognition capability and confer

human-like intelligence to machines and computers. Over the

past 2 decades, this discipline has gained significant attention

from the structural health monitoring (SHM) community and

has gone a long way to raise the level of intelligent maintenance

and condition assessment of civil infrastructures through

autonomous, accurate, and robust processing of the field

monitoring data. A plethora of studies came into existence

that consistently pushed the envelope targeting the complete

automation of the future inspection process. On the whole, the

strides made so far have been remarkable, as documented by

many review papers published on this topic (Toh and Park, 2020;

Sun et al., 2020; Bao and Li, 2021; Flah et al., 2021; Salehi and

Burgueño, 2018; Azimi et al., 2020; Smarsly and Hartmann, 2007;

Doa’ei and Jahan, 2018; Ye et al., 2019; Sony et al., 2021).

The global market size for digital technologies in this

industry 4.0 era will boost the wide use of AI in big data

analytics, such as image processing. For example, the SHM

market was estimated to value at $1,814 million in 2021 and

reach $3,955 million by 2028, thus registering a compound

annual growth rate (CAGR) of 15.3% (Vantage-Market-

Research, 2022). The commercial drone market size was

valued at $13.44 billion in 2020 and expected to expand at a

CAGR of 57.5% from 2021 to 2028 (Grand-View-Research,

2022a). The internet of things market was estimated to value

at $31.99 billion in 2020 and expand at a CAGR of 26.0% from

2021 to 2028 (Grand-View-Research, 2022b).

In recent years, an influx of new researchers has been

encouraged by the promising opportunities that this

discipline of smart autonomous SHM offers. However, the

enormity of the available literature is sometimes baffling,

and as a result, the new researchers often rely on the

recently published review papers to be acquainted with the

contemporary research trends and identify the major research

challenges that are yet to be addressed. However, the existing

review papers in this area were largely focused on specific topics

and therefore did not provide a complete picture of the holistic

development of this field. Moreover, there is a lack of clarity

about the historical perspective of how painstaking works by

various researchers expanded the knowledge base consistently

over so many years. This study aims at filling this information

gap by providing a detailed account of how this research field

progressed over time with the help of some selected milestone

papers having significant contributions in terms of new

machine learning (ML) or deep learning (DL) approaches,

intelligent modifications in the existing architectures or

modeling strategies leading to substantial performance

improvement as well as unique and innovative applications

in SHM. To take one example, Karim et al. (2022) proposed a

semi-supervised assistive intelligence technique that requires a

limited number of frames in an inspection video to be manually

annotated for the training of a deep learning-based structural

element segmentation algorithm (Figure 1). It begins with a

small set of human-labeled data and subsequently invokes

temporal coherence analysis to identify the false negatives

that spotlight the weaknesses in the neural network. This

enables iterative improvement of the learning algorithm

leveraging the domain knowledge of experienced bridge

professionals. The proposed framework significantly reduced

the extent of manual data annotation, which is prohibitively

time-consuming, labor-intensive, and expensive, and at the

same time achieved a high degree of accuracy. This review

paper is intended to serve as a time capsule that chronicles the

evolution of scientific research in this area through a number of

such seminal studies. It is believed that this paper will help the

readers easily grasp the chronology of scientific advancements

made thus far and identify the key challenges that still linger

and create a roadblock to further progress in this area.

The remaining of this paper is arranged in this following

manner. Section 2 focused on the application of AI in various

vision-based and vibration-based SHM techniques. Section 3

provides a synopsis of various AI-based approaches applied to

condition assessment of concrete structures. Section 4 deals with

the trends in current research in this area. A road map for future

research is laid down in Section 5. Finally, concluding remarks

are provided in Section 6.

2 Damage diagnosis

2.1 Vision-based SHM

In recent times, the immediate availability of inexpensive

vision sensors has led to a deluge of studies focusing on vision-

based techniques for SHM. These sensors are also suitable for

integrating with mobile robotic platforms such as UAS, which

simplifies the data collection process significantly, giving rise to a

large volume of data in a short time. However, accurate and quick

analysis of such voluminous data sets presents a serious

challenge, prompting the researchers to look for AI-based

solutions to automate the data processing task.

Vision-based condition assessment of structural systems can

be accomplished at three levels (Figure 2), namely defect

classification (Table 1), defect detection (Table 2), and defect

segmentation (Table 3). Defect classification entails recognizing

the category of defect depicted by an inspection image. However,

it does not reveal anything about the location of the defect in the
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image. On the other hand, defect detection involves simultaneous

classification and localization of the defects present in an input

image. This class of algorithms can deal with situations where a

single image may contain multiple defects belonging to the same

or different categories. However, at this level, the defective

regions in an image are generally demarcated by rectangular

bounding boxes, which do not trace the defect boundaries

accurately and therefore are not very useful for defect

quantification. A finer level of localization is afforded by

defect segmentation, where each pixel in an image is classified

based on the type or severity of the defect. This task can outline

the defect boundary more accurately, paving the way for defect

quantification, which is of the highest interest to the inspectors

and structural engineers.

2.1.1 Classification
The first batch of AI algorithms that came into existence

towards the end of the previous century were essentially based on

traditional ML techniques, where appropriate damage-sensitive

features are first identified by human experts (Figure 3). This is

followed by extraction of the selected hand-crafted features from

the input image and categorization with the help of a suitable

classifier. Kaseko and Ritchie (1993) were among the first

generation of researchers who explored neural network-based

techniques for pavement crack classification from video frames.

The authors first employed a threshold-based technique to

segment a digital pavement image into a binary mask

representing crack pixels and background. The cut-off

grayscale value used for binarization was determined by a

multi-layer feed-forward neural network-based regression

technique based on the parameters characterizing the gray-

level histogram of the image. The binary crack mask was

fragmented into smaller tiles which were then classified by

another multi-layer feed-forward neural network based on

various crack features into several crack categories such as no

crack, transverse crack, longitudinal crack, diagonal crack, and

hybrid crack. This work acquainted the SHM community with

the potential of AI-based techniques vis-à-vis autonomous

processing of visual inspection data, which led to a plethora

of research in the following 2 decades aimed at automatizing the

entire visual inspection pipeline. Liu et al. (2002) resorted to a

support vector machine to identify cracks in tunnel inspection

images. An initial crack map was first obtained by using intensity

and gradient-based thresholding strategy. Following this, an

SVM-based classifier was utilized to distinguish between crack,

non-crack, and intermediate type patterns. Abdel-Qader et al.

(2006) demonstrated the use of principal component analysis for

crack identification on concrete bridge deck images. The input

image was divided into several smaller blocks. Each block was

convolved with various vertical, horizontal, and oblique edge

detecting filters. The convolution outputs were combined and

subjected to an averaging filter and normalized. A normalized

test block as such was then classified based on the class of the

FIGURE 1
Overview of the semi-supervised assistive intelligence method proposed by Karim et al. (2022).

FIGURE 2
Three levels of vision-based inspection.
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TABLE 1Milestone papers focused on AI techniques for vision-based defect classification. Precision is the ratio of true positive to the sum total of true
positive and false positive. On the other hand, recall is given by the ratio of true positive to the sum total of true positive and false negative.
Whereas, F1 score is the harmonic mean of precision and recall. AUC is the area under the Receiver Operating Characteristic (ROC) curve.

Paper Year Application Algorithm Accuracy Contribution

Kaseko and Ritchie
(1993)

1993 Pavement crack classification from
video frames

Multi-layer feed forward neural
network

Average
accuracy: 83.2%

One of the earliest studies to explore
neural network for vision-based crack
classification

Zhang et al. (2016) 2016 Crack patch identification in road
inspection images

A CNN called ConvNet Precision: 86.96%,
Recall: 92.51%, F1:
89.65%

Demonstrated that CNN-based models
can outperform SVM and Boosting-
based classifiers

Chen and
Jahanshahi (2017)

2017 Inspection of nuclear power plant
components

Naive Bayes-based multi-view
data fusion scheme incorporated
into a CNN-based crack
classification framework

AUC: 96.8% Demonstrated that information fusion
from multiple frames of an inspection
video can lead to a significant
performance improvement

Gopalakrishnan
et al. (2017)

2017 Identification of crack patches on
hot-mix asphalt and portland
cement concrete pavement surface
images

A CNN pre-trained on the large
ImageNet dataset (Gao and
Mosalam, 2020)

Precision: 90.0%,
Recall: 90.0%, F1:
90.0%,
Accuracy: 90.0%

Invoked the idea of transfer learning to
address the issue of limited training data
and overfitting

Xu et al. (2019) 2019 Bridge crack classification CNN Precision: 78.11%,
Recall: 100.0%, F1:
87.71%, Accuracy:
96.37%

Incorporated atrous convolution, atrous
spatial pyramid pooling and depth-wise
separable convolution leading to a
significant enhancement in model
accuracy

Wu et al. (2019) 2019 Crack and corrosion classification VGG16 (Simonyan and
Zisserman, 2014) and ResNet18
(He et al., 2016)

Accuracy: 94.6%
(crack), 89.8%
(corrosion)

Demonstrated that the non-
contributing network parameters can be
pruned to significantly reduce the
network size and inference time,
without compromising on the model
accuracy

Guo et al. (2020) 2020 Classification of various defect
categories in façade inspection
images

Meta learning-based CNN model Accuracy: 82.86% Proposed an innovative meta learning-
based approach to deal with the problem
of class imbalance

Xu et al. (2020) 2020 Classification of rust grades on
steel structures

An ensemble of four CNN models Precision: 93.0%,
Recall: 92.9%, F1:
92.9%,
Accuracy: 93.0%

Demonstrated that the overall
classification accuracy can be improved
by combining the predictive abilities of
different CNN-based classifiers

TABLE 2 Milestone papers focused on AI techniques for vision-based defect detection. MAP denotes the mean average precision. IoU represents the
intersection over the union of the predicted and ground-truth defect regions.

Paper Year Application Algorithm Accuracy Contribution

Cha et al.
(2018)

2018 Detection of a variety of defects such as
concrete crack, steel corrosion, bolt corrosion,
and steel delamination in building and bridge
structures

Faster RCNN (Ren et al.,
2015)

MAP: 89.7% (at an IoU
threshold of 0.3)

Demonstrated the efficiency of Faster
RCNN approach for defect detection in
civil infrastructure

Mandal
et al. (2018)

2018 Detection of lateral, longitudinal, and
alligator types of road cracks along with
various other corruptions such as rutting,
potholes, etc.

You Only Look Once
(YOLO) (Redmon et al.,
2016)

Precision: 88.51%, Recall:
87.10%, F1 : 87.80%

First to use YOLO algorithm for
infrastructure defect detection

Maeda
et al. (2018)

2018 Detection of various road surface damages
from smartphone images

Single Shot Detector
(SSD) (Liu et al., 2016)

Mean Precision: 81.13%,
Mean Recall: 47.5%, Mean
Accuracy: 87.75%

First to use SSD for infrastructure defect
detection

Kumar
et al. (2020)

2020 Detection of different kinds of sewer defects
in CCTV videos

Faster RCNN,
YOLO, SSD

MAP: 68.25% (at an IoU
threshold of 0.3)

Demonstrated through a comparative
evaluation that Faster RCNN is more
accurate than YOLO and SSD
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training block at its closest proximity in the eigenspace spanned

by the training data. Cord and Chambon (2012) relied on textural

features to identify defects in a road image database. The authors

exploited an AdaBoost classifier, an ensemble learning method

that combines several weak classifiers to form a strong predictive

model. Another ensemble learning technique that was put to use

by the research community for automatic image-based crack

classification was random forest which is founded on the

principles of decision trees (Shi et al., 2016).

Notwithstanding that the initial attempts at AI-based

damage classification were based primarily on ML

approaches, recent advancements in the processing

capabilities and availability of large volumes of data,

however, have triggered extensive use of DL techniques for

autonomous analysis of visual inspection data. Unlike the ML-

based models, convolutional neural network (CNN)-based DL

methods can automatically learn the damage-sensitive features

in the input data and are, in general, more accurate (Figure 4).

One of the first few studies in this direction can be attributed to

Zhang et al. (2016), who proposed a novel CNN architecture

called ConvNet for identifying crack patches in road inspection

images. The authors demonstrated that CNN-based models can

outperform SVM and Boosting-based (Freund et al., 1999)

classifiers. This approach was later extended to crack

identification on concrete surfaces by Cha et al. (2017).

However, it was observed that crack classification based on a

single view is prone to false detection due to the presence of

crack-like non-crack patterns. Chen and Jahanshahi (2017)

made a major breakthrough by demonstrating that

information fusion from multiple frames of an inspection

video captured by a mobile camera can lead to a significant

performance improvement. The authors proposed a Naive

Bayes-based multi-view data fusion scheme which was

incorporated into a CNN-based crack classification

TABLE 3 Milestone papers focused on AI techniques for vision-based defect segmentation. BF score is a short from of boundary F1 score.

Paper Year Application Algorithm Accuracy Contribution

Jahanshahi and
Masri (2011)

2011 Crack segmentation on
concrete images

SVM and feed forward NN-
based classifiers acting upon
morphological features

Accuracy: 79.5%, Precision:
78.4%, Recall: 84.1%

First use of AI techniques for semantic
segmentation of structural defects

Zhang et al.
(2017)

2017 Pixel-wise crack
classification on 3D asphalt
surfaces

a novel CNN called CrackNet Precision: 90.13%, Recall:
87.63%, F1: 88.86%

The first application of DL techniques for
semantic segmentation of structural defects

Huang et al.
(2018)

2018 Segmentation of crack and
leakage defects in metro
shield tunnels

a novel CNN called CrackNet Mean error rate: 0.8% The first application of FCN Long et al.
(2015) for semantic segmentation of
structural defects

Jenkins et al.
(2018)

2018 Segmentation of road and
pavement surface cracks

An FCN with skip connections
called U-Net Ronneberger et al.
(2015)

Precision: 92.46%, Recall:
82.82%, F1: 87.38%

The first application of U-Net for semantic
segmentation of structural defects

Liu et al. (2019) 2019 Semantic crack
segmentation

Hierarchical learning-based
DeepCrack network

Precision: 85.2%, Recall:
86.6%, F1: 85.9%, Mean
IoU: 85.9%

Fused an FCN with deeply supervised nets
enabling learning of multi-scale and multi-
label features

Ren et al. (2020) 2020 Segmentation of cracks in
concrete tunnels

U-Net with dilated convolution
and spatial pyramid pooling

Pixel Accuracy: 99.12%, IoU:
59.06%, Precision: 74.84%,
Recall: 85.54%, F1: 74.55%

Integrated U-Net with dilated convolution
and a multi-scale image fusion technique
called spatial pyramid pooling to extract
multi-scale features

Ji et al. (2020) 2020 Semantic segmentation of
cracks on asphalt pavements

DeepLabv3+ Chen et al.
(2017a)

Mean IoU: 73.31% Leveraged atrous convolution, atrous spatial
pyramid pooling, and conditional random
field to extract multi-scale contextual
information form input image

Hou et al.
(2020)

2020 Segmentation of surface
defects on stay cables

Mask RCNN He et al. (2017) IoU: 74.3%, Accuracy: 99.6%,
Precision: 82.1%, Recall:
88.32%, F1: 85.1%

The first application of Mask RCNN for
semantic segmentation of structural defects

Hoskere et al.
(2020)

2020 Simultaneous labelling of
material type and damage
category

Multi-task segmentation model
called MaDnet

Mean Pixel Accuracy: 91.7%,
Mean IoU: 79.8%

Developed an unified segmentation
algorithm which is invariant to changes in
damage category and material type

Zhou and Song
(2021)

2021 Segmentation of steel
surface defects

An encoder-decoder-
based FCN

F1: 84.6%, IoU: 73.2%, BF
score: 93.1%

Demonstrated that multi-modal DL based on
heterogeneous fusion of RGB and range data
can lead to an increased segmentation
accuracy

Pan and Zhang
(2021)

2021 Concrete roadway crack
segmentation

Attention-based DeepLabv3+
network

Mean IoU: 89.95%,
Frequency-weighted IoU:
97.34%

Demonstrated that attention mechanism can
help the network identify the most
representative and meaningful features
leading to a more efficient way of combining
multi-scale features
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framework enabling accurate and robust inspection of nuclear

power plant components. One of the common issues that the

scientific community faces in this area is the scarcity of labeled

training data. Insufficient training data prohibits training of

very deep CNNs and leads to overfitting that causes inadequate

performance at test time. Gopalakrishnan et al. (2017) invoked

the idea of transfer learning to address this issue of limited

training data. It has been observed that the features extracted by

the early convolutional layers are largely class-agnostic. So, the

authors used a CNN pre-trained on the large ImageNet dataset

(Gao and Mosalam, 2020) to initialize the parameters of a CNN

for identifying crack patches on hot-mix asphalt and portland

cement concrete pavement surface images leading to accurate

predictions. Atha and Jahanshahi (2018) extended the

application areas of CNN-based damage classifiers to patch-

based corrosion classification in steel structures. Xu et al. (2019)

proposed a novel CNN-based bridge crack classification

framework incorporating atrous convolution, atrous spatial

pyramid pooling, and depth-wise separable convolution. The

atrous convolution can produce a larger receptive field without

reducing the spatial resolution or increasing the kernel size. The

atrous spatial pyramid pooling enables the extraction of multi-

scale context information, which can account for various object

scales and improve the accuracy. On the other hand, the

depthwise separable convolution reduces the number of

convolution parameters and hence the computational

complexity. The proposed modifications led to a significant

enhancement in the model accuracy. These damage

classification models are intended to be eventually integrated

with mobile robotic platforms such as unmanned aerial vehicles

(UAVs) to automate the entire inspection pipeline. However,

the UAVs typically have limited onboard computing capability

and therefore cannot support real-time inference owing to the

high computation costs associated with the state-of-the-art

CNN models. Wu et al. (2019) demonstrated that the non-

contributing network parameters can be pruned to significantly

reduce the network size and inference time without

compromising on the model accuracy. This enables the

network run efficiently on power-efficient embedded AI

computing devices such as Jetson TX2. The proposed

network compression approach can be instrumental in

realizing the vision for the future edge intelligence-based

smart SHM systems. Several studies in recent years also

looked into the classification of multiple damage categories.

Perez et al. (2019) and Masrour et al. (2019) proposed CNN-

based techniques for classifying building inspection images into

several frequently observed defect categories. Class imbalance is

a common menace encountered in many multi-class

classification problems. This problem occurs when all

damage categories are not evenly represented in the training

data. Guo et al. (2020) proposed an innovative meta learning-

based approach to deal with the problem of class imbalance

while classifying various defect categories in façade inspection

images. Previous experience in multi-class classification also

suggests that a given CNN architecture may accurately classify

certain defect categories but may prove inefficient in classifying

other defect categories. This implies that the overall accuracy

can be improved by combining the predictive abilities of

different CNN-based classifiers. Xu et al. (2020) put this

hypothesis to test by employing an ensemble of four

different CNN architectures to classify rust grades on steel

structures, obtaining an accuracy which is higher than any

single classifier-based approach.

2.1.2 Detection
The detection task can be repurposed as patch-based

classification, as demonstrated by many studies described in

the previous subsection. An image can be divided into several

overlapping or non-overlapping patches whose size is predefined.

Then each patch is classified independently, resulting in a coarse

localization of the defects. However, this process disregards the

possible variability in the defect size. Moreover, given that the

classifier is applied locally to the individual patches, the global

context which is vital for accurate detection is overlooked.

Alternatively, the detection task can be framed as a regression

problem where the bounding box coordinates and the associated

class probabilities can be regressed from an entire input image.

One of the prominent examples of this modeling approach is

Faster RCNN (Ren et al., 2015), where an input image is first

processed by a series of convolutional layers (Figure 5). The

feature map generated by the last convolutional layer is sent to a

region proposal network to produce a number of interest regions.

The interest regions are finally classified, and the corresponding

bounding boxes are refined using a CNN module. Cha et al.

(2018) demonstrated the efficiency of this approach through the

detection of a variety of defects such as concrete crack, steel

corrosion, bolt corrosion, and steel delamination in building and

bridge structures. Cheng andWang (2018) extended the use cases

of this approach to crack detection in sewer pipes from closed-

FIGURE 3
Training and testing protocol for tradition ML-based defect
classifiers.
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circuit television (CCTV) videos. Nie and Wang (2018) resorted

to transfer learning to detect several types of pavement distresses

from road inspection images leveraging a Faster RCNN-based

approach. Ghosh Mondal et al. (2020) made use of this approach

to autonomously detect several earthquake-induced damages in

reinforced concrete buildings from visual reconnaissance data.

The authors considered various damage categories such

as cracks, spalling, exposed rebars, and severely buckled

rebars, which are relevant for reinforced concrete buildings

subjected to seismic vibrations. You Only Look Once (YOLO)

(Redmon et al., 2016) is another modeling approach that was

frequently used in the previous studies. It represents a family of

single-stage detection algorithms that processes an entire input

image in one pass. In this approach, an image is divided into

several grids. A set of bounding boxes, corresponding confidence

scores, and class probabilities are regressed at each grid location.

A variant of this algorithm was first put to use by Mandal et al.

(2018) for the detection of lateral, longitudinal, and alligator

types of road cracks along with various other corruptions such as

rutting, potholes, etc. This approach was extended by Deng et al.

(2021) to the detection of cracks in concrete bridges. A third

detection approach, namely single shot detector (SSD) (Liu et al.,

2016) was leveraged by Maeda et al. (2018) for the detection of

various road surface damages from smartphone images. This

modeling approach inherits the philosophy of YOLO. However,

SSD is distinct from YOLO because it is capable of drawing

multi-scale features from different convolutional layers and

fusing them to produce more robust detection. Kumar et al.

(2020) compared the efficiency of the three modeling approaches

vis-à-vis detection of different kinds of sewer defects in CCTV

videos. The authors concluded that the Faster RCNN algorithm is

more accurate than the other two detection approaches.

2.1.3 Segmentation
The use of AI techniques for semantic segmentation of

defects was first noted in 2011 when Jahanshahi and Masri

(2011) employed a morphological method to generate crack

maps from concrete images and distinguished the crack pixels

from non-crack artifacts by categorizing the segmented objects

based on their shapes and sizes with the help of SVM and feed-

forward NN-based classifiers. A year later, Chen et al. (2012) used

an SVM-based classifier for rust assessment in steel bridge

FIGURE 5
Faster RCNN architecture for defect detection.

FIGURE 4
Typical CNN architecture for defect classification.
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images. Each pixel was classified as rust or background based on

the associated color information. Prasanna et al. (2014) presented

a novel approach for crack detection on concrete bridges. The

authors first identified a number of line segments in each image

by leveraging a RANdom SAmple Consensus (RANSAC)-based

(Fischler and Bolles, 1981) fitting algorithm. Following this,

several intensity-based, gradient-based, and Laplacian

pyramid-based scale-space features were extracted from the

fitted line segments and were used as inputs to an SVM

classifier to distinguish between cracks and non-crack patterns.

However, the recent works on semantic segmentation of

defects are based largely on DL-based techniques. The first

application of this solution approach was witnessed in

2017 when Zhang et al. (2017) proposed a novel CNN called

CrackNet for pixel-wise crack classification on 3D asphalt

surfaces. However, fully convolutional networks (Long et al.,

2015) which comprise an encoder and a decoder, formed the

basis of the majority of studies focusing on DL-based defect

segmentation. The encoder generally consists of a bunch of

convolutional layers intended to extract meaningful features

from the input image (Figure 6). On the other hand, the

decoder exploits transposed convolutions to upsample the

downsized features to the original input resolution. The

output layer contains the class probabilities for each pixel and

affords a one-to-one correspondence with the input image. The

efficiency of this approach was first demonstrated by Huang et al.

(2018) who leveraged this approach for segmentation of crack

and leakage defects in metro shield tunnels. A number of studies

also relied on U-Net, which is a fully convolutional network with

skip connections (Ronneberger et al., 2015). Jenkins et al. (2018)

was among the first to employ this network for segmentation of

road and pavement surface cracks. One of the key challenges in

this area is that the defects exhibit wide-scale variations in images

acquired during an inspection. To address this challenge, Liu

et al. (2019) proposed a hierarchical learning-based DeepCrack

network by fusing a fully convolutional network with deeply

supervised nets for semantic crack segmentation. After each

convolutional layer, the authors appended a side output layer

where direct supervision was applied. The outputs from all the

side output layers are concatenated to produce the final semantic

labels. This enabled learning of multi-scale and multi-label

features leading to state-of-the-art performance. To extract

multi-scale features, Ren et al. (2020) integrated U-Net with

dilated convolution and a multi-scale image fusion technique

called spatial pyramid pooling for automatic segmentation of

cracks in concrete tunnels. Dilated convolution is also known as

atrous convolution, which expands the receptive field of a kernel

without increasing the computational complexity by inserting

holes between consecutive kernel elements, facilitating multi-

scale context aggregation (Chen et al., 2017b). Ji et al. (2020)

exploited DeepLabv3+ for semantic segmentation of cracks on

asphalt pavements. It is based on DeepLab architecture (Chen

et al., 2017a) which leverages atrous convolution, atrous spatial

pyramid pooling, and conditional random field to extract multi-

scale contextual information from the input image leading to

improved segmentation accuracy. Hou et al. (2020) invoked

Mask RCNN for segmenting surface defects on stay cables.

Mask RCNN is an extension of Faster RCNN containing an

additional branch for predicting high-quality semantic mask for

each instance in the scene (He et al., 2017). The inspection

process often involves probing a wide variety of construction

materials such as steel, concrete, and asphalt to identify defects

like cracks, exposed rebars, spalling, corrosion, etc. Developing a

unified segmentation algorithm that is invariant to changes in

damage category and material type is a challenging task. Hoskere

et al. (2020) addressed this problem by proposing a multi-task

segmentation model called MaDnet for simultaneous labeling of

material type and damage category. The proposed network had a

shared encoder but separate decoders for the material and

damage segmentation tasks. Traditional RGB cameras project

FIGURE 6
Typical encoder-decoder-based fully convolutional network architecture for defect segmentation.
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a 3D scene on a 2D plane. This transformation often leads to a

loss of information about the actual scale of objects. To address

this shortcoming of the RGB cameras, several researchers

explored various range finders such as Lidars, which measure

the distance of different points in the scene from the camera. To

facilitate autonomous processing of range data, Zhou and Song

(2020) proposed an encoder-decoder-based approach for

concrete roadway crack segmentation from range images

collected by a 3D camera mounted at the back of a moving

vehicle. The authors later extended this study by stacking

intensity and raw images to serve as a multi-channel input to

the CNN and demonstrated that the proposed heterogeneous

data fusion leads to an increase in the segmentation accuracy and

robustness (Zhou and Song, 2021). Pan and Zhang (2021)

proposed an attention-based DeepLabv3+ network for

automatic segmentation of steel surface defects. Attention is a

TABLE 4 Milestone papers focused on AI techniques for vibration-based SHM.

Paper Year Application Algorithm Contribution

Feng and Bahng
(1999)

1999 Estimation of damage-induced stiffness reduction
based on the modal properties extracted from the
vibration response of jacketed reinforced concrete
columns subjected to cyclic loading

Back-propagation neural
network

First researchers to use neural network for structural
condition assessment based on vibration response data

Jiang et al. (2006) 2006 Classification of various damage patterns in a 4-story
benchmark framed structure and a seven-story shear-
beam building model from simulated vibration
responses

Probabilistic neural
network

Demonstrated that the fusion of classifiers operating on
multiple sensors increases the accuracy and reliability of
damage detection

Osornio-Rios et al.
(2012)

2012 Simultaneous detection, localization, and
quantification of a variety of defects in truss structures
including cracks and corrosion

Artificial neural network Achieved simultaneous detection, localization, and
quantification of defects by providing each task with
dedicated output nodes

Goh et al. (2013) 2013 Prediction of stiffness reduction factor in a two-span
concrete slab

Artificial neural network Demonstrated that ANN can be used to predict
unmeasured mode shapes from a limited number of
measured data

Diez et al. (2016) 2016 Health monitoring of the Sydney Harbour Bridge in
Australia

k-means clustering Demonstrated the use of clustering-based unsupervised
approach to group together joints with similar vibration
patterns and isolate the damaged joints

Meruane (2016) 2016 Estimation of damage-induced stiffness reduction
based on antiresonant frequencies evaluated from
transmissibility data

Extreme learning
machine (Huang et al.,
2006)

Quantified vibration-induced damage using extreme
learning machine which affords a much quicker training
scheme than gradient-based back-propagation
techniques

Abdeljaber et al.
(2017)

2017 Estimation of the damage probability at the joints of a
grandstand simulator from measured acceleration
signals

1D CNN Initiated the use of CNNs for autonomous damage
detection from vibration data

Pathirage et al.
(2018)

2018 Estimation of the stiffness reduction parameters based
on vibration properties of a simulated seven-storey
steel frame structure

Autoencoder neural
network

Demonstrated the use of an autoencoder to generate
lower dimensional representations of high dimensional
input features. This compressed sensing approach
charted the course for many future studies that focused
on vibration monitoring on resource-constrained edge
environments

Oh et al. (2019) 2019 Prediction of wind-induced response of tall buildings
based on time and frequency domain features

1D CNN Demonstrated that frequency domain features can
provide meaningful information as input to DL models

Hung et al. (2020) 2020 Vibration-based damage identification in three-story
frame structure

2D CNN Proposed a hybrid DL algorithm by integrating CNN
and LSTM-based approaches, which is capable of
learning both local correlations and long-term temporal
dependencies inherent in time-series data

He et al. (2021) 2021 Condition assessment of bridges 2D CNN Explored image-based encoding of vibration signals to
take advantage of the latest 2D CNN-based approaches

He et al. (2021) 2021 Condition assessment of bridges 2D CNN Explored image-based encoding of vibration signals to
take advantage of the latest 2D CNN-based approaches

Wang and Cha
(2021)

2021 Vibration-based damage detection in building steel
bridge models

Deep autoencoder Proposed an unsupervised learning strategy which
depends only on raw vibration response data under
intact condition and eliminates the need of labelled data
under various damage scenarios

Shang et al. (2021) 2021 Vibration-based damage detection in bridges Denoising autoencoder Proposed a denoising autoencoder to remove noises
from noise-corrupted signals and extract features which
are insensitive to measurement noise and
environmental variations, leading to an improved
structural damage identification
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powerful concept in DL that mimics cognitive attention. The

authors demonstrated that the attention mechanism can help the

network identify the most representative andmeaningful features

leading to a more efficient way of combining multi-scale features,

which eventually improves the segmentation performance.

2.2 Vibration-based SHM

The vibration characteristics often provide informative cues

about the integrity of a structure. Any significant deviation

from the usual vibration pattern indicates a plausible

deterioration in the structural condition. The use of ML-

based techniques in this area is more than 2 decades old

(Table 4). Feng and Bahng (1999) were perhaps the first

researchers to use the back-propagation neural network in

1999 to estimate the damage-induced stiffness reduction

based on the modal properties extracted from the vibration

response of jacketed reinforced concrete columns subjected to

cyclic loading. Five years later, Golinval et al. (2004)

demonstrated that a structural damage can be detected by

computing the subspace spanned by the vibration response

data leveraging principal component analysis. Any change in

the subspace orientation vis-à-vis the healthy state suggests a

possible damage to the structure. The authors illustrated this

method by detecting the emergence of a crack leading to the

failure of a test specimen subjected to fatigue vibration testing.

(Jiang et al., 2006; Jiang et al., 2011) presented a comprehensive

framework for structural damage detection based on multi-

sensor data fusion and a probabilistic neural network. In a

probabilistic neural network, the probability distribution

function of each class is approximated by a non-parametric

function (Specht, 1990). Following this, the class probabilities

for a new input are estimated using the Bayesian decision rule,

and the class with the highest posterior probability is assigned

to that input. The proposed PNN was shown to be robust

against measurement noise. It was further demonstrated that

the fusion of classifiers operating on multiple sensors leads to

increased accuracy and reliability of damage detection. The

proposed conceptual framework was validated by classifying

various damage patterns in a 4-story benchmark framed

structure and a seven-story shear-beam building model from

simulated vibration responses. Osornio-Rios et al. (2012)

blazed a new trail by using an artificial neural network to

simultaneously detect, localize, and quantify a variety of

defects in truss structures, including cracks and corrosion.

This was achieved by providing each task with dedicated

output nodes. The input to the ANN comprised amplitude

of the natural frequencies of vibration acquired through

accelerometers mounted on different parts of the structure.

In the same year, Goh et al. (2013) broke another fresh ground

by demonstrating that ANN can be used to predict unmeasured

mode shapes from a limited number of measured data. In the

case of mode shape-based damage detection models, the

prediction accuracy depends greatly on the number of

measurement points. However, instrumenting a structure at

numerous locations is not an economical solution. This study

showed that an ANN can be leveraged to predict the mode

shapes at unmeasured points from a handful of measured mode

shape data. The estimated mode shape data can then be

combined with the measured data to be used as input to

another ANN to predict the stiffness reduction factor, which

is an indicator of damage severity. This ideation was validated

on finite element simulation data of a two-span concrete slab.

Diez et al. (2016) resorted to a clustering-based unsupervised

approach for health monitoring of the Sydney Harbour Bridge

in Australia. Tri-axial accelerometers were installed at various

joints on the bridge to measure vehicle-induced vibrations.

Joints with similar vibration patterns were grouped together by

means of the k-means clustering technique, leading to the

identification of damaged joints and faulty sensors. Meruane

(2016) employed an extreme learning machine for vibration-

based damage assessment from transmissible data. Extreme

learning machines are feed-forward neural networks where

hidden layer learning parameters are randomly initialized

and never updated. The output layer weights are computed

analytically, exploiting a straightforward generalized inverse

method. This obsoletes the need for iterative finetuning as

entailed in gradient-based back-propagation techniques,

resulting in a much quicker training scheme. Huang et al.

(2006) claimed that extreme learning machines afford better

generalization ability than back-propagation neural networks.

In this study Meruane (2016), an extreme learning machine is

used to estimate damage-induced stiffness reduction based on

antiresonant frequencies evaluated from transmissibility

measurements. Case studies of an eight-degree-of-freedom

mass-spring system and a beam under multiple damage

scenarios are considered to demonstrate the feasibility of this

approach.

In recent years, rapid improvement in computation

capabilities motivated the research community to explore

CNN-based DL approaches for autonomous damage

detection from vibration data (Figure 7). CNNs can

automatically search for optimal damage-sensitive features,

obliterating the need for manual feature selection. Abdeljaber

et al. (2017) can be credited for initiating the use of CNNs in

this area. The authors proposed a 1D CNN for estimating the

damage probability at the joints of a grandstand simulator

from measured acceleration signals. Pathirage et al. (2018)

turned to an autoencoder neural network for structural

damage identification based on vibration properties such as

natural frequencies and mode shapes. An autoencoder is first

used to generate lower-dimensional representations of high-

dimensional input features, which were subsequently

processed by another piece of neural network to estimate

the stiffness reduction parameters. This compressed sensing
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technique charted the course for many future studies focused

on vibration monitoring in resource-constrained edge

environments. The proposed algorithm was validated

through finite element simulation of a seven-story steel

frame structure. Oh et al. (2019) presented a CNN-based

approach to predict the wind-induced response of tall

buildings. The input to the network comprised time history

and frequency response of top floor displacement, and

frequency response of wind speed. The predicted

parameters were the maximum values of tensile and

compressive strains in selected building columns which

indicate the stress level in the columns. This paper can also

be recognized as one of the early few studies which

demonstrated that frequency domain features can also

provide meaningful information as input to DL models.

This major finding created important footsteps for future

studies to follow. Despite the proven capabilities of 1D

CNN, it is not disputed that the recent boom in DL

techniques is fueled mainly by 2D CNN, which has

achieved great success in image recognition tasks by

automatically learning discriminative features from the raw

data. This motivated the scientific community to explore

various ways to encode time series data as images in order

to take advantage of the latest 2D CNN-based approaches. He

et al. (2021) were one of the pioneers who exploited this idea

for the condition assessment of bridges. The authors imaged

the vibration response of a bridge using a recurrence plot,

which is a two-dimensional representation that reveals

distance correlations in a time-series signal. The resulting

images were input into a 2D CNN to determine the damage

location and severity. This trail was picked up by many

subsequent studies, which resorted to an image-based

encoding of vibration signals for accurate and reliable

damage identification in various structural systems. While

CNN can model local correlation, it is inefficient in capturing

the global context. On the other hand, recurrent neural

networks like long short-term memory (LSTM) are adept at

learning long-term temporal dependencies hidden in

sequential data. Hung et al. (2020) integrated these two

independent approaches and proposed a hybrid DL

algorithm for vibration-based damage identification in the

three-story frame structure. Sajedi and Liang (2020) came up

with a novel approach for damage diagnosis in an

instrumented moment frame. The frame structure is

represented as a grid environment, where each grid cell

comprises a sensor node. The resulting formulation

resembles an image, where each pixel stores the cumulative

intensity measure of acceleration recorded at the

corresponding sensor node. This input image is passed

through an encoder-decoder semantic segmentation

network to classify the damage severity level at each grid

location. The proposed framework enables damage

classification and localization at the same time. Most of the

previous studies in this area adopted supervised learning

approaches which entail expensive data acquisition and

labeling under various damage conditions. Wang and Cha

(2021) proposed a deep autoencoder-based unsupervised

learning strategy that depends only on raw acceleration

response data under intact conditions. The autoencoder

reconstructs the input time series sequence, and any

damage is identified based on the deviation between the

original and reconstructed signals. This approach

eliminates the need for labeled data under various damage

scenarios. It was later extended by Shang et al. (2021), who

invoked a denoising autoencoder to extract damage-sensitive

features from noisy bridge vibration data. A denoising

autoencoder is a class of autoencoders trained to remove

noise from noise-corrupted signals. The features that are

subsequently extracted are insensitive to measurement

noise and environmental variations and were used to

identify structural damages. Hakim et al. (2021)

demonstrated that an ensemble neural network that

FIGURE 7
A general framework for vibration-based damage detection systems.
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combines predictions from multiple networks can produce

better detection accuracy than any individual network acting

alone. The authors substantiated this finding through a case

study involving damage identification in a steel girder bridge

based on its vibration characteristics.

3 Estimation of material and
deterioration properties

Concrete and steel are the most widely used construction

materials in civil engineering. Estimation of various structural

properties and deterioration phenomena concerning these two

materials is another area that has seen extensive use of ML

techniques over the past 2 decades. It is sometimes difficult to

develop mathematical models which can accurately capture the

material behavior, mainly due to the complexity of the process

and multiplicity of the influencing parameters. More often than

not, mathematical models are also disadvantaged by numerous

modeling assumptions and simplifications, which lead to

prediction uncertainties. The ML-based models, over the

years, have proved to be a promising alternative in this

regard. They can produce accurate results by learning

complex patterns hidden in empirical data. Besides, they save

a lot of time and cost that go into material testing of concrete and

steel specimens. Even though these techniques have been used for

estimating a range of different parameters, this study identifies

five key focus areas that received maximum attention from the

research community.

3.1 Prediction of carbonation depth

Carbonation is a natural phenomenon that causes premature

deterioration of concrete. The atmospheric CO2 penetrates the

pores in the concrete and reacts with hydrated cement. This

chemical process reduces the alkalinity of concrete, leading to

corrosion of reinforcement bars which eventually results in

cracking and degradation of concrete. Liu et al. (2008) are

perhaps one of the earliest studies that introduced the use of

AI for the prediction of carbonation depth in concrete. The

authors exploited a radial basis function neural network to

estimate the carbonation depth based on three input features,

namely water-gel ratio, cement content, and exposure time. In

the following year, Bu et al. (2009) relied on the same set of

features to forecast concrete carbonation depth based on a

differential evolution-based back propagation neural network

algorithm. Differential evolution (Fleetwood, 2004) was invoked

by the authors to ensure that the entire solution space is searched

and the global optimum is achieved irrespective of the initial

values. Another study published in the same year Lu and Liu

(2009) compared the efficiency of a back-propagation neural

network and a radial basis function neural network in predicting

the carbonation depth in prestressed concrete, and it concluded

that the latter has superior accuracy. Another key contribution of

this work is that it expanded the feature base to include the stress

level of concrete, cement-fine aggregate ratio, and cement-coarse

aggregate ratio. This study was followed by a lull which continued

till 2014, when a back-propagation neural network was leveraged

by Luo et al. (2014) to predict the length of partial carbonation

zone in concrete on the basis of water-cent ratio, cement content,

and relative humidity. The authors employed particle swarm

optimization (Kennedy and Eberhart, 1995) to achieve faster

convergence to the global minimum and stable solutions

oblivious of the parameter initialization. Several studies came

up in the following year, which added to the existing body of

knowledge. Taffese et al. (2015a) proposed a neural network-

based carbonation prediction model. The input to the neural

network comprised fifteen variables comprising numeric and

nominal data types such as cement type, carbonation period,

name of plasticizers and air-entraining agents, etc. However, the

most notable contribution of this work is that it identified the

most influential input features using a sequential search

algorithm (Kuncheva, 2014). In another paper published

contemporaneously, the authors (Taffese et al., 2015b)

resorted to decision trees for the prediction of concrete

carbonation depth. A regression tree, a bagged ensemble

regression tree, and a reduced bagged ensemble regression

tree were taken up for comparative performance evaluation,

and it was noticed that the reduced bagged ensemble

regression tree outperforms the other two algorithms in terms

of accuracy.

3.2 Prediction of elastic modulus

The elastic modulus is an important material property used

in deformation calculations and other engineering analyses and

design processes. However, it is hard to estimate the elastic

modulus of concrete experimentally because of the elaborate

and time-consuming test procedures. Demir and Korkmaz

(2008) were the first to demonstrate that given the

compressive strength, a fuzzy logic model (Kosko and

Burgess, 1998) can predict the elastic modulus of high

strength concrete more accurately than the predictive

formulas provided by various codes. The relative superiority

of ML models over the existing design codes was reaffirmed a

year later by a follow-up study by Demir (2008), which leveraged

an artificial neural network to accurately predict the elastic

modulus of normal and high strength concrete. Yan and Shi

(2010) in 2010, however, showed that support vector machine

(Cortes and Vapnik, 1995) has even better generalization ability

than artificial neural networks when it comes to elastic modulus

prediction for normal and high strength concrete. Ahmadi-

Nedushan (2012) further expanded the knowledge base in

2018 when he proposed an adaptive network-based fuzzy
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inference system model which outperformed an artificial neural

network and a support vector machine in predicting the elastic

modulus of normal strength concrete. In the case of high-

strength concrete, it performed better than an artificial neural

network but lost out to the support vector machine. Cao et al.

(2013) recently proposed a support vector machine-based

algorithm for elastic modulus prediction for self-compacting

concrete. However, the unique contribution of this study was

that it did not consider concrete compressive strength as an input

feature. Contrarily, it predicted the elastic modulus from

concrete density and a variety of coarse aggregate properties

such as compactness, maximum diameter, strength, surface

roughness, etc.

3.3 Prediction of chloride penetration

The chloride attack is a major safety concern for reinforced

concrete structures exposed to deicing salt or marine

environment. It corrodes the embedded reinforcement bars

leading to the deterioration of concrete. The extent of chloride

ingression is generally measured in terms of diffusion coefficient,

which is not easy to obtain experimentally due to time and cost

considerations. The state-of-the-art MLmodels come in handy in

such situations, obliterating the need for an expensive and time-

consuming material testing process. One of the earliest uses of

ML techniques in this area dates back to 2002, when Peng et al.

(2002), for the first time, showed that a cascade-correlation

neural network (Fahlman and Lebiere, 1989) can accurately

predict the chloride ion diffusion coefficient from the known

values of exposure time and the contents of various mix design

components such as cement, fly ash, micro-silica, and calcium

nitrate solution. After a gap of 7 years, Song and Kwon (2009)

proposed a back-propagation neural network for the prediction

of chloride penetration in high-performance concrete. The input

features included water-binder ratio and duration of exposure, in

addition to unit weights of cement, ground granulated blast-

furnace slag, fly ash, silica fume, sand, and coarse aggregate. The

estimated diffusion coefficients compared favorably with the

experimental values. Ghafoori et al. (2013) went a step further

and invoked linear and nonlinear regression and a feed-forward

back-propagation neural network for predicting rapid chloride

permeability of self-consolidating concrete based on cement

content, water-cement ratio, coarse and fine aggregate

contents, and various admixture dosages. A detailed

comparative assessment revealed that a back-propagation

neural network can achieve higher accuracy than regression-

based algorithms. This study was extended by Inthata et al.

(2013) to normal and high strength concrete containing

ground pozzolans such as fly ash, bottom ash, and rice husk

ash. Water-binder ratio, percent replacement of pozzolanic

materials, testing age, pozzolans type, aggregate-cement ratio,

and the actual compressive strength of concrete were considered

as input parameters. This study also reiterated the previous

finding that artificial neural networks are more accurate than

the linear and nonlinear regression approaches. A similar study

published a year later by Kim et al. (2014) further validated this

observation. A recent study by Hodhod and Ahmed (2013) also

demonstrated that a back-propagation neural network can

reliably predict the diffusion coefficient of high-performance

concrete based on water-binder ratio, cement content, fly ash

or slag content, and curing age.

3.4 Prediction of material strength

The strength of structural materials under various loading

conditions is an important property that is of utmost interest to

designers and engineers. There has been no dearth of empirical

and analytical models to predict the strength of concrete under

various loading conditions. However, Mansour et al. (2004) was

perhaps the first researcher to show that ML-based approaches

can beat the traditional methods in terms of accuracy. The

authors demonstrated this by predicting the shear strength of

reinforced concrete beams using a multi-channel back-

propagation neural network based on nine input parameters

which include concrete compressive strength, yield strength of

the transverse and longitudinal reinforcement bars, the span to

effective depth ratio, the shear span to effective depth ratio, the

transverse and longitudinal reinforcement ratios, and the cross-

sectional dimensions of the beam. The developed predictive

model outperformed the empirical equations provided by the

building codes and the prevailing softened truss model theories.

The next significant study in this area was by Prasad et al. (2009),

who leveraged an artificial neural network to predict the 28-day

compressive strength of self-compacting concrete and high-

performance concrete, as well as the slump flow of self-

compacting concrete. The predictions of the proposed model,

which was based on several input variables like cement content,

water-cement ratio, water-binder ratio, fly ash-binder ratio,

micro silica-binder ratio, etc., showed close correlation with

experimental data. In the following year, Naderpour et al.

(2010) proposed an artificial neural network-based approach

for the prediction of FRP-confined compressive strength of

concrete leveraging unconfined strength of concrete, the

elastic modulus of FRP, hoop tensile strength of FRP, the

thickness of FRP, and diameter and length of the concrete

specimen as input features. A comparison with existing

empirical models indicated the superior performance of the

proposed approach. Siddique et al. (2011) relied on an

artificial neural network to predict the compressive strength of

self-compacting concrete containing bottom ash as a partial

replacement of fine aggregates. The strength of the specimens

was predicted 7, 28, 90, and 365 days after casting based on the

contents of cement, sand, coarse aggregate, fly ash, bottom ash,

water, water-powder ratio, superplasticizer dosage, and a high
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correlation coefficient was recorded vis-à-vis experimental

results. In the same year, another study was published (Atici,

2011), which capitalized on multi-variable regression analysis

and artificial neural network to predict the compressive strength

of concrete containing blast furnace slag and fly ash on the basis

of additive properties and results of non-destructive evaluations

such as rebound number and ultrasonic pulse velocity. In general,

artificial neural networks performed better than multi-variable

regression analysis for various concrete mix designs and curing

times. An artificial neural network was also employed by Uysal

and Tanyildizi (2012) to estimate the compressive strength of

self-compacting concrete containing polypropylene fiber and

mineral additives exposed to high temperature. Strength

values predicted on the basis of the degree of heating and

contents of cement, mineral additives, polypropylene fibers,

and aggregates exhibited high accuracy compared with the test

data. A new fusion-based algorithm was proposed by Cheng et al.

(2012) by integrating fuzzy logic, a weighted support vector

machine, and a fast messy genetic algorithm to predict the

compressive strength of high-performance concrete. The

proposed hybrid approach demonstrated higher prediction

accuracy than a normal support vector machine and a back-

propagation neural network. However, despite a few isolated

cases of exceptions like this, artificial neural networks remained

the most favored approach for predicting concrete strength.

Dantas et al. (2013) used an artificial neural network for the

prediction of the compressive strength of concrete containing

construction and demolition waste. The model was based on

seventeen different input parameters. The strength values

evaluated after 3, 7, 28, and 91 days of hydration compared

favorably with the observed data. In a similar study published

concomitantly, Duan et al. (2013) exploited an artificial neural

network to predict the compressive strength of recycled aggregate

concrete on the basis of fourteen input parameters. Apart from

shear and compressive strengths, another parameter that was

looked into by previous studies was split tensile strength. Yan

et al. (2013) cashed in on a support vector machine to show that it

is possible to predict the split tensile strength of concrete from its

compressive strength value. The proposed model outperformed

the empirical relations provided in the building codes. Lee and

Lee (2014) invoked an artificial neural network to predict the

shear strength of FRP-reinforced concrete beam without stirrups

based on compressive strength of concrete, effective depth, shear

span to depth ratio, modulus of elasticity of FRP, and flexural

reinforcement ratio. The predictions of the proposed model

showed better agreement with test data than the design

formulas provided in the existing building codes. Aiyer et al.

(2014) explored a least square support vector machine and

relevance vector machine to predict the compressive strength

of self-compacting concrete based on the contents of cement,

sand, coarse aggregate, fly ash, water-powder ratio, and

superplasticizer dosage. The developed relevance vector

machine-based model was shown to outperform the support

vector machine as well as state-of-the-art artificial neural

network-based approaches. Moreover, it produces the

variance, which helps in the quantification of the prediction

uncertainty. This study also conducted a sensitivity analysis to

identify the most important parameters for prediction. Chou

et al. (2014) investigated the efficiency of various ML algorithms

vis-à-vis compressive strength prediction of high-performance

concrete. The authors considered a multilayer perceptron, a

support vector machine, classification and regression trees,

and a linear regression model as the base learners and

proposed an ensemble model by integrating different

classifiers following the voting, bagging, and stacking

strategies. A comprehensive performance evaluation

established the relative superiority of the ensemble learning

technique as opposed to the individual learning algorithms.

Karina et al. (2017) proposed a feed-forward artificial neural

network to predict the tensile strength of corroded steel plates

based on corroded surface data and material properties. The

model was trained and validated with data generated by finite

element simulations and tensile tests conducted in the laboratory.

3.5 Prediction of fatigue strength and
fatigue life

While concrete received a lot of attention from the scientific

community, studies on structural steel are limited. One of the

important deterioration phenomena associated with steel

structures is fatigue. Therefore, the prediction of fatigue

strength and fatigue life became the focus of a few studies in

recent times. Yan and Shih (2010) relied on a modified bagging

technique to predict the fatigue strength of steel. A publicly

available fatigue data set from the National Institute of Material

Science (NIMS) in Japan was used in this study to develop and

validate the prediction model. A new meta-heuristic approach

known as grey wolf optimizer (Mirjalili et al., 2014) was leveraged

for optimization of the model parameters. Zhou and Song (2021)

proposed an artificial neural network to predict the fatigue life of

stainless steel specimens under uniaxial and multiaxial loadings.

The proposed model was based on five genetic features, including

peak axial stress and the corresponding axial strain, peak

torsional stress and the corresponding shear strain, the axial

hysteresis energy, and the torsional hysteresis energy. Yang et al.

(2021) proposed a novel generalized deep learning method for

fatigue life prediction, whose applicability cuts across various

materials (e.g., metals, polymers, and composites), loading

modes (e.g., stress-controlled, strain-controlled), loading levels

(e.g., stress/strain amplitude, mean stress/strain), loading paths

(e.g., uniaxial/multiaxial, proportional/non-proportional), and

fatigue regimes (e.g., low-cycle, high-cycle). Zhang et al.

(2020) performed a comparative evaluation to show that deep

neural networks exhibit superior accuracy and generalization

ability than the conventional ML approaches such as support
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vector machine, random forest, Gaussian process regression, and

shallow neural networks when it comes to the life prediction of

components under creep, fatigue, and creep-fatigue conditions.

4 Current trends

4.1 Physics-informed artificial intelligence

Physics-based modeling represents the classical approach to

analyzing the behavior of a structure. The suitability of this

approach is limited to simple structures operating in controlled

environments. Extending this method to real structures involving

various complexities and uncertainties in terms of material

behavior, boundary conditions, etc., is an onerous task.

However, the advent of reliable, low-cost sensors has made

data more accessible in recent years. On top of that,

advancements in information technology and computational

capability have led to the emergence of numerous data-driven

algorithms for autonomous processing of the acquired sensory

data. A key component of this large body of data-driven

techniques is ML-based approaches, which require a sizable

amount of data to execute model training. This is one of the

significant bottlenecks which restrict the wide application of this

approach, particularly when high-quality labeled data are scarce.

Physics-informed ML models come in handy in such situations

by infusing domain knowledge into the learning process, which

partially mitigates the reliance on a large volume of data. This is a

relatively new research area, which is increasingly becoming

popular in the scientific community. One class of problems

where domain knowledge can be exploited to guide the

learning process is where a governing differential equation can

mathematically represent the structural behavior. In such cases, a

physics-based loss function is added to the existing data-based

loss function to serve as a regulator to guide the training process

to an optimal solution. As a proof of concept, Yuan et al. (2020)

considered the case of vibration of a simply supported beam

under transverse load, which can be analytically estimated using

the Euler-Bernoulli beam theory. It was first shown that an

artificial neural network can be used to solve the forward

problem. Subsequently, the inverse problem was taken up, the

focus of which was to reconstruct the entire displacement field

from sparse sensor measurements. The governing differential

equation was embedded into the loss function of an artificial

neural network. It was observed that physics-informed learning

led to lower reconstruction error than traditional data-driven

learning. Zhang et al. (2020) proposed a physics-informed multi-

LSTM network to estimate the nonlinear response of a structure

under given ground motion excitations. The predicted response

parameters included observable parameters such as relative

displacement and velocity, as well as non-observable

parameter such as hysteretic displacement. The physics

knowledge was incorporated into the loss function, which was

based on the equation of motion, state dependency, and

hysteretic constitutive relationship. The proposed framework

was validated on a 3-story moment-resisting frame and a

Bouc-Wen hysteresis model (Wen, 1976). Xu and Noh (2021)

proposed a physics-informed deep neural network model for the

seismic damage diagnosis of buildings exploiting historical

structural response data from other buildings. The knowledge

transfer was achieved in this study through adversarial domain

adaptation, which requires the extraction of domain-invariant

features from the source and target buildings. Physics-guided

weights were incorporated in the adversarial loss based on

structural similarities between buildings to mitigate the biases

introduced by less similar buildings. The new loss function

prioritized knowledge transfer from source buildings that are

physically more similar to the target building, leading to

improved damage prediction results. Zhang and Sun (2021)

proposed a physics-guided machine learning approach for

structural damage identification based on the fusion of neural

network and finite element model updating. In this approach,

operational modal analysis is first used to obtain the modal

properties from measured structural responses. A feature vector

is then constructed based on the derived modal properties. Also,

finite element model updating is conducted to obtain the damage

severities at the locations under consideration. The feature vector

is then extended to include the most probable damage location

indicated by model updating. A neural network is then used to

predict the damage class by minimizing a physics-based loss

function guided by the results of finite element model updating.

The proposed framework was validated by case studies of a

numerical steel pedestrian bridge model and an experimental

study on a three-story building model. Li et al. (2021) proposed a

deep learning technique for predictive modelling of vortex-

induced vibration of bridges. The proposed framework, which

was guided by a time-dependent ordinary differential equation

based on the semi-empirical Scanlan’s model and field

monitoring data, was validated on a real long-span bridge

subjected to real natural winds.

4.2 Explainable artificial intelligence

The general popularity of AI and ML techniques has

increased over the years, leading to a plethora of research

exploring automated solutions to various SHM problems.

However, the adoption of these technologies has unfortunately

not kept pace with R&D efforts, which can be attributed to the

opacity and black-box character inherent to these automation-

driven technologies. This, in recent years, has been responsible

for a new thrust on the explainability or interpretability of ML

algorithms aiming to inspire confidence among engineers,

practitioners, and stakeholders by enhancing transparency in

the decision-making process. One of the widely used explainable

AI frameworks is based on SHapley Additive Explanations
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(SHAP) (Lundberg and Lee, 2017), which is a game theoretic

concept used to interpret the predictions of an ML model. It can

also measure the contribution of different features by evaluating

an importance score corresponding to each feature. This

framework was leveraged by Mangalathu et al. (2020) to

explain the predictions of a random forest classifier which was

trained to identify the failure modes of RC columns and shear

walls based on various geometric and reinforcement properties.

The authors also ranked the input features in their order of

importance, which provided additional insight into the problem.

Later, this technique was utilized by Abadíaa et al. (2021) to

interpret the detection of damage-induced changes in the

structural response of a simulated pedestrian bridge by a

support vector machine-based outlier detection model.

Recently, Wakjira et al. (2022) employed this interpretation

technique on several ML-based regression models for

predicting the flexural capacity of RC beams strengthened

with fabric reinforced cementitious matrix composites. Pandey

et al. (2022), on the other hand, resorted to another explanation

technique called Local Interpretable Model-Agnostic

Explanations (LIME) (Ribeiro et al., 2016), which explains the

predictions of a complex model with the help of a local linear

approximation of the model around a specific input. The

feasibility of this approach was demonstrated on a CNN

designed to detect damage in a thin aluminum plate based on

its Lamb wave response. On the whole, it can be stated that this

research area is currently at an infantile stage and needs much

attention from the scientific community in the time ahead.

5 Future vision

The general popularity of AI technologies has increased over

the years, leading to a plethora of research exploring automated

solutions to various civil engineering problems. Notably, many

scientific studies came into existence focusing on AI techniques

for autonomous inspection and condition assessment of civil

infrastructures. However, the adoption of these technologies has

unfortunately not kept pace with the R&D efforts. As a result, it

has failed to evolve as a successful formula to bring about a major

breakthrough in intelligent monitoring of infrastructure systems

despite high expectations. This section presents a synopsis of

some of the major technical challenges that merit attention from

the scientific community.

5.1 Fully autonomous inspection robots

The development of AI technologies has three stages, namely

artificial narrow intelligence (ANI) (Kuusi and Heinonen, 2022),

artificial general intelligence (AGI) (Goertzel and Pennachin,

2007), and artificial super intelligence (ASI) (Yampolskiy, 2015)

(Figure 8). Artificial narrow intelligence assists humans in

performing a specific task. However, it is less intelligent than

humans and cannot completely eliminate human interventions.

The next stage of development is artificial general intelligence,

where an artificial agent is as intelligent as a human operator and

can therefore function independently without any human

supervision. The final stage of development leads to artificial

super intelligence, where the artificial agent is more intelligent

than a human being and can perform tasks that average humans

cannot do. The defining goal of AI research is to transition from

ANI to ASI via AGI. However, a review of previous studies

suggests that the state-of-the-art methods for autonomous

structural inspection are still constricted in the phase of

artificial narrow intelligence, where AI techniques are used to

facilitate specific tasks such as defect detection, segmentation,

and quantification. However, human intervention at this stage is

not yet dispensable, and therefore complete automation of the

process is still a long way to go. Therefore, future research should

aim to go the extra mile to make a giant leap toward artificial

general intelligence, where an autonomous robotic system with

FIGURE 8
Various stages of AI development.
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human-like intelligence shall act like a human inspector in terms

of exploring the environment, inspecting defects, collecting data,

and making intelligent decisions regarding the best follow-up

action, all by itself. This will indeed be a significant step forward

which will accelerate the automation process by unlocking the

next level in the autonomous inspection of civil infrastructure.

5.2 Internet of things and blockchain-
based edge intelligence for smart SHM

The future smart cities around the world will see the

deployment of a broad range of IoT sensors for intelligent

monitoring of civil infrastructure. The collected sensor data

will be processed on the edge leveraging AI-assisted edge

analytics to timely detect any structural defect posing a safety

risk to the infrastructure. However, a review of available literature

suggests that the existing IoT-based infrastructure sensing tools

are largely deficient in onboard computing capability and

therefore do not live up to the expectations of an intelligent

SHM system. On the other hand, the existing AI-based

infrastructure monitoring techniques are primarily based on

complex algorithms involving expensive computation, which

the traditional low-cost edge devices cannot support.

Therefore, future studies should aim to address this research

gap by developing lightweight AI solutions suitable for resource-

constrained edge environments to achieve a reliable real-time

response. A number of recent studies also explored decentralized

approaches enabled by the latest blockchain technologies as a

way to get around this problem (Jo et al., 2018; Sidorov et al.,

2020; Alenazy, 2021; Xu et al., 2021b; Gigli et al., 2022; Gordan

et al., 2021). Additionally, blockchain technology affords

efficiency, scalability, data security, information transparency,

and independent decision-making, which can play a pivotal role

in overcoming some of the pressing limitations of future IoT

platforms. However, research in this area is still at an infant stage

and requires heightened attention from the scientific community

in the time to come.

5.3 Multimodal learning

The existing vision-based inspection techniques rely mostly

on RGB data due to the immediate availability of low-cost, high-

resolution cameras. However, the traditional RGB cameras

project 3D objects to a 2D space, leading to an information

loss vis-à-vis distance and scale. Scientific studies in other

disciplines have shown that various non-conventional imaging

sensors such as depth, thermal, or hyperspectral cameras can

provide vital information that traditional RGB cameras cannot

capture. However, the SHM community has not fully exploited

this knowledge to its advantage. A few researchers have explored

multi-modal DL models in the past and observed that the fusion

of heterogeneous data can lead to enhanced detection accuracy.

However, many knowledge gaps still exist in this area which

warrant a more detailed investigation in the future. Additionally,

the recent augmented reality (AR) devices like Microsoft

HoloLens (Microsoft, 2022) are equipped with multimodal

sensors. Future studies should also look into utilizing the

devices for the purpose of AI-assisted multimodal inspection.

5.4 Synthetic training data

The AI-based approaches for monitoring civil infrastructure

require a lot of training data to produce accurate and reliable

predictions. However, one of the major bottlenecks in this area is

the lack of adequate field monitoring data, which restricts the

wide application of these techniques. Moreover, manual

annotation of the acquired data is labor-intensive and time-

consuming. It is also expensive as it requires a trained workforce

with domain knowledge to annotate the data accurately. Besides,

any inadvertent human error in the annotation process may

adversely impact the performance of the trained model.

However, synthetic data produced in a simulated environment

can provide a viable solution to many of these limitations

(Hoskere et al., 2019; Narazaki et al., 2021; Hoskere et al.,

2022). It enables the generation of a large amount of data in a

limited time. Large-scale synthetic data can also be produced by

generative adversarial networks (GANs) (Matinfar et al., 2022). It

also permits automatic annotation of the data, which saves a lot

of time and effort which go into the manual data annotation

process. Therefore, training AI algorithms using synthetic

training data should garner more attention from the research

community in the time to come.

5.5 Inspection solutions based on AI-
assisted mixed reality

Mixed reality is one of the key enablers of the digital

revolution the world is currently undergoing. Although a

number of studies in the past relied on virtual reality-based

solutions (Luleci et al., 2022), augmented reality holds a greater

promise for future inspection applications as it overlays digital

content and information onto the physical world. It is

indisputable that this technology will see extensive use in the

future inspection process to assist the human inspectors in quick

and accurate decision-making (Xu et al., 2021b,a; Aguero et al.,

2021). The multimodal data collected by heterogeneous sensor

systems mounted on a wearable AR device can be processed

onboard or on the cloud using smart AI-based techniques, and

the relevant information about any identified defects (e.g., crack

thickness, spalling depth, rebar exposure, etc.) can be projected

on the actual structure under investigation, facilitating real-time

visualization and prompt decision-making. Such an efficient
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FIGURE 9
Development of AR-assisted bridge inspection platform (Li and Chen 2022). (A) Bridge inspection workflow. (B) Anchored bridge model. (C)
Hand-free bridge inspection enabled by AR interface.
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human-machine interface provided by state-of-the-art AR

devices such as Microsoft HoloLens will not only enhance the

accuracy and quality of inspection but also reduce the latency and

scope of human errors. Future studies should focus on

developing efficient frameworks for seamless integration of

this technology into the existing structural inspection

process leading to safer and more resilient civil infrastructure

systems.

In this context, it may be mentioned that the corresponding

author’s research group recently developed a HoloLens-based AR

interface, which is intended to revolutionize the bridge inspection

pipeline through 3D data collection, storage, retrieval, and

analysis (Figure 9A). It provides the inspector with

intraoperative hands-free access to complex data and seamless

interaction with the real physical environment through bi-

directional wireless communications. It imports a high-

resolution 3D reconstructed and georeferenced bridge model

from a laser scanner preserving the model texture and size.

Following this, the imported bridge model can be overlaid on

the real physical bridge with the virtual and physical features

roughly aligned (Figure 9B). The model can be scaled, rotated,

and repositioned in the x, y, and z directions manually or by

inputting an accurate desirable value to improve the accuracy of

alignment. A world locking system and space pins can be

employed to accurately anchor the bridge model with the real

structure to benefit future revisits. Subsequent to this, the

Photograph mode in the function menu can be invoked to

capture and localize the defect areas. Additionally, the

preliminary bridge element category and the corresponding

service conditions can be annotated, as illustrated in

Figure 9C. The defect metadata and the legacy inspection data

can be saved for a future cloud synchronization with an Azure

SQL database. On the other hand, the Measure mode allows the

user to select the start point and raycast measurement points in

sequence, enabling dimension measurement along a specified

bridge element surface. The Control mode provides a user

interface for remote-piloting a robotic platform according to a

pre-defined mission plan and executing any given inspection

task. Last but not least, the Display mode portrays the current

and historical defect pictures, annotations, and the recorded

measurements to facilitate lucid visualization by the user,

assisting in further comparative analyses. Apart from the

Azure cloud database, a local database is maintained as a

temporary backup and synchronized to the cloud database

from time to time to prevent data loss and to allow seamless

access to data anytime and anywhere. The proposed AR-assisted

inspection system is believed to improve the quality of beyond-

visual-line-of-sight inspection as well as the overall bridge asset

condition assessment workflow. It can also be potentially

integrated with the semi-supervised assistive intelligence

framework developed by the authors (Karim et al., 2022),

leading to enhanced bridge elements defects detection in

inspection videos.

5.6 Online super-resolution of drone
inspection video

The quality of monitoring data is an important parameter

that profoundly impacts the accuracy of AI-based defect

detection algorithms. Any corruption of the monitoring data

can degrade the system performance considerably. However,

measurement noise is almost inevitable even in the most

advanced sensor systems. In the case of UAS-assisted visual

inspection, the video quality is often compromised due to the

use of low-cost cameras, motion blur induced by the UAS

movements, and distortions caused by fisheye lenses. Moreover,

physical inaccessibility often prevents the UAS from going very

close to the structure under investigation, resulting in low-

resolution imaging, which lacks the optical details necessary for

accurate analytics. In this context, the SHM community can

exploit the latest AI-based video super-resolution techniques

(Kondo and Ukita, 2021; Xiang et al., 2022), which can

reconstruct high-resolution videos from the original low-

resolution inputs. This will enable the UAS to maintain a

large working distance and viewing perspective by flying far

from the structure and thereby complete a given inspection task

within the boundary of limited flight time. Therefore, future

studies should focus on developing lightweight video super-

resolution algorithms compatible with the UAS’ limited

onboard computation capacity and competent for online

vision-based damage identification.

5.7 Vision-based forecasting of structural
deterioration

The existing schemes for structural inspection are mostly

schedule-based, where a structure is inspected at a regular time

interval. The lack of an accurate predictive model prevents the

infrastructure managers from moving to condition-based

inspection, where the inspection frequency can be adjusted

based on the predicted level of infrastructure deterioration.

Even though preventive maintenance of infrastructure is not a

new topic of investigation, only a few researchers, however,

have actually looked into deterioration forecasting based on

historical visual inspection data. Recent advances in GANs have

opened up new opportunities to fill this critical knowledge gap

prevailing in this important area of research (Bianchi and

Hebdon, 2021; Sekar and Perumal, 2022) and should be a

focus of future studies.

5.8 AI-driven analysis of global positioning
system data

In recent years, advanced SHM systems have witnessed an

increasing use of the Global Positioning System (GPS) for

Frontiers in Built Environment frontiersin.org19

Mondal and Chen 10.3389/fbuil.2022.1007886

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.1007886


accurate measurement of structural displacement (Yi et al.,

2010, 2013). A GPS offers several advantages, such as weather

independence, operational autonomy, and non-essentialness

of a line-of-sight between target points, which make it a

promising alternative to other traditional displacement

measurement systems. A modern GPS can achieve

subcentimeter to millimeter level accuracy in displacement

measurement at a frequency of up to 100 Hz and a maximum

distance of 30 km from the reference GPS receivers to the

receivers installed on the structure under investigation.

However, the increase in the use cases of GPS was

accompanied by a simultaneous increase in the requirement

for positional accuracy. One of the key elements vital for

ensuring high positional accuracy is the

coordinate transformation of GPS measurements from

local to global coordinate systems. A few researchers

looked into the prospect of leveraging latest AI techniques

for accurate processing of GPS data (Wang and Cha, 2021).

However, further attention is required from the

scientific community to make deeper inroads in this area of

research.

6 Concluding remarks

It is generally accepted that AI will drive the next revolution

in autonomous inspection and health monitoring of civil

infrastructure. The possibility of complete automation of the

inspection process resulted in a lot of attention from the

scientific community leading to a plethora of research in this

area. The need to summarize the large body of published

literature has given rise to several survey papers outlining

the current trends and potential future research directions.

However, the existing review papers fail to provide a clear

chronology of scientific advancements achieved by researchers

in the past. This paper filled this information gap by providing a

detailed account of how this vital area of research evolved

through several landmark studies coming into existence at

different points in time. It is believed that this paper will

afford the readers a quick familiarity with the historical

background, current trends, and future prospects of this

research arena. It will also help them identify the major

problem areas that need immediate attention from the

research community.
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