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In recent years, due to the rapid progress of urbanization, the subway system

with the advantages of large transport capacity, punctuality, efficiency,

convenience and safety has become one of the main transportation modes

in metropolitan areas. With the increase in passenger flow, the comfort of

subway passengers has attracted extensive attention from the academic

community. In this paper, we begin by analyzing the characteristics of the

subway environment and sort out six environmental elements that affect

passengers’ comfort, including thermal environment, vibration, noise,

lighting, air quality, and air pressure. In addition, the measurement scheme,

calculation model, and evaluation method of each element are outlined based

on relevant norms and literature. Through reviewing the studies in the past

2 decades, it is found that the in-depth research is still in demand for a

comprehensive comfort evaluation model with multi-element coupling. A

deep understanding of the subway passengers’ comfort is the basis for the

design, development, and operation regulation of the subway environmental

control system. Measures to improve comfort, especially the exploitation of

energy-saving air conditioning systems, will provide strong support for the

sustainable and sound growth of the rail transit industry.
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Introduction

Recently, along with the global economic development and urbanization

construction, urban population and buildings have increased dramatically, resulting in

increased pressure on urban traffic. In addition, problems such as traffic congestion and

environmental pollution have gradually emerged. Therefore, in order to alleviate the
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contradiction of land use, expand land resources and improve the

population capacity of the city, practitioners turn their attention

to the development of underground space, thus the subway came

into being (Nezhnikova, 2016; Yu et al., 2020). As a novel

transportation mode, compared with traditional transportation

modes, the subway has the advantages of large passenger volume,

high speed, punctuality, and small occupation of urban land area.

With the rapid popularization of subways in metropolitan areas,

the ridership is increasing steadily. People’s requirements for

taking the subway are no longer only safety and convenience. The

comfortable environment has also become a major factor

motivating passengers to choose subway travel (Mohammadi

et al., 2020).

As a classification of the underground space, the guarantee of the

comfort of subway environment is not the same as that of the

aboveground buildings. Because the internal space form,

environmental elements, and internal personnel activities in

underground spaces are significantly different from those in

conventional buildings, personnel requirements for environmental

comfort vary greatly (Li et al., 2017). In general, the physical

environment elements closely related to human comfort mainly

include the vibration level, noise intensity, thermal and humid

environment, air pressure variation, and air quality conditions.

Moreover, there may be mutual synergistic or antagonistic effects

among them, which jointly affect the physiological response and

subjective evaluation of the human body to the artificial

environment. Currently, a considerable amount of research has

been devoted to analyzing the subway environment and

evaluating passengers’ comfort. This paper aims to make a

systematic review of the relevant studies in the past 2 decades

and critically point out the future research direction, expecting

that the follow-up targeted work can facilitate the sustainable and

sound growth of the rail transit industry.

The remaining sections of this paper are structured as

follows: Characteristics of the subway environment Section

illustrates the characteristics of subway environment by

comparing the aboveground buildings. Elements affecting

passengers’ comfort Section outlines the environmental

elements affecting passengers’ comfort and lists the research

work in the last 2 decades. Evaluation of environmental

elements Section elaborates on the evaluation approaches of

the six key elements respectively based on relevant standards

or literature. Limitations and future directions Section proposes

the limitations of the existing research and the priorities for

future work. The major conclusions of this review are presented

in Conclusion Section.

Characteristics of the subway
environment

In order to maintain a comfortable subway environment, it is

necessary to have an accurate and comprehensive grasp of the

characteristics of subway environment. Undoubtedly, the design

and evaluation criteria of aboveground buildings cannot be

automatically applied to the interior environment of the

subway because of their different characteristics.

For the subway environment, the characteristics are

explained as follows. 1) Subway belongs to underground

space, which is less affected by solar radiation, and the

surrounding rock and soil have strong heat storage capacity

(Kajtar et al., 2015; Li et al., 2017). Hence, the air temperature

fluctuation in the subway environment is small and usually

behaves as cool in summer and warm in winter. However, the

air humidity in underground space is generally higher than that

in buildings above ground, especially in summer. The humid

environment not only seriously degrades people’s comfort, but

also endangers human health. 2) High levels of noise and

vibration can result in discomfort to the human body. Since

the subway environment is relatively closed, severe noise

pollution and long reverberation time become a trigger for

neurasthenia syndrome (Dong et al., 2021). 3) Due to the lack

of natural lighting in the subway environment, people are unable

to connect to the external environment through windows as in

the aboveground buildings, which easily leads to the loss of sense

of time and direction. People in this environment for a long time

are also prone to depression and loneliness (Martinez-Nicolas

et al., 2014). 4) The air pollution problem in the subway

environment is also quite tricky. Due to the difficulty of direct

access to sunlight and natural outdoor breeze, fresh air is often in

short supply. As a result, various pollutants are not easy to be

diluted, and bacteria and molds tend to breed. The overall air

quality is thus an essential concern. (Xu and Hao, 2017). 5) High-

speed trains passing through tunnels and stations produce a

piston effect, namely, the air in the tunnel is driven by the train

and flows at high speed in the direction of the train, thereby

generating positive pressure at the front of the train and negative

pressure at the rear. The resulting drastic air pressure changes

will also have a significant impact on passengers’ comfort (Xue

et al., 2014).

Elements affecting passengers’
comfort

Like aboveground buildings (Leccese et al., 2021), the subway

space is also an artificial environment, which is an overall

environmental state formed by physical elements such as

thermal environment, light level, noise, air quality, mechanical

vibration, and atmospheric pressure. These elements are

inherently closely related to the comfort of subway passengers.

Furthermore, each element can be subdivided in detail: the

thermal environment can be represented by air temperature,

relative humidity, air velocity near the human body, temperature

of the envelope structure’ inner surface and other objects

(Ampofo et al., 2004); the light environment can be
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characterized by luminous flux, illuminance, color temperature,

etc. (Kruisselbrink et al., 2018); the sound environment can be

reflected by sound power, sound intensity, sound pressure, etc.

(Teodorović and Janić, 2017); the air quality is implicated in the

concentration levels of particulate matter (PM), total volatile

organic compounds (TVOC), carbon dioxide (CO2), carbon

monoxide (CO), nitrogen oxide (NOx), sulfur oxide (SOx),

ozone (O3), bacteria, fungi, etc. (Passi et al., 2021); the

mechanical vibration can be characterized by vibration

frequency, vibration intensity, etc. (Barone et al., 2016); the

air pressure can be quantified by background pressure,

pressure change rate, pressure transient intensity, etc.

(Schwanitz et al., 2013). In recent years, a considerable

amount of work has been dedicated to studying the impact of

TABLE 1 Previous work on the comfort of subway passengers in recent years.

Research Scenarios Environmental elements

Subway
station

Subway
cabin

Thermal
environment

Vibration Noise Lighting Air
quality

Air
pressure

Ampofo et al. (2004) √ √ √ — — — — —

Abbaspour et al. (2008)

Katavoutas et al. (2016)

Pan et al. (2020)

Passi et al. (2022)

Burnett and Pang, (2004) √ — — — — √ — —

Casals et al. (2016)

Lai et al. (2020)

Zhou et al. (2022a)

Gershon et al. (2006) √ √ — — √ — — —

Iachini et al. (2012)

Ghotbi et al. (2012) √ — — — √ — — —

Vogiatzis, (2012) √ — — √ √ — — —

Zou et al. (2015)

Vogiatzis et al. (2018)

Sun et al. (2014) — √ — — √ — — √

Han et al. (2016) √ — √ — √ √ √ —

Liu et al. (2017) √ — √ — — — — —

Assimakopoulos and
Katavoutas, (2017)

Li et al. (2021)

Yang et al. (2022)

Niu et al. (2017) √ √ — — — — — √

Amador-Jimenez et al. (2017) — √ √ √ √ √ √ —

Pan et al. (2019) √ — — — — — √ —

Izadi et al. (2019) √ — — — — — — √

Li et al. (2020) √ — √ — — — √ —

Wu et al. (2020)

Yu et al. (2021)

Lin et al. (2022)

Mohammadi et al. (2020) — √ √ √ √ √ √ —

Xu et al. (2020) — √ — — — √ — —

Xu et al. (2022)

Xiong et al. (2020) — √ — — — — — √

Li et al. (2022)

Ren et al. (2022) √ √ — — — — √ —

Zhou et al. (2022b) — √ √ √ √ — — —
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these six elements on the comfort of subway passengers, with

some researchers only examining the association between a single

element and comfort, and others exploring the coupling effects of

several elements on comfort. Table 1 lists the representative

relevant studies in the last 2 decades.

Evaluation of environmental
elements

Thermal environment

Thermal environment is generally the most important factor

in an artificial environment. Maintaining an almost constant

body temperature is a basic physiological requirement of the

human body. The thermal environment acts on the heat transfer

process between the human body and the outside, thus directly

affecting the thermal balance of the human body. As shown in

Eq. 1, when the body heat storage (S) is greater than zero, in other

words, heat production is greater than heat dissipation, the body

temperature rises. As a result, the human body will have a warm

feeling, and vice versa.

M −W − C − R − E − S � 0 (1)

where M represents the metabolism rate and can be obtained

based on the size of the body’s activity, W/m2; W means the

human mechanical work, W/m2; C denotes the amount of heat

that a person transferred into the surrounding environment by

convection, W/m2; R represents the amount of heat that a person

transferred into the surrounding environment by radiation, W/

m2; E means the heat lost by evaporation of sweat and the water

vapor exhaled by the body, W/m2; and S represents the heat

storage, W/m2.

Among the large number of thermal comfort indicators

proposed in the literature (Rocca, 2017), the most widely

used indicators are the Predicted Mean Vote (PMV) and the

Predicted Percentage of Dissatisfied (PPD). PMV proposed

by Professor Fanger represents the hot and cold sensation of

the vast majority of people in the same environment (Fanger,

1970). PMV adopts the seven-point scale (ASHRAE-55,

2013), namely from +3 (hot) to 0 (neutral) and then to -3

(cold). PMV is defined as:

PMV � (0.303e−0.036M + 0.028){(M −W)

− 3.05 × 10−3 × [5733 − 6.99(M −W) − pa]
− 0.42 × [(M −W) − 58.15]
− 1.7 × 10−5M(5867 − pa) − 0.0014M(34 − ta)

− 3.96 × 10−8fcl × [(tcl + 273)4 − (tr + 273)4]
− fclhc(tcl − ta)} (2)

where fcl denotes the ratio of a person’s surface area while clothed

to the surface area while naked; ta means the air temperature, °C;

tr represents the mean radiant temperature, °C; pa means the

partial vapor pressure, Pa; hc is the convective heat transfer

coefficient, W/(m2•°C); tcl is the surface temperature of

clothing, °C.

PPD provides the relationship between PPD and PMV

through the method of probability analysis. It is adopted to

predict the percentage of dissatisfied people under the current

PMV value. ISO7730 standard uses PMV-PPD index to evaluate

and describe the thermal environment (ISO, 2005). The

standard’s recommended value for the PMV index is between

-0.5 and +0.5, representing no more than 10% of the population

allowed to feel unsatisfied. The quantitative relationship between

PMV and PPD is as follows:

PPD � 100 − 95 exp[ − (0.03353PMV4 + 0.2179PMV2)] (3)

In addition, there is often a transition interval where people

stay briefly in buildings, which may connect two spaces with

different thermal environment parameters. When a person

passes through or stays in the area for a short time and his/

her activity state changes, the thermal sensation in this space will

differ from that when he/she stays in the same space for a long

time. Therefore, it is necessary to put forward the thermal

comfort index for this kind of transition space to guide the

determination of air conditioning design parameters. Thus, the

U.S. Department of Transportation proposed the Relative

Warmth Index (RWI) and Heat Deficit Rate (HDR) to decide

the design parameters of the subway stations’ platform, hall, and

carriage, respectively for warm and cold environments

(United States Department of Transportation, 1976). RWI and

HDR can be calculated as follows (Yang et al., 2022):

RWI � (M(Icw + Ia) + 6.42(ta − 35) + R0Ia)((65.2 × (5858.44 − p))/1000) (p> 2269Pa)
(4)

RWI � (M(Icw + Ia) + 6.42(ta − 35) + R0Ia)
234

(p≤ 2269Pa)
(5)

HDR � D

Δτ
� 28.89 −M − (6.42(ta − 30.56) + R0Ia)

(Icw + Ia) (6)

where Icw denotes the insulation of clothing based on wet cloth

assumption, clo; Ia denotes the insulation effect of air boundary

layer, clo; R0 represents the average incident radiant heat from

sources other than walls at room temperature, W/m2; p is the

vapor pressure at dry bulb temperatures, Pa; Δτ means the

exposure time, s; D means the thermal debt, J/m2.

M � M1 − T

360
(M1 −M2)(T< 360 s) (7)

M � M2(T≥ 360 s) (8)
Icw � Icw1 − T

360
(Icw1 − Icw2)(T< 360 s) (9)
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Icw � Icw2(T≥ 360 s) (10)
where M1 and M2 are the initial and terminal metabolic rate,

respectively, W/m2; Icw1 and Icw2 are the initial and terminal

insulation of clothing based on wet cloth assumption,

respectively, clo; T is the time required to go from the

previous environment to the next, s.

Ia � 0.3923v−0.4294a (11)

where va is the inducing speed of human body movement, m/s.

The parameters in the calculation formula of the above

evaluation indexes are usually obtained through field tests and

questionnaires, in other words, a combination of objective and

subjective means (Abbaspour et al., 2008; Pan et al., 2020). On the

one hand, the field measurement is carried out by selecting

representative locations in the subway environment, so as to

arrange corresponding sensors to monitor and record thermal

environmental parameters. It is worth emphasizing that the

layout density and height of measuring points in a certain

space need to be carefully determined (Katavoutas et al.,

2016). On the other hand, thermal comfort is a subjective

feeling of passengers. Even in the same thermal environment,

passengers will make different judgments. A large number of

questionnaires are needed to derive statistical rules. The content

of the questionnaire generally includes some basic information,

such as the age, gender, activity status and clothing of passengers.

In addition, thermal sensation vote (TSV), humidity sensation

vote (HSV), draft sensation vote (DSV), and thermal comfort

vote (TCV) should also be collected and analyzed (Yang et al.,

2022).

Vibration

Subway vibration will not only make passengers stand

unstable, but also easy to make passengers feel tired.

Moreover, it may even cause resonance in the internal organs

of the human body, endangering the physical and mental health

of passengers. The types of train vibration can be divided into

transverse vibration, longitudinal vibration, vertical vibration

and yaw vibration, longitudinal pendulum vibration, torsional

pendulum vibration around each axis. Among them, vertical

vibration, transverse vibration and yaw vibration have great

influence on passengers’ comfort. The main effect of vibration

on the human body is the frequency of vibration. The range of

vibration frequencies that humans can perceive is 1–1,000 Hz.

Generally, ground vibration in the frequency range of 1–80 Hz is

considered as perceptible whole-body vibration, to which the

human body is particularly sensitive and in which the resonant

frequencies of the organs are concentrated.

Vibration comfort is an indicator of how good or bad

passengers feel when riding the subway caused by vibration.

Currently, the evaluation of vibration comfort is primarily from

two perspectives: operating stability and riding comfort.

According to GB/T 5599–1985, operating stability (W0) is

determined by vibration frequency and vibration acceleration,

and its expression is:

W0 � 3.57









A3

f
F(f)10

√
(12)

where A denotes the vibration acceleration, m/s2; f means the

vibration frequency, 1/s; F(f) denotes the frequency correction

coefficient, 1/s.

In accordance with the above standard, whenW0 is less than

2.5, the stability level is I (excellent); whenW0 spans 2.5–2.75, the

stability level is II (good); when W0 spans 2.75–3.0, the stability

level will be III (qualified).

Additionally, riding comfort is a measure of the average comfort

of passengers and staffs on the subway. The evaluation procedure is

based on the measurement of the vibration acceleration on the train

floor. It can be obtained by calculating the acceleration in different

directions at the position of the human body in line with the UIC

513–1994 standard (Mohammadi et al., 2020). It is worth

highlighting that both two standards also elaborate on the

measurement methods for the parameters in each indicator,

guiding the placement of acceleration sensors and the sampling

duration.

Noise

Noise, in the definition of physics, is the sound of a sounding

object doing irregular vibrations; in the definition of physiology,

it is the discordant sound that interferes with people’s normal

study, work and rest. In a noisy environment, it is easy to make

people bored and agitated. Prolonged and high-decibel noise can

also cause damage to the auditory system (Basner et al., 2014).

The subway itself will produce some noise when operating,

coupled with the noise of numerous passengers, thus the

disturbing sound affects the comfort of subway passengers to

a great extent.

The effect of noise on human body is not only related to the

noise value, but also related to the exposure time (Rocca et al.,

2022). To this end, the concept of “equivalent continuous

A-weighted sound pressure level (Leq)” is defined, with the

following expression (Ordoñez and Hammershøi, 2014):

Leq � 10 × lg( 1
T0

∫T0

0

p2(t)
p2
0

dt) (13)

where T0 denotes the duration of time signal; p(t) denotes the

instantaneous sound pressure; p0 denotes the reference effective

sound pressure (20 µPa).

As a reference for noise thresholds, the U.S. Environmental

Protection Agency (EPA) and the World Health Organization
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(WHO) suggested a maximum daily Leq of 70 dBA over 24 h and

a limit of 75 dBA over 8 h with the same energy (Mohammadi

et al., 2020). Furthermore, for shorter exposure durations, the

health threshold can be set to 80 dBA for 3 h and 90 dBA for

30 min (Neitzel et al., 2009). In addition, the maximum

permissible limits for train noise can also be identified from

the Chinese standard GB 14892-2006.

Lighting

The influence of subway lighting environment on passengers is

reflected on both physiological and psychological levels. The subway

lighting system mainly relies on artificial light sources. Poor lighting

environment will have a physiological impact on passenger comfort,

primarily caused by inappropriate illumination, low illumination

uniformity, glare, and maladaptive light-dark transitions. In

addition, the psychological influence mainly includes color

temperature, light color and atmosphere sense, light source height

and relaxation degree, space shadow and tension sense.

To examine the visual comfort of passengers in the subway

environment, it is necessary to combine objective field tests with

subjective questionnaires (Bian and Luo, 2017). The objective

approach is proposed to use relevant equipment to measure

indicators that can characterize the light environment. A

convincing test protocol can be adopted in accordance with the

standards (e.g., Method for Determination of Illumination in Public

Places GB/T 18204.21-2000). The physical quantities to be recorded

cover illuminance, irradiation uniformity, color temperature of light

source, glare, color rendering, etc. (Carlucci et al., 2015; Leccese et al.,

2020; Shafavi et al., 2020). In turn, the design limits of the indicators

specified by the relevant standards (e.g., General Technical

Specification for Metro Vehicles GB/T 7928-2003, Railway

Applications - Electrical Lighting for Rolling Stock in Public

Transport System EN 13272-1:2019) can be used to compare

with the measured data (Xu et al., 2022). The subjective

approach aims to obtain passengers’ visual responses to the

subway environment through questionnaire surveys. In addition

to collecting basic data and behaviors of passengers, designers also

need to ask passengers to rate their visual comfort through non-

professional language and ask for information such as their

preferences (Allan et al., 2019).

Air quality

Poor air quality not only brings people discomfort, but also

seriously threatens human health. In such a relatively closed

environment as subway space, air pollution deserves more and

more attention. The poor air quality in the subway environment

can be caused by the following reasons. Firstly, the subway

station is a long and narrow underground space with good air

tightness. Only a few station entrances and ventilation shafts are

connected to the outside, and the internal air environment of the

station is regulated only by the air conditioning system. Hence,

too little fresh air and insufficient exhaust air will lead to an

increase in the concentration of pollutants (Klepczyńska

Nyström et al., 2010; Martins et al., 2015). Secondly, people

will carry particulate matter and breathe out certain organic

matters, such as inhalable particulate matter, carbon dioxide,

volatile organic compounds, etc. Thirdly, formaldehyde and

volatile organic compounds released by construction and

decoration materials in the station also deteriorate indoor air

quality (Passi et al., 2021). Fourthly, most of the subway stations

are buried deep underground, lacking sunlight, and it is easy to

breed bacteria, mold and other microorganisms.

The existing literature has comprehensively expounded the air

pollutants’ types, concentration levels, sources, influencing factors and

impacts on human health in the subway environment (Cepeda et al.,

2017; Xu and Hao, 2017; Luo et al., 2018; Chang et al., 2021). This

section focuses on the evaluation scheme of subway air quality. The

evaluation of subway air quality is subjective in nature because

different people have different levels of perception of air

conditions. Consequently, in addition to the data obtained from

field measurement, it is also essential to acquire a certain number of

passengers and staffs’ satisfaction with subway air quality,

environmental comfort, and air odor sense. Therefore, on the one

hand, testing instruments should be reasonably set up in the subway

environment according to relevant standards or norms (refer to

Indoor Air Quality Standard GB/T 18883-2002) to monitor the

concentration of air pollutants. Mathematical models can be used

to synthesize the measured data and assess the subway air quality

against the standard limits. For example, some Chinese standards set

concentration limits for major pollutants (Ambient Air Quality

Standard GB 3095–2012, Code for Design of Metro GB 50157-

2013, Standard for Design of Ventilation Air Conditioning and

Heating of Urban Rail Transit GB/T 51,357–2019, etc.) (Leng and

Wen, 2021). On the other hand, the subjective evaluation of the

subway air quality can be collected by questionnaire survey. This

method directly takes into account the human factor and is a perfect

complement to the objective field test method. Passengers’

background information (gender, age, etc.), exposure to the

subway environment (duration of each ride, number of rides per

week, etc.), and subjective perceptions about air quality in different

periods and locations should be included in the questionnaire setting.

In short, a favorable air quality in the subway environment can be

characterized as: no known pollutants in the air reach the

concentration index limits determined by the recognized authority,

and the vast majority of people (>80%) do not express dissatisfaction.

Air pressure

During the high speed of a subway train, the air inside the

tunnel fluctuates violently, forming complex pressure waves

(pressure transients). The sharp pressure fluctuations outside
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the train will be transmitted into the cabins through the gaps in

the train body, air ducts and air conditioning system, causing

pressure fluctuations inside the train. The pressure waves act on

the eardrum, producing pressure difference between the inner

and outer sides of the tympanic membrane, thereby resulting in

symptoms such as tinnitus and earache (Raghunathan et al.,

2002). In extreme cases, pressure fluctuations may rupture the

eardrum. Therefore, the issue of subway passengers’ comfort

caused by aerodynamic characteristics is gaining attention.

The criteria used to ensure the eardrum comfort of the crews and

passengers comprise the pressure change magnitude Δp, the pressure

change rate (pressure gradient) dp/dt, and the pressure monotonic

change value in a certain periodΔp/Δt. Among them,Δp/Δt overcomes

the limitations of the former two. It provides the threshold of pressure

fluctuation associated with comfort level from the physiological

perspective. The standard UIC 799–11 states that the maximum

pressure change within 3 s should not exceed 800 Pa (Liu et al.,

2020). In addition, it is worth mentioning that the investigation of

pressure fluctuation patterns can rely on both data acquisition from

field pressure sensors and numerical simulation (Kim and Kim, 2007;

Niu et al., 2017; Li et al., 2022).

Limitations and future directions

The current research on subway passengers’ comfort still has

limitations and is expected to be improved by the forthcoming work.

As can be seen from Table 1, most of the work has focused on

exploring the correlation between a single environmental element

and comfort level. However, comfort is a synthesis of physical,

physiological and psychological reflections, and is jointly affected by

various factors in the passengers’ environment. Therefore, it is

essential to consider the integrated effect of multiple elements

when evaluating passengers’ comfort. At this stage, it is already

possible to monitor environmental parameters through gauges,

record physiological indicators through wearable sensors, and

access subjective evaluations through questionnaire surveys. The

next challenge is how to judiciously incorporate the collected data

sets to develop a comprehensive comfort evaluation model with

multi-element coupling. There have been several active attempts to

assign subjective and objective weight coefficients for each

environmental element by fuzzy analytic hierarchy process and

rough set theory, so as to establish a comprehensive comfort

evaluation index (Huang and Shuai, 2018; Ebrahimi and

Bridgelall, 2021).

Improving the service level of the rail transit industry to enhance

subway passengers’ comfort is still a critical issue to be addressed. Based

on the above-mentioned comprehensive comfort theory, the

significance of each environmental element can be ranked, so that

corresponding mitigation measures can be targeted. The progressive

improvement of the subway environmental control system can start

from the following aspects: heating, ventilation and air conditioning

(HVAC) systems, train shock absorption modules, air tightness

regulation, lighting equipment, air purification devices, building

materials, etc.

The HVAC system is a key link to control the thermal

environment and air quality of the subway space, while it is the

major energy consumer of the subway system (Guan et al., 2018).

More efforts are needed to achieve reduced energy consumption in

HVAC systems while maintaining inherent functionality and

passenger comfort. A recent study has reviewed ten energy-saving

strategies for HVAC systems and suggested highlights for future

work (Yu et al., 2021). The proper use of passive ventilation strategies

as well as variable frequency devices is expected to contribute to the

construction of a sustainable metro network.

Conclusion

The subway has emerged as an indispensable means of

transportation for inhabitants in metropolitan areas. With the

improvement of living standards, passengers’ requirements for

subway transportation are not limited to safety and convenience.

A comfortable environment has gradually become a focus of people’s

attention. This paper systematically reviews the achievements of the

past 2 decades on the topic of subway passengers’ comfort. Six

environmental elements that have significant impacts on comfort

level are identified, covering thermal environment, vibration, noise,

lighting, air quality, and air pressure. Moreover, measurement

schemes, calculation models, and evaluation methods for each

element are summarized according to the relevant standards and

references. At present, considerable research has been devoted to

elucidating the relationship between a single element and passengers’

comfort, while the establishment of a comprehensive comfort

evaluation model coupled with multiple elements still needs

further effort. In addition, the HVAC system plays an important

role in the subway environmental control system and consumes a

large amount of energy. The rational employment of passive

ventilation strategies and variable frequency devices will help to

build a comfortable, healthy and sustainable subway network.
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