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Historic buildings are the cultural and traditional identity of a country. However,

these buildings are vulnerable to earthquakes because of their aged structure,

poor maintenance, and inadequate structural health monitoring. Therefore,

seismic vulnerability assessment is a critical aspect in the restoration and

retrofitting of heritage buildings. In this study, a comprehensive survey was

performed to collect the data of old and historic church buildings in and around

the twin cities of Bhubaneswar and Cuttack in Odisha for evaluating the

performance of these structures against seismic activity. The

macroelemental method for seismic vulnerability assessment was used to

calculate the seismic vulnerability index of church buildings. The probable

damage was estimated based on the obtained values of the mean damage

grade according to the EMS-98 scale and were compared with the grade of

damageability acquired using the rapid visual screening method for Indian

conditions. Damage probability matrices were constructed to determine the

probabilistic future damage. This study identified church buildings that require

immediate renovation and retrofitting.
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1 Introduction

Conservation of historic buildings is critical for safeguarding the cultural and

traditional identity of people and promoting tourism for economic growth. Historical

architecture considerably influences modern construction techniques. Furthermore, the

conservation of heritage structures economically boosts the country through tourism

development (Feilden, 2007). Traditional methods and numerous empirical techniques

that counteract local hazards can be used to construct these historic structures. However,

these structures require constant attention and robust preservation methodologies to

ensure their longevity in the long run (Mishra, 2021).
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The seismic vulnerability of a building is the extent to which a

building is susceptible to earthquakes (Aktan and Ho, 1990). Seismic

vulnerability assessment refers to the calculation of the degree of

susceptibility in terms of the damage estimated for future

earthquakes. Uncontrollable shaking resulting from earthquakes

can cause considerable damage and destruction to existing

structures. Past earthquakes in India have caused considerable

damage to property and life. Because earthquakes are sudden and

unpredictable, appropriate conservation techniques should be

followed to prevent damage to historic buildings. Several

researchers have carried out case studies for seismic vulnerability

calculations for various earthquake events, such as the 2003 Valle

Scrivia earthquake (Ruggieri et al., 2020b), 2009 L’Aquila earthquake

(De Matteis et al., 2019; Fazzi et al., 2021), 2010 Maule Chile

earthquake (Palazzi et al., 2020), 2012 Emilia-Romagna

earthquake (Formisano and Milani, 2019), 2017 Earthquake in

Ischia Italy (Salzano et al., 2022) etc. Therefore, the evaluation of

seismic vulnerability in historic buildings is critical for restoration.

1.1 Methods of seismic vulnerability
assessment

Several methodologies have been developed for performing

seismic vulnerability assessments of structures (Calvi et al., 2006;

Alam et al., 2012; Goded et al., 2018; Shakya et al., 2018; Fabbrocino

et al., 2019; Kassem et al., 2020; Aghabeigi and Farahmand-Tabar,

2021; Chieffo et al., 2021; Shabani et al., 2021). These methodologies

can be classified into analytical (D’Ayala and Speranza, 2003),

empirical based on macroelement approach (De Matteis et al.,

2020; Sangiorgio et al., 2021b), and integrated multidisciplinary

approaches (Dall’Asta et al., 2019; Grazzini et al., 2020).

Analytical methods can be classified into simplified and detailed

methods of vulnerability assessment (Shabani et al., 2021). The

simplified methods include the collapse-mechanism-based

methods proposed by Augusti et al. (2001), capacity-spectrum-

based, and fully displacement-based methods, whereas the detailed

methods include nonlinear static analysis (push-over analysis)

(Fortunato et al., 2017; Mosoarca et al., 2019; Olivito et al., 2019),

and nonlinear time history analysis (incremental dynamic analysis)

(Barbieri et al., 2013; Formisano et al., 2018; Briceño et al., 2019;

Mosoarca et al., 2020; Shehu, 2022). Rapid visual screening (RVS)

methods and seismic vulnerability index methods proposed by

Lourenço and Roque (2006) are typically used for seismic

vulnerability approaches.

The RVS method was first proposed in the US in 1988 in the

FEMA 154 report, and the latest updated version was released in

2015 (FEMA, 2017). Numerous RVS methods were proposed by

various countries based on the local conditions (Angeletti et al.,

1988, 2005; Ansal et al., 2003; Recommendations, 2006; ASCE,

2014). Arya (2011) proposed the RVS method for Indian

conditions. This method was subsequently developed further

by many authors (Sinha and Goyal, 2004; Jain et al., 2010).

Benedetti and Petrini (1984) were the first to propose a

vulnerability index method to determine the seismic vulnerability

of buildings. Vulnerabilitymethods were developed for various types

of architecture, such as churches (Ferreira et al., 2014), vernacular

architecture (Ortega et al., 2019; Ortega et al., 2021) and others, by

considering parameters specific to the structure. The

macroelemental method is a seismic vulnerability index method

developed for church buildings. In this method, the seismic

vulnerability is calculated by the division of the structure into

various macroelements (Lagomarsino et al., 2004). The elements

that affect the seismic performance were selected, and the

vulnerability index was calculated as the weighted average.

Hybrid methods are a combination of both methods in which

the empirical datasets of earthquake damage data and structural

models of nonlinear analysis are considered (Kappos, 2016).

Sarhosis et al., 2018 estimated seismic vulnerability of masonry

towers by applying both analytical and 3D-finite element analysis for

sixteen representative cases with different slenderness ratios, heights,

and shear areas. D’Altri et al., 2020 provided a comprehensive

overview of modelling strategies for brick-masonry structures,

categorising them into four groups: block-based models,

continuum models, macroelement models, and geometry-based

models. Based on the review, the authors pointed out that block-

based models are the most accurate in capturing the mechanical

response of masonry, while continuummodels are the most popular

for analysing masonry structures. Due to their simplicity, macro

models are commonly used by practitioners. However, their lack of

structural features such as interaction between several in-plane and

out-of-plane damages and toothing between orthogonal walls

presents certain limits to their predictions. In addition, by

carrying out limit-based analysis of equilibrium states, geometry-

based models can provide solutions for forecasting collapse

mechanisms in brick-masonry buildings.

1.2 Case studies of seismic vulnerability
assessment

This section details case studies of seismic vulnerability

assessment of historic and ordinary buildings across various

countries. D’ayala (2002) evaluated the seismic vulnerability of

historic masonry buildings subjected to earthquakes in the

Marche region in Italy based on the failure mechanism of the

structures. Failure mechanism identification and vulnerability

evaluation were used for assembling the earthquake damage data

and the online building of the database. The possible out-of-plane

modes of the collapse of the external walls were considered for the

formulation. The analysis revealed the importance of the load-

bearing walls in the out-of-plane collapse of the masonry walls in

historic buildings.

Several seismic vulnerability studies have been conducted for

Indian conditions. Rautela et al. (2015) evaluated the seismic

vulnerability assessment of buildings in Nainital and Mussoorie
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in the Himalayan region of India. The RVS technique was used with

the GIS and remote sensing tools, and it was followed by assigning

damage grades based on the EMS-98 scale (Grünthal, 1998), that is,

Grades 1 to 5. The economic loss that can be incurred was also

estimated. A total of 6206 buildings were surveyed, of which 14%

and 18% of the buildings in Nainital and Mussoorie, respectively,

exhibited a high probability of Grade 5 damage in the case of an

earthquake of intensity VII on the MSK scale. The results revealed

that most healthcare infrastructure surveyed is highly vulnerable to

seismic damage. Joshi et al. (2019) performed a seismic vulnerability

assessment on the lifeline buildings in the Himalayan region of

Uttarakhand, India, by using the RVS technique. A structural score

(S) was calculated based on the basic structural hazard score and

performance modification factors (PMFs). The BSF was calculated

from the previous earthquake damage data and assigned based on

the category of buildings, and the PMFs depend on several

parameters that affect the performance of the building during an

earthquake. According to this study, 72.14% and 36.14% ofmasonry

and RC structures of damageability Grades 5 and 4 would be unable

to offer services immediately after an earthquake, respectively.

Inadequate maintenance and neglected engineering were the

main causes of the deteriorated state of lifeline buildings.

Sangiorgio et al. (2021a) proposed a novel procedure for the

visual surveys of masonry buildings. This procedure involves the

AHPmethodology for analyzing data collected in the visual survey, a

novel survey form to perform on-site rapid visual surveys, and a

computerized tool created using a design support system for large-

scale data acquisition. The hierarchal structure for AHP is displayed

in Figure 1.

A global index, ISTRUCTURE was calculated by calculating the

average of the masonry index (IM), connection index (IC), and

wood elements index (IW). These indices have a value within the

range of 0–10 and are calculated by considering the parameters

involved in each subcriterion using the following equations. The

masonry index is expressed by the following expression:

IM � v1w 1,j( ) + v2w 2,j( ) + v3w 3,j( )w 3,j,k( ) + v4w 4,j( )w 4,j,k( )
+ v5w 5,j( )

(1)
The connection index is expressed as follows:

IC � v6w 6,j( ) + .. + v9w 9,j( )w 9,j,k( ) (2)

The wood flooring index is obtained by using the following

expression:

IW � v10w 10,j( ) + .. + v17w 17,j( ) (3)

This proposed methodology was applied to the SS. Salvatore

church in Italy. An ISTRUCTURE value of 1.52 was obtained. This

value indicates low damage and excellent structural conditions.

The values of IM and IC were more than 7 and require additional

investigations.

Sarraz et al. (2015) assessed the seismic vulnerability due to a

change in the code provisions of the Bangladesh National Building

Code (BNBC)-2012 in the seismic design coefficient for the region

for existing building stocks at Chandgaon in Chittagong city in

Bangladesh. Basic structural-hazard and performance scores were

calculated using the RVS technique and Indian evaluation methods.

Vulnerability factors, such as structural irregularities and story drift

parameters, were considered in the evaluation.

Perrone et al. (2015) suggested a RVS approach for determining

the safety index for RC hospital buildings by assessing the parameters

that influence the vulnerability of these class of buildings. Unlike

previous methodologies, in this study, non-structural elements were

considered. This methodology was based on questionnaires

consisting of 145 parameters that can be classified into structural

FIGURE 1
Macro criteria and subcriteria considered for AHP (Sangiorgio et al., 2021a).
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safety, nonstructural safety, and functional safety parameters, which

carry weights of 50%, 30%, and 20%, respectively, for the calculation

of the safety index. Each parameter is assigned three safety levels,

namely low, medium, and high. Six indices were calculated in the

safety index evaluation. Here, ISTR (structural elements), INSTR
(nonstructural elements), and IORG (organizational aspects), were

primary indices, whereas the other three indices were vulnerability

(VULN), exposure (EXP), and hazard (HAZ). This method was

applied to two Italian hospital buildings, and the results were

validated by performing pushover analysis on the same buildings.

The results of the twomethodswere consistent. D’Amato et al. (2019)

carried out seismic risk sssessment for Matera Cathedral using

different simplified methods and without carrying out complex

numerical analysis. Ruggieri et al. (2020a) developed this method

for assessing the seismic risk of RC school buildings in the Apulia

Region (Southern Italy) to identify the buildings that require

investigations and retrofitting. The safety index for the school

buildings was calculated considering all parameters that can

induce seismic risk. The method was applied to ten RC school

buildings, representing the RC school stock. The results revealed that

the high vulnerability level of the buildings could be primarily

attributed to in-plan and in-elevation irregularities and inadequate

structural detailing. The parameters that exhibit an increased effect

on the evaluation of the safety index are ISTR and HAZ. The results

obtained from the RVS method prove the effectiveness of the

methodology when compared to the pushover analysis results.

Halder et al. (2020) evaluated the seismic vulnerability of existing

unreinforced masonry (URM) buildings in the city of Agartala in

North-East India. The study included the URM structures affected

during the 5.7 magnitude earthquake in 2017 in Ambasa. An

analytical evaluation was performed based on the nonlinear static

method to develop the parameters of the bilinear capacity curve and

subsequently determine fragility functions. The fragility curves

obtained proved that the URM structures in Agartala were

critically damaged even for an earthquake of PGA of 0.18 g.

Therefore, their vulnerability was high.

2 Methodology

The macroelemental method was used to perform seismic

vulnerability assessment by calculating the vulnerability index.

Individual parameters or damage mechanisms that affect the seismic

performance of the structure were selected, and the vulnerability index

was calculated. This process is performed in three steps.

1. Assessment of possible damage mechanisms based on the

presence of macro-elements.

2. Calculation of the weights of parameters and damage

mechanisms using the analytical hierarchy process.

3. Calculation of the vulnerability index and mean damage grade

using the formulation and comparison of damage grades with

the RVS method.

2.1 Assessment of possible damage/
collapse mechanisms

The typical set of elements of a church building and the

collapse/damage mechanism involving those elements according

to Lagomarsino et al. (2004) are detailed in Table 1. For possible

damage/collapse mechanisms of a typical church building, please

refer to research paper of Penna et al. (2019).

2.2 Analytical hierarchy process

The analytical hierarchy process is used to determine the

solution to complex decision-making problems by using

mathematics and psychology (Saaty, 2008). AHP provides the

best solution based on the requirements of the user. This method

is most suitable for calculating the weights of the parameters or

criteria. The method follows the structural hierarchy from the

ultimate goal at the topmost level, criteria, and subcriteria in the

intermediate levels, and the available decision alternatives at the

bottom level.

TABLE 1 Possible collapse mechanisms of a typical church building
(Lagomarsino et al., 2004).

Macro-elements of church
building

Collapse mechanisms

Facade Facade overturning

Tympanum overturning

In plane mechanisms

Narthex

Nave Transversal response of the nave

Shear mechanism of lateral walls

Longitudinal response of colonnade

Vaults of central nave

Aisle vaults

Transept Transept façade overturning

Shear mechanism in transept

Transept vaults

Triumphal arches Triumphal arches

Dome Dome

Roof lantern

Apse Apse overturning

Shear mechanism in apse

Apse vaults

Roof covering Roof of nave

Roof of transept

Roof of apse

Ancillary rooms Irregular plan/elevation

Projections Projections

Bell tower Bell tower

Belfry Belfry
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The decision alternatives are subsequently analyzed by

comparisons through pair-wise comparison matrices, which

are reciprocal matrixes that contain the weights of the

parameters in the structural hierarchy in terms of

importance. Saaty’s ratio scale for pair-wise comparison of

parameter weights is presented in Table 2. The Eigenvector

method is used to determine the critical weights of the

parameters. The consistency of the weights was evaluated

by calculating the consistency index and the consistency

ratio. The consistency index formulation is as follows:

C.I � λmax − n( )/ n − 1( ) (4)

where C.I is the consistency index, n is the order of the

comparison matrix, λmax is the largest Eigenvalue of the

comparison matrix.

The consistency ratio is expressed as follows:

C.R � C.I( )/ R.I( ) (5)

where C.R, C.I and R.I represent the consistency ratio, consistency

index, and random index respectively based on n values Noble and

Sanchez (1993). The values of the random index are presented in

Table 3. A consistency ratio of less than 0.10 ensures that the

judgments are valid. If the value of the consistency ratio is greater

than 0.10, the judgments should be revised.

In the current method, the principle of AHP was used to

calculate the weights of all the available criteria and alternatives.

The ultimate goal is the seismic vulnerability of the church building.

The possible criteria and the existing alternatives available for each

criterion are selected based on the local church typologies observed

in the survey of churches. The six criteria and alternatives for each

and their weights are presented in Table 4. The first three criteria,

that is, the type of the element, failure mechanism, and type of

damage, were considered according to Uva et al. (2019) and three

new criteria, namely type of roofing system, type of structure, and

year of construction, were introduced. These parameters are

considered based on the typology of the surveyed churches.

2.3 Macro-elemental method

The macroelemental method refers to the calculation of

the seismic vulnerability of the structure by division of the

structure into various macroelements. The elements that

affect the seismic performance were selected, and

the vulnerability index was calculated as the weighted

average using the following equation (Lagomarsino et al.,

2004):

iv � 1
6
×
∑28

k�1ρk × vki − vkp( )
∑28

k�1ρk
+ 1
2

(6)

where iv is the vulnerability index; ρk is the weight assigned to the

mechanism based on its influence on the whole structure; vki is

the vulnerability score of macroelement; vkρ is the seismic score

of macroelement. Here, vki and vkρ are assigned a value between

1 and 3 for each parameter. The value of iv lies between 0 than 1.

The value of the vulnerability score (vki) is assigned based on the

presence of vulnerability indicators, such as thrusts of vaults and

heavy beams, and the value of a-seismic score (vkρ) was assigned

based on the availability of anti-seismic elements such as tie rods,

buttresses, and ring beams.

The weight assigned to each mechanism is calculated using

the following equation (Uva et al., 2019):

ρk � v1pw1j + v2pw2j + v3pw3j + v4pw4j + v5pw5j + v6pw6j (7)

TABLE 2 Saaty’s ratio scale for pair-wise comparison of weights of criteria/alternatives (Saaty, 2008).

Intensity of importance Definition

1 Equal importance between the criteria

3 One criterion is moderately important than the other one

5 Strong importance of one criterion over the other one

7 Very strong importance of one criterion over the other one

9 Extreme importance of one criterion over the other one

2, 4, 6, 8 Intermediate values between judgments

Reciprocals of the above numbers When a second activity is compared to an activity that has one of the above numbers assigned to it, the second activity has the
reciprocal value when compared to the first

TABLE 3 Values of Random index (Noble and Sanchez, 1993).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14

R.I 0 0 0 0.49 0.82 1.03 1.16 1.25 1.31 1.36 1.39 1.42 1.46 1.48
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2.4 Damage grade calculation

The mean damage grade is the interpretation of the level of

damage sustained by the building in case of a seismic event. The

formulation for mean damage grade (μD) is expressed as a function

of the intensity of earthquake in the macroseismic scale and

vulnerability index. For masonry structures, the formulation for

mean damage grade as expressed by Giovinazzi and Lagomarsino

(2004) is presented in the following equation:

μD � 2.5 × 1 + tanh
I + 6.25Vi − 13.10

Q
( )( ) (8)

where μD is the mean damage grade, I is the macroseismic

intensity, Vi is the vulnerability index (0 ≤ Vi ≤ 1) and Q is

the ductility index. The value of mean damage grade varies

between 0 and 5 and the damage level is classified based on

EMS-98. The conversion of earthquake intensity from the

macroseismic intensity to the MSK scale intensity is according

to the following equation (Vicente et al., 2011):

IMSK � 0.734 + 0.814 × IMCS (9)

The transformation ofVi to the vulnerability index calculated

by macroelemental method according to Lagomarsino and

Podestà (2004) is expressed in the following equation:

Vi � 0.67 + 0.55 × iv (10)

For reinforced concrete structures, the formulation for mean

damage grade as given by Ferreira et al. (2017) is expressed as

follows:

μD � 2.839 × 1 + tanh
I + 10.79Vi − 11.60

Q
( )( ) (11)

where µD is the mean damage grade, I is the macroseismic

intensity, Vi is the vulnerability index (0 ≤ Vi ≤ 1) and Q is the

ductility index. Here, Vi can be transformed to the vulnerability

index calculated by the macroelemental method according to the

method proposed by Ferreira et al. (2017) as follows:

Vi � −0.02 + 1.04 × iv (12)

The mean damage grade formulations from the

macroseismic method are derived based on the vulnerability

curves drawn on previous European earthquake data. Therefore,

these data are compared with grades of damageability obtained

from the RVS procedure of the Arya method (Arya, 2011).

2.5 Damage probability matrices

The damage probability matrices are constructed based on

the damage index and the binomial probability density function.

The damage index is calculated based on the existing level of

damage in the structure. The damage score (dk) with a value

between 0 (negligible damage) and 5 (very heavy damage, total

near collapse of macroelement) according to Table 5 is attributed

to each mechanism. The damage grade is calculated using the

following equation (Lagomarsino et al., 2004):

id � 1
5
×
∑28

k�1ρk × dk

∑28
k�1ρk

(13)

TABLE 4 Weights of selected criteria and alternatives.

Criteria (vi) Weight (ρk) Alternatives (wij) Weight (ρk)

Type of the element (v1) 0.16 Primary seismic element (w11) 1

Secondary seismic element (w12) 0.6

Secondary structural element (w13) 0.27

Non-structural element (w14) 0.1

Failure mechanism (v2) 0.07 Kinematic out of plane (w21) 1

Kinematic in plane (w22) 0.65

Not definable (w23) 0.1

Type of damage (v3) 0.06 Global damage (w31) 1

Local damage (w32) 0.5

Type of roofing system (v4) 0.11 Madras terrace style roofing (w41) 1

Steel truss with roof covering (w42) 0.7

RC slab (w43) 0.4

Type of structure (v5) 0.26 Masonry (w51) 1

Reinforced concrete structure (w52) 0.5

Year of construction (v6) 0.33 Before 1900 (w61) 1

1900–2000 (w62) 0.7

After 2000 (w63) 0.4
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where ρk is the weight of the mechanism, and dk is the damage

score assigned to each mechanism. The damage level (D) of the

building is assumed based on the value of the damage index

obtained according to Table 6. The binomial probability density

function (BPDF) was used to calculate the probability of the

occurrence of a damage having a level k and defined using the

following equation (De Matteis et al., 2016):

pk � 5!
k! 5 − k( )!

μd
5

( )k

1 − μd
5

( )5−k
(14)

where μd is the mean damage level calculated for all the buildings

based on the value of damage level (Dk) and calculated using the

following equation:

μd �
∑n

i�1Dk,i

n
(15)

3 Data collection and analysis

3.1 Data collection

Historical churches in and around the twin cities of

Bhubaneswar and Cuttack cities in Odisha, India, were visually

inspected to collect necessary data for the evaluation of the seismic

vulnerability index (Figure 2). The classification of the churches

based on the type of structure, year of construction, type of roofing

system, and the presence of macroelements is displayed in Figure 3.

3.2 Seismic vulnerability assessment

Among the surveyed churches, seismic vulnerability analysis

was performed on four buildings, including two masonry and

two reinforced concrete buildings (Figure 4). The analysis

involves the identification of macroelements in each building,

assigning the values of vki and vkρ, calculation of the weights of

the possible damage mechanisms by AHP followed by the

calculation of seismic vulnerability index and estimation of

the damage grade. Possible representations of collapse

mechanisms in the analyzed churches are displayed in Figure 5.

For example, if the facade overturning (mechanism k = 1) is

considered for the Church of Epiphany (Cuttack), it has

numerous buttresses (vkρ = 2) and lunettes of small sizes

(vki = 1). The building is a primary seismic element,

kinematic is out of plane, failure is global, madras terrace

styling roof, masonry structure, and was constructed before

1900. Therefore, Eq. 7 provides a weight (ρk) of 0.99. The

damage score (dk) of 1 was assigned to the mechanism

because of the slight existing damage. The current state of the

analyzed church buildings and their seismic vulnerability indices

and damage levels are explained in subsequent structures.

3.2.1 Church of epiphany, Cuttack
Church of Epiphany (Figure 2F) constructed in the year 1826,

is one of the oldest churches in Cuttack city. This historical

building is a masonry structure with timber truss roof and a built-

in madras terrace roofing style. The structure replicates ancient

TABLE 5 Damage score (dk) values De Matteis et al. (2016).

Damage score Definition

0 No damage

1 Negligible to slight damage (no structural damage, slight non-structural damage)

2 Slight structural damage and moderate non-structural damage; many cracks with falling of fairly large pieces of plaster

3 Slight structural damage and moderate non-structural damage; many cracks with falling of fairly large pieces of plaster

4 Heavy structural damage and very heavy non-structural damage,with development of first-mode mechanisms

5 Very heavy damage, with total or near total collapse of the macro-element

TABLE 6 Correlation between damage level (Dk) and damage index (id) Lagomarsino and Podestà (2004).

Damage level Damage index Description

0 id ≤ 0.05 No damage (slight damage in 1 or 2 mechanisms)

1 0.05 < id ≤ 0.25 Negligible—Slight (slight damage in some mechanisms)

2 0.25 < id ≤ 0.4 Moderate (slight damage in many and medium damage in 1 or 2 mechanisms)

3 0.4 < id ≤ 0.6 Substantial—heavy (medium damage in many and severe damage in some mechanisms)

4 0.6 < id ≤ 0.8 Very heavy (severe damage in many mechanisms and collapse of some elements)

5 id > 0.8 Destruction (more than two thirds of the elements are severely damaged)

Frontiers in Built Environment frontiersin.org07

Mishra et al. 10.3389/fbuil.2022.1018922

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.1018922


church architecture with a pitched roof, a bell tower erected at the

east end of the church, and buttresses all around the structure.

The narthex at the front end is a reinforced concrete structure

constructed in subsequent years. Based on the possible damage

mechanisms, the vulnerability index (vki) was obtained as 0.716.

The high value of the seismic vulnerability index could be

attributed to the presence of cracks and deterioration in roof,

triumphal arch, and other elements of the building. The damage

index (id) was obtained as 0.285, and therefore, the damage level

(Dk) of the whole structure was 2. According to the Arya method

(Arya, 2011), this church building can be classified [23] to be B+,

that is, unreinforced brick masonry in lime mortar.

3.2.2 Sacred Heart Church, Jatni
Sacred Heart Church (Figure 2I) is one of the old churches in

Jatni, Odisha. The church is a masonry structure with madras

terrace style roofing and is more than 50 years old. A cruciform

structure can be observed in the plan view. The roof is

strengthened by the addition of steel beams in the transverse

direction. Buttresses are present on the exterior of the structure.

Arch structures can be observed on the sides of the building.

Based on the possible damage mechanisms, the vulnerability

index (vki) was obtained to be 0.528. Even though the building is

old, the addition of transverse steel beams in the roof reduces the

vulnerability level. The damage index (id) is obtained as 0.175,

and the damage level (Dk) of the whole structure is 1. According

to the Arya method (Arya, 2011), the building can be classified as

C, that is, unreinforced masonry walls with roof and horizontal

bracing.

3.2.3 Bahilipada Church, Barakuda
Bahilipada Church (Figure 2E) is a 100-year-old cruciform-

shaped church in Barakuda, Odisha, and is similar to many

cathedrals and historical churches. The church has undergone

renovations, and a new reinforced concrete building was

constructed to address vulnerability concerns. Based on the

possible damage mechanisms, the vulnerability index (vki) was

0.35. The damage index (id) was obtained to be 0.05, and the

damage level (Dk) of the whole structure is 0. According to the

Arya method (Arya, 2011), the building can be classified as C+,

that is, the MR-RCF of ordinary design without earthquake or

wind resistant design with unreinforced masonry infill.

3.2.4 St. Vincent’s Pro Cathedral, Bhubaneswar
St. Vincent’s Pro Cathedral (Figure 2D) is one of the oldest

churches in Bhubaneswar, Odisha, The cathedral was opened to

FIGURE 2
(A) Pipili Baptist Church, Pipili (B) Ashraya Pur, Jamkouli (C) St. John Church, Jatni (D) St. Vincent Pro’s Cathedral, Bhubaneswar (E) Bahilipada
Church, Barakuda (F)Church of Epiphany, Cuttack (G)Our Lady of Most Holy Rosary Cathedral, Cuttack (H)Mount House Church of God, Cuttack (I)
Sacred Heart Church, Jatni (J) Oriya Baptist Church, Jatni.
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FIGURE 3
Analysis of surveyed church data.

FIGURE 4
(A) Church of Epiphany, Cuttack (B) Sacred Heart Church, Jatni (C) Bahilipada church, Barakuda (D) St. Vincent Pro’s Cathedral, Bhubaneswar.
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FIGURE 5
Possible collapse mechanisms in the analyzed churches.

FIGURE 6
Mount House Church of God, Cuttack.
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public in the year 1968. The church is a reinforced concrete

structure with a non-structural dome. This church is a pro-

cathedral with a cruciform shape. Based on the possible damage

mechanisms, the vulnerability index (vki) was 0.357. The damage

index (id) is obtained as 0.123, and the damage level (Dk) of the

whole structure is 1. According to the Arya method (Arya, 2011),

this building can be classified as C+.

3.2.5 Mount House Church of God, Cuttack
Mount House Church of God (Figure 2H) is a 120-year-old

church situated in Cuttack, Odisha. The masonry building is

currently being demolished, and a new RC building is being

constructed as displayed in Figure 6. The old masonry structure

has a madras terrace roof in the nave and side aisle parts of the

building, and it is strengthened by the addition of longitudinal

steel girders along with the timber beams. The walls and entry

arches were made of brick masonry. Reconstruction of the new

building was undertaken because of the high seismic

vulnerability of the existing masonry structure. The new

building was a reinforced concrete structure, which was

constructed to look like the original church building while at

the same time providing seismic resistance that was not present

in the old masonry structure. Cracks were observed on the walls

and some roof elements of the half-demolished structure. The

structure is a reinforced concrete structure with confined

masonry. The confined masonry type of construction is

known to exhibit superior earthquake resistant properties

compared with conventional RC structures. Therefore, the

method can be adopted to overcome the seismic vulnerability

problems.

4 Results and discussion

A field study was conducted on old and historic church

buildings in and around the Bhubaneswar–Cuttack twin

FIGURE 7
Comparison of mean damage grade values for various churches.
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cities. Of the eight churches on which the field study was

conducted, four churches (two masonry buildings and two

RC buildings) were selected for seismic vulnerability

assessment. The macroelemental method with all the

possible damage mechanisms proposed by Lagomarsino

et al. (2004) was used for calculating the vulnerability

index. The weights of parameters were calculated using

the analytical hierarchy process. The criteria and

parameters required for AHP were used as described by

Uva et al. (2019), and new criteria/parameters were added

based on the structural typology of the surveyed churches.

The mean damage grade was calculated to estimate the

damage at various earthquake intensities according to the

equation given by Giovinazzi and Lagomarsino (2004) for

masonry buildings and (Ferreira et al., 2017) for RC

buildings. The damage was classified based on the

obtained value of the mean damage grade according to the

EMS-98 scale (Grünthal, 1998) a and compared with the

grade of damageability obtained using the RVS method

for Indian conditions (Arya, 2011). Damage probability

matrices were constructed to determine the probabilistic

future damage.

4.1 Mean damage grades

The mean damage grades according to the macroseismic

method for the four churches at earthquakes of various

intensities are displayed in Figure 7. The damage level of

all buildings varied from negligible for an intensity of V to

very heavy damage for an intensity of IX. However, higher

values of damage grade were observed for the Church of

Epiphany, Cuttack, than those for other churches because of

its higher vulnerability index. The damage grades were lower

than with the RVS method for Indian conditions. For an

intensity of VII on the MSK scale, the Church of Epiphany

has a damage grade of 3.73, which represents a possibility of

heavy to very heavy damage according to EMS-98. A

moderate grade of damageability was estimated according

to the RVS method for the same intensity of earthquake. The

FIGURE 8
DPMs for analyzed churches.
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damage grade of Sacred Heart Church for this intensity was

3.12, which represents a possibility of substantial damage

according to EMS-98 and slight damage according to RVS

because both buildings were old masonry structures, the anti-

seismic elements (buttresses, tie rods) were not effective. The

other two churches are likely to sustain moderate damage

from an earthquake of intensity VII because they are newly

constructed RC structures. Because the cities are situated in

Zone III, which is a moderate seismic risk zone, an

earthquake of intensity of VIII or IX on the MSK scale is

not likely to occur in these regions. Therefore, the higher

values of mean damage grade should not be considered in the

seismic design of these structures.

4.2 Damage probability matrices

The damage probability matrices based on the current

damage state are displayed in Figure 8. DPMs revealed that

the St. Vincent Pro’s Cathedral and Sacred Heart Church have

41% probability of D1 level (negligible-slight) damage, while the

Church of Epiphany had 20.50% probability of D2 level

(moderate) damage in case of an earthquake of V–VI (MSK)

intensity.

5 Conclusion

The seismic performance of constructed facilities was

evaluated to understand the seismic behavior of existing

facilities. The research is a practice-oriented paper on using

macromodelling techniques for fast seismic assessment of

churches and prioritizes those churches that need immediate

intervention and informing the stakeholders of the building

about possible collapse risks. This is particularly applicable to

the rehabilitation of existing masonry structures, which are not

earthquake resistant. The macro element approach of seismic

vulnerability assessment can be applied for evaluation of the

seismic vulnerability and, following it, identified structures can

be suggested for further retrofit solutions. Based on the analysis,

the following conclusions were drawn for the existing churches

located in the Odisha region.

The Church of Epiphany, Cuttack, with a seismic

vulnerability index of 0.716, is the most vulnerable to

earthquakes among the surveyed churches, whereas the least

vulnerable church was Bahilipada Church, Barakuda, with a

vulnerability index of 0.35.

The damage grades obtained from the mean damage

grade formulations were higher than those of

damageability obtained through the RVS method for

Indian conditions.

The mean damage grade values indicate that the Church of

Epiphany and Sacred Heart Church can be substantially

damaged in case of an earthquake of VII (MSK) intensity,

whereas the other two churches can be moderately damaged.

Furthermore, the RVS method estimates moderate damage for

the Church of Epiphany and slight to negligible damage to other

churches for the same earthquake intensity.

DPMs revealed that the St. Vincent Pro’s Cathedral and

Sacred Heart Church have 41% probability of D1 level

(negligible-slight) damage and the Church of Epiphany has

20% probability of D2 level (moderate) damage in the event

of an earthquake of V–VI (MSK) intensity.

Considering the overall analysis, the 150-year-old Church of

Epiphany required the utmost attention because its seismic

vulnerability was higher than other buildings. Immediate

retrofitting techniques, such as surface treatment, epoxy

injection, and external reinforcement, should be used to

preserve the heritage structure from heavy damage. The other

three structures were renovated. Therefore, damage probability

matrices suggest seismic vulnerability and the probability of

damage is low.

As highlighted in the paper, Mount House Church of God,

Cuttack, was rebuilt using modern reinforcement concrete

solutions, which resemble its old architectural style. In this

way, the original form of the building is retained while

making it seismically resistant at the same time, acting as a

double-edged sword, thus serving both purposes. The solution

highlighted in this case study can be used for other applications

where seismic upgrade of existingmasonry buildings is desired or

possible, replacing them with reinforced concrete but preserving

the old architectural style. Thus the seismic upgrade solution can

be transferred to other structures.

In the future, seismic vulnerability curves should be

constructed for the estimation of probabilistic future damage

and the development of new structural health monitoring

techniques, considering the local empirical construction

methodologies, material characterization, different ceiling

systems, and construction techniques of Indian vernacular

architecture. This will aid in carrying out detailed structural

analysis of churches using micromodeling techniques and

validation of modal parameters by performing field ambient

vibration tests. Detailed structural analysis of common

typologies of churches will also be a step towards validation of

failure mechanisms. Furthermore, additional post-earthquake

seismic vulnerability assessments should be conducted in the

Indian region for realistic assessments in cases where damage due

to an earthquake can be determined.
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