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The modeling and simulation of structural systems is a task that requires high

precision and reliable results to ensure the stability and safety of construction

projects of all kinds. For many years now, structural engineers have relied on

hard computing strategies for solving engineering problems, such as the

application of the Finite Element Method (FEM) for structural analysis.

However, despite the great success of FEM, as the complexity and difficulty

of modern constructions increases, the numerical procedures required for their

appropriated design become much harder to process using traditional

methods. Therefore, other alternatives such as Computational Intelligence

(CI) techniques are gaining substantial popularity among professionals and

researchers in the field. In this study, a data-driven bibliometric analysis is

presented with the aim to investigate the current research directions and the

applications of CI-based methodologies for the simulation and modeling of

structures. The presented study is centered on a self-mined database of nearly

8000 publications from 1990 to 2022with topics related to the aforementioned

field. The database is processed to create various two-dimensional bibliometric

maps and analyze the relevant research metrics. From the maps, some of the

trending topics and research gaps are identified based on an analysis of the

keywords. Similarly, the most contributing authors and their collaborations are

assessed through an analysis of the corresponding citations. Finally, based on

the discovered research directions, various recent publications are selected

from the literature and discussed in detail to set examples of innovative CI-

based applications for the modeling and simulation of structures. The full

methodology that is used to obtain the data and generate the bibliometric

maps is presented in detail as a means to provide a clearer interpretation of the

bibliometric analysis results.
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1 Introduction

Nowadays, modern construction projects are becoming

much more challenging for structural engineers in terms of

the required numerical simulations and procedures to achieve

sustainable, safe, and economic designs (Plevris and Tsiatas,

2018). A few examples of some of these challenges are: 1) the

usage of newly developed materials (Khan et al., 2020); 2) the

complex geometries that arise from the implementation of

structural optimization techniques (Vantyghem et al., 2020);

3) the required high resilience under extreme loading

conditions (Frangopol and Soliman, 2016); 4) quantification

and modeling of uncertainties (Möller et al., 2000). Therefore,

it is clear that quick, robust, and reliable simulation andmodeling

techniques are required to ensure the feasibility, stability, and

overall safety of modern structures. For many years now, using

the Finite Element Method (FEM) (Bathe, 2008; Liu et al., 2022)

has become a standard procedure for most practical applications

in the analysis and design of structures. Despite the enormous

success of the FEM in the field of structural engineering so far, the

truth is that its traditional implementation is becoming

impractical for some of the previously mentioned modern

challenges.

Mathematical models that are created with a precise

analytical description, such as FEM, are also referred to as

hard-computing models/methods. Because of their precise

formulation, hard-computing models produce deterministic

and exact results that rely completely on the quality of the

given input parameters. Nonetheless, for certain problems and

applications, the estimation of the model parameters may be a

difficult task that cannot be achieved with complete certainty

(Fong et al., 2006). Moreover, there are highly complex

phenomena that are just too difficult to be mathematically

described with high precision, e.g. modeling material

composites or including complex mechanical behaviour such

as cracking or yielding. In such cases, there are normally two

alternatives to solve the problem: 1) create a detailed but very

computationally expensive model (Lin et al., 2022); 2) define a

series of rules and assumptions to drastically simplify the system

(Shi et al., 2018). Either way, both approaches significantly

reduce the practical applicability of the method. Thereby, it is

well-known that hard-computing strategies generally lack

robustness.

In contrast to hard-computing deterministic models, soft-

computing (SC) methods are another category of strategies that

are used to find approximate solutions to complex problems

(Ibrahim, 2016). These methods are inspired by multiple

biological processes that are observed in nature. For example,

the process of natural evolution, the way neurons process

information inside the brain, and the complexity of the

human language. Inspiration from these three nature

processes have given birth to the popular methods of

evolutionary algorithms (EA) (Katoch et al., 2021), artificial

neural networks (ANN) (Schmidhuber, 2015), and fuzzy

systems (FS) (Blanco-Mesa et al., 2017), respectively. The soft-

computing paradigm is also commonly referred to as

computational intelligence (CI), and it is considered a sub-

field of artificial intelligence (AI) (Bezdek, 1994). According to

the IEEE Computational Intelligence Society (IEEE-CIS, 2021),

CI is the theory, design, application, and development of

biologically and linguistically motivated computational

methods in which three main pillars are identified: artificial

neural networks, fuzzy systems, and evolutionary algorithms.

Nevertheless, CI is not limited to these areas as it is an evolving

field that embraces new emerging nature-inspired computational

strategies, e.g. ambient intelligence, artificial life, and social

reasoning, among others.

In essence, soft-computing techniques tend to increase the

robustness of the solution strategy by replacing some of the

complex mathematical operators that are part of the hard-

computing approach (such as differential equations), with

approximations based on probabilistic and stochastic methods

(such as data-driven regression models and optimization

algorithms) (Ghaboussi, 2018). Naturally, a full soft-

computing solution approach is not often the best strategy for

a particular problem. However, it may present a potential

opportunity to enhance the hard-computing model. Therefore,

sometimes the most efficient alternative is to combine the best of

both worlds, the accuracy contained in the mathematical

description of the hard-computing approach, and the added

robustness from the soft-computing strategy (Ovaska, 2004).

This paper aims to explore the current research directions

regarding the application of the CI paradigm into the modeling

and simulation of structures. It is evident that CI methodologies

are quickly gaining popularity and acceptance in the field of

structural engineering. This may be attributed to the fact that the

research, technology and tools that allow the study and

application of CI techniques are rapidly maturing and

becoming easily accessible. Therefore, the fast-paced

environment, and the potential opportunities that arise with

it, serve as the main motivation for this study.

The implementation of soft-computing techniques in

simulation and modeling of structures is an area of research

that has opened new discussions and led to innovative research

and applications. Various authors have published comprehensive

review-oriented studies on similar areas in the last couple

decades. For instance, a review of ANNs in the field of civil

engineering was conducted by Ian Flood as early as 1994 (Flood

and Kartam, 1994a,b). Similarly, Adeli (Adeli, 2001a) also

reviewed the applications of ANNs in civil engineering in the

decade 1990 to 2000. Ghaboussi (Ghaboussi, 2010a) provides a

thorough and comprehensive panorama regarding the

advantages and limitations of the soft computing techniques

to the traditional hard computing approach in the context of

computational mechanics, focusing but not limited to the usage

of artificial neural networks. More recently, the work from Salehi
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et al. (Salehi and Burgueño, 2018) provides a general overview of

the emerging artificial intelligence methodologies in the

structural engineering domain. Falcone et al. (Falcone et al.,

2020) reviews the application of soft-computing strategies in

earthquake and structural engineering. Likewise, Lu et al. Lu et al.

(2022) explore four main AI-driven studies also in the field of

earthquake and structural engineering. Kumar and Kochmann

(Kumar and Kochmann, 2022) identify promising applications of

machine learning methods in computational solid mechanics.

Lagaros and Plevris (Lagaros and Plevris, 2022a,b) analyzed the

emerging AI powered methodologies in civil engineering,

focusing in recent contributions from 2021 to 2022.

What stands-out in the investigation presented in this paper is

that it is centered around a data-driven bibliometric analysis using

modern sciencemapping techniques. The analysis is conducted on a

vast database of 8107 publications relevant to the application of CI

methods in the simulation andmodeling of structures. The database

is self-obtained using advanced search capabilities provided by the

Scopus scientific web-based search engine (Elsevier, 2021a). Our

main goal is to explore the available scientific literature in a broader

sense, letting the data speak for itself to provide an unbiased report

without human intervention. In addition to the bibliometric analysis

results, a detailed description of the implemented science mapping

methodology is presented, which is carried out using custom-made

algorithms and visualization tools for the purposes of the study. The

later is included as an attempt to provide the reader with the

necessary tools for a correct interpretation of the bibliometric

analysis results.

Lately, the popularity of bibliometric analysis-based studies such

as the one presented in this paper, has significantly increased due to

the development and accessibility of modern data analysis tools and

web-based scientific databases. This has resulted in numerous

studies adopting these innovative techniques. Particularly, in the

field of civil engineering, such methodologies involving bibliometric

maps have been used to uncover the state of the art regarding

blockchain technology in Civil Engineering (Plevris et al., 2022); to

map the social network interactions in the sub-field of sustainability

(Zhou et al., 2020); to study the status and development trends of the

Journal of Civil Engineering and Management (Yu et al., 2019);

mapping the progress and advances of the industry 4.0 in

construction (Zabidin et al., 2020); to investigate the usage of

BIM technologies in the Structural Engineering field (Vilutien

et al., 2019).

The rest of the paper is organized as follows. A brief overview

of the bibliometric analysis topic is provided in Section 2,

including a detailed explanation of the science mapping

methodology that is developed and later used. In Section 3,

the results of the results from the bibliometric analysis are

presented, starting with a description of the procedure to

obtain the database in Section 3.1, and followed by the

analysis of various metrics in Sections 3.2–3.4. In Section 3.5,

the bibliometric maps are presented and their properties are

highlighted and discussed. Additionally, the authors provide

their own interpretation of the maps in Section 3.6. Finally, in

Section 4, several examples of recent studies of CI-powered

methodologies relevant to the topic of modeling and

simulation of structures are provided.

2 Introduction to bibliometric analysis
and science mapping

The term “bibliometric analysis” is related to methodologies

that utilize quantitative and statistical tools to process and

analyse large volumes of published literature of a specific

domain (Broadus, 1987). They are used for a variety of

reasons such as to discover emerging trends in article and

journal performance, collaborations patterns, and to explore

the intellectual structure of the specific domain. There are two

main distinguished categories of bibliometric analysis

techniques: performance analysis and science mapping.

Performance analysis attempts to measure the overall

contribution of research constituents such as authors,

publishers, institutions, countries, etc. (Narin and Hamilton,

1996; Kostoff, 2002). Two of the most commonly adopted

performance indicators are the number of publications and

the number of citations received. The number of publications

is usually associated with productivity whereas the number of

citations is related to the impact or influence of a research work

or an individual researcher. There are other hybrid

measurements such as the h-index which combines both the

number of citations and the number of publications in a compact,

simple, and elegant metric (Hirsch, 2005); or newer metrics such

as the PageRank algorithm (Yan and Ding, 2011). On the other

hand, science mapping (or bibliometric mapping) techniques

focus on the analysis of the relationships between the research

constituents. In essence, it allows the mapping of the cumulative

scientific knowledge by making sense of large volumes of

unstructured data (Donthu et al., 2021). For example, science

mapping techniques can be used to process the relationship

between all the different keywords on a large database of

publications to discover the overall thematic. Similarly, it can

be used for analysing the authorship of publications to map the

collaboration between researchers or institutions. Such

relationships are then presented in two-dimensional network

maps that tend to form clusters of similar terms that are quite

intuitive, easy to read and interpret, and may reveal interesting

features that were “hidden” or difficult to track before (Cobo

et al., 2011). The true potential of bibliometric analysis comes

when both performance analysis and science mapping

techniques are combined together. As stated by Donthu et al.

(Donthu et al., 2021), bibliometric studies that are well done are

able to create a strong foundation for advancing a field, enabling

researchers to gain a one-stop overview, identify knowledge gaps,

derive novel ideas, and position their intended contribution in

the field.
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2.1 Construction process of bibliometric
maps

A bibliometric map provides a graphical representation of the

relationships between specific fields of information that are

extracted from a large database of publications. Most commonly,

they are created from fields or items that can be either keywords,

authors, publishers, institutions, or citations. The construction of the

map requires the counting of the occurrences and the relevant co-

occurrences of the chosen field or item (e.g. the keywords) among all

the publications in the analyzed database. Using these quantities, a

similarity measurement is defined to quantify how closely related

each item is in relation to all the others (e.g. how similar is one

keyword to any other). Finally, all the items are positioned inside a

2D (or less often, 3D) space, so that a big map is created where the

similarities between all the items are represented by their relative

euclidean distances. In other words, similar items are positioned

closer together creating networks of well-defined clusters that may

reveal useful information with a simple visual inspection. Finding

the position of all the items is a challenging problem known as

multidimensional scaling (MDS) (Borg and Groenen, 2005).

Because of the dimensionality reduction and the fact that a

multidimensional space needs to be properly “mapped” to a

reduced 2D (or 3D) space, the exact solution to the MDS

problem does not exist, instead an optimization problem is

formulated to find an approximate solution that minimizes a

representation error.

It is useful to provide the basic idea on the process that is used to

construct the bibliometric maps, in order to reduce the chance of a

miss-interpretation of the results. For that reason, the next Sections

2.1.2–2.1.4 are dedicated to providing a detailed explanation of the

procedure. Moreover, the authors present a self-developedmapping

technique that uses a genetic algorithm to solve the optimization

task that arises from the multidimensional scaling problem. The

proposed method is an improved version of a tool created in a

previous study (Plevris et al., 2019), which in turn was inspired from

other well-established bibliometric mapping techniques such as the

VOS method and software (van Eck andWaltman, 2010; Waltman

et al., 2010). In the following, the mapping process is explained in

the context of a keyword analysis, however, the same concepts may

be applied to other type of fields, such as authors or institutions.

2.1.1 Mapping of keywords
Creating a bibliometric map of keywords may reveal the

underlying theme of a large collection of scientific publications,

as well as potentially identifying the emerging trends and gaps on

the field. The keywords in a publication are a reflection of the whole

content of the document and provide a simple way of linking

various publications together. When two or more publications have

one or more keywords in common, it usually indicates that they are

related, i.e. they are dealing with similar research topics. In the

Scopus database, each publication may have two types of associated

keywords: author keywords and index keywords. The author

keywords are based on the author’s description of their own

work and are chosen manually by the authors. On the other

hand, the index keywords are determined by the content

suppliers or publishers and are often created by applying

modern linguistic analysis techniques to the abstract of the

publication or the article itself (Elsevier, 2021b). One example is

the Perceptron Training Rule which assigns weights to the words on

sentences of abstracts and processes them with an algorithm to

determine the keywords (Bhowmik, 2008).

2.1.2 Ocurrence and co-ocurrence
The quantification of the occurrence and co-occurrence of all

the unique items nkey (in this case, keywords) that are used in the

studied database is an essential step in the construction of

bibliometric maps. The total number of publications in the

database is denoted as npub. The occurrence Oi is a number

that quantifies how many publications are using a specific

keyword ki (e.g. if the keyword ki has an occurrence value of

Oi = 10, it means that it appears in 10 publications of the

database). The co-occurrence value Cij indicates in how many

publications a keyword ki appears together with another keyword

kj (e.g. a co-ocurrence of Cij = Cji = 5 means that the keyword ki
appears together with the keyword kj in five publication records).

The occurrence and co-occurrence of the total n keywords may

be expressed mathematically in matrix form as:

O � O1, . . . , On{ }T (1)

C �
C11 / C1n

..

.
1 ..

.

Cn1 / Cnn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

Normally, the total number of unique keywords nkey contained

in all the publications of the database is considerably large and it is a

common practice to choose a lower number n to construct the

map. The chosen quantity n may be based on a predefined

occurrence value (i.e. choose all the keywords with a occurrence

value higher than a specified threshold). Alternatively, a fixed

amount of keywords may be chosen (e.g. select the first

50 keywords with the highest occurrence value).

2.1.3 Similarity and dissimilarity measures
The co-occurrence matrix C is the base for the construction

of the map. However, it is argued that the co-occurrence itself

does not accurately represent a real similarity measure between

items (van Eck et al., 2010). Instead, a specific similarity or

dissimilarity quantity must be determinated (Gower, 2005).

There are two common approaches that can be used to

compute the similarity between two items ki and kj from the

co-occurrence matrix: 1) Direct methods that simply rely on a

normalization of their specific co-occurrence values Cij (Eck and

Waltman, 2009); and 2) indirect methods that take into

consideration the co-occurrence of the items ki and kj with all

the other items {k1, . . ., kn}. In other words, indirect methods

Frontiers in Built Environment frontiersin.org04

Solorzano and Plevris 10.3389/fbuil.2022.1049616

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.1049616


compare the full rows Ci: and Cj:. One example of an indirect

method is using the Pearson’s correlation coefficient as a

similarity measure (Ahlgren et al., 2003).

In this study, an indirect approach is implemented to

determine a dissimilarity value between each item ki and kj.

The idea is to calculate the relative error that results from

comparing all the elements in the ith row with all the

elements of the jth row to obtain a value Dij that quantifies

their dissimilarity. The respective operations are written as

follows:

D �
D11 / D1n

..

.
1 ..

.

Dn1 / Dnn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

Dij � ∑n
r�1

| Cir

Ti
− Cjr

Tj
| (4)

Ti � ∑n
t�1

Cit, Tj � ∑n
t�1

Cjt (5)

A high value of Dij indicates that the items ki and kj are not

similar, whereas a low value indicates that they are similar. One

disadvantage on the proposed dissimilarity measure is when

comparing two items that do not share any co-occurrence

with any other item (e.g. Ti = 0 and Tj = 0). In that case, the

computed dissimilarity would be Dij = 0, which suggests that the

terms are very similar when there is no information to suggest

that they actually are. In fact, terms with no co-occurrence with

any item may increase the error of the mapping technique

considerably as they represent isolated items that do not share

any similarity with any other item. In any case, displaying

isolated items on the map does not comply with the concept

and goals of bibliometric mapping where the aim is to find

relationships. Therefore, in the presented methodology, items

with 0 co-occurrences are excluded from the map.

2.1.4 Multidimensional scaling by optimization
algorithms

In a bibliometric map, each keyword is represented by a point

in the 2-dimensional or 3-dimensional euclidean space. The

distance between any two points ki and kj is dictated by their

corresponding dissimilarity valueDij. A pair of keywords ki and kj
that are not similar should be far away from each other (high

value of Dij). On the contrary, if two keywords are very similar

they should be close to one another (low value of Dij).

In general, for realistic applications, the number of items n is

much larger compared to the number of dimensions of the

graphical space where the map is drawn (2D or 3D).

Therefore, it is graphically impossible to position all the

points to exactly match the computed dissimilarity values. In

other words, a multidimensional space of at least n − 1

dimensions would be required to achieve an error of

absolute 0% between the real distance and the computed

dissimilarity, which is clearly unfeasible from a graphical

point of view. However, using an optimization algorithm, the

error can be minimized so that the result is an approximation

that still provides a good-enough visual representation of the

similarities in a lower 2- or 3- dimensional space that the human

eye can easily read and interpret. Hence, the optimization

algorithm will provide the solution to the MDS problem

mentioned earlier (Borg and Groenen, 2005).

In this study, a genetic algorithm (GA) is used to solve the

optimization problem that results from the MDS. Other search

strategies such as the MM algorithm (which stands for

maximization by minimization) are also commonly applied in

the creation of bibliometric maps (Groenen and Velden, 2016).

Even simple optimizations strategies such as the pure random

orthogonal search (PROS) (Plevris et al., 2021) can be used to

solve theMDS problem, as shown in (Koutsantonis et al., 2022). For

the purpose of this study, the GA approach is selected which has

shown good overall performance comparable to theMM algorithm.

Additionally, it provides more flexibility and allows the

implementation of constraint functions such as restricting the

mapping space to a specific shape (as shown later in section 3.5.4).

The optimization problem is written as an unconstrained

minimization problem where the objective function f(p) is

defined as the squared error e that results from comparing the

item’s euclidean distances Z with their corresponding calculated

dissimilaritiesD. The respective operations are written as follows:

e � f p( ) � ∑n
i�1

∑n
j�1

Zij −Dij( )2 (6)

p � x1, y1, x2, y2, . . . , xn, yn{ } (7)

Z �
Z11 / Z1n

..

.
1 ..

.

Zn1 / Znn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (8)

Zij �
������������������
xj − xi( )2 + yj − yi( )2√

(9)

The design vector p contains all the x, y coordinates of the n

items of a respective configuration of the map. The optimization

task is to find a vector popt that minimizes the error e. The matrix

Z is initialized by randomizing the positions of all the items in the

map and computing their euclidean distances using Eq. 9. The

upper xymax and lower xymin bounds of the coordinates x, y are set

to xymax = 2 ·max(D) and xymin = −2 ·max(D). It should be noted

that the optimization problem is in fact unconstrained and

therefore the defined bounds are only used to sample random

uniform values at the initialization of the optimization process.

The implemented GA uses the following genetic operators:

tournament selection (Coello and Mezura-Montes, 2002), SBX

crossover (Deb et al., 2007) and polynomial mutation (Deb and

Deb, 2014). The population size is set to s = 100 and the

termination criterion is taken as a fixed number of

generations maxgen which is chosen based on the number of

items n. The design vector with the lowest objective value popt at

the last generation is used to construct the final bibliometric map.

Frontiers in Built Environment frontiersin.org05

Solorzano and Plevris 10.3389/fbuil.2022.1049616

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.1049616


2.1.5 Clustering
After the configuration of the map has been defined (i.e. the

optimization problem has been solved), the resulting map layout

is processed by a clustering algorithm to provide an appealing

visual feedback by classifying the items into clusters using

different colors. In our study, the k-means clustering

algorithm is implemented using the real euclidean distances of

the obtained configuration (Omran et al., 2007). Alternatively,

one can use the computed dissimilarity measure or a

combination of both, such as in (Waltman et al., 2010). The

main advantages of the k-means algorithm are that it is easy

implement, it is computationally inexpensive and it is very

flexible. Its main disadvantage lies in the fact that it requires

the number of clusters as an input value and it may fail to capture

clusters with highly irregular shapes. Nonetheless, the obtained

results using the k-mean clustering algorithm proved to be very

satisfactory for the goals of the present study.

3 Bibliometric analysis

3.1 Database of literature

The first step for the bibliometric analysis is the collection of an

extensive database based on the literature. In this study, the Scopus

search engine is used to that end (Elsevier, 2021a). Scopus provides a

very powerful and advanced search capability that allows the user to

conduct quick queries based on multiple combinations of keywords,

authors, publishers, publication year, and other relevant parameters.

Various queries based on two groups of keywords are conducted.

The first keyword group involves terms about CI methods in

general, whereas the second keyword group contains terms

related to modeling and simulation of structures. Table 1 shows

the two groups of keywords that were used in the study. The terms

from the first column are combined with the terms on the second

column using the AND operator. On the other hand, the terms that

belong to the same column are combined with the OR operator (e.g.

Fuzzy theory OR Neural Networks AND Structural Analysis OR

Finite Element Method).

The search is restricted to the years 1990 to August 2022. The

final keywords for the query were chosen after multiple attempts to

narrow down the search to include only the topics that are directly

related to the modeling and simulation of structures and CI

methodologies. More general terms such as “Structure” or

“Modeling” are avoided as they produce vast results from other

fields of engineering that are not relevant to the present study.

Additionally, some unwanted keywords were also directly included

using the operator “AND NOT.” This is done to prevent retrieving

topics outside our scope, e.g. the keywords: “Medical,” “Biomedical,”

“Magnetic,” “Electric.” The full database is constructed using nine

different queries according to Table 1. The database was created and

updated multiple times during the creation of this study. The last

and final update used is the one created on 12 August 2022. The

following paragraph provides an example of one of the nine search

queries introduced into the Scopus advanced search field.

Example of the search query used in Scopus for the keyword

“Finite Element”: SUBJAREA(engi) AND (TITLE-ABS-KEY(“neural

network”+“Finite Element”)) OR (TITLE-ABS-KEY(“fuzzy

system”+“Finite Element”)) OR (TITLE-ABS-KEY(“genetic

algorithm”+“Finite Element”)) OR (TITLE-ABS-KEY(“soft

computing”+“Finite Element”)) OR (TITLE-ABS-

KEY(“computational intelligence”+“Finite Element”)) AND NOT

(TITLE-ABS-KEY(“Magnetic”)) AND NOT (TITLE-ABS-

KEY(“Electric”)) AND NOT (TITLE-ABS-KEY(“Medical”)) AND

NOT (TITLE-ABS-KEY(“Biomedical”)) AND (PUBYEAR AFT 1990).

The result from each search query is downloaded to a CSV file.

Scopus lets the user select which fields of the metadata of each

publication are to be downloaded. For this study, the downloaded

fields are the following: title, DOI, publication year, authors names,

author IDs, author keywords, index keywords, citations, publishers

and affiliations. The nine CVS files (one for each search query) were

then combined and merged into a single file. The duplicates were

properly removed usingMicrosoft’s Excel tools based on the unique

DOI field. The final database contains a total of 8107 publications.

3.2 Publications per year

The first metric to be analyzed is the production of publications

over time.With that intention, a histogram is created that shows the

number of publications per year, as shown in Figure 1. It has to be

noted that 2022 is still a year in progress, so the data for this year are

incomplete and the relevant number of publications for 2022 is

expected to grow significantly. It can be observed that there has been

a relatively steady growth in the quantity of publications until the

year 2015, with a linear-like growth scheme. After 2015, the number

of publications noticeably accelerates and appears to show an

exponential growth. Such behaviour coincides with the current

hype and development in machine learning topics observed in

the global scientific community. For instance, in the AI index report

2022 created by the Institute for Human-Centered AI of the

Stanford University (Zhang et al., 2020), the same accelerated

TABLE 1 List of the keywords used in the Scopus query to obtain the
database of literature used in the bibliometric analysis.

Computational Intelligence Modeling and Simulation

Computational Intelligence Structural Analysis

Soft Computing Finite Element Method

Neural Networks Concrete Structures

Fuzzy systems Steel Structures

Genetic Algorithms Masonry Structures

Frame/Shell/Beam Elements

Structural Simulation
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growth is observed starting around 2015–2016, see Figure 2. The

rapidly growing increase in research is an indicator that the

acceptance and implementation of CI-powered techniques is

gaining popularity among the Structural Engineering research

community.

3.3 Most utilized journals

The total of 8107 publications that comprises our database is

published in 548 different journals. The top 25 journals in terms of

the number of published papers (considering only those in the

studied database) is presented in Table 2. The Scopus CiteScore

(corresponding to the year 2021), and the Source Normalized Impact

per Paper (SNIP) are also included in the table. The current CiteScore

measures the average citations received per document published in

the year 2021 and the SNIP measures the actual citations received

relative to citations expected in the same field for the year 2021. Note

that the metrics related to the number of citations and number of

publications that are included in the table (first two columns) only

consider the publications in the studied database, but CiteScore and

SNIP (last two columns) are metrics derived by Scopus based on all

the publications of the Journal in the corresponding year. The table

on its own provides some hints of the research directions in the

application of CImethodologies. For example, looking at the Journals

in the top positions 1 and 4, it can be assumed that the analysis of

composite structures and structural optimization are two topics

where CI methodologies are constantly applied.

FIGURE 1
Number of publications per year regarding the application of CI methods in the structural engineering field. The year 2022 is counted only until
August.

FIGURE 2
Number of AI publications by Field of Study. Source: Center for Security and Emerging Technology, 2021; Chart: 2022 Index Report (Zhang
et al., 2020).
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3.4 Most cited papers

The number of citations is commonly used as a simple metric

to measure the impact or influence of publications. With that in

mind, two tables that show the most cited publications are

constructed. Table 3 shows the top 15 most cited papers from

1990 to 2022 whereas Table 4 only considers papers published

from 2010 to 2022. While the top 15 most cited papers cannot be

considered a representative sample from the complete

8107 publications, it still provides a preliminary idea on some

of the main research areas in the studied literature. From the first

table, the top publication (with 2952 citations) is a constraint

handling technique for genetic algorithms (Deb, 2000) which has

become widely adopted in optimization problems using GA. In

the paper, the methodology is applied to some mechanical

engineering examples which is the reason why the publication

made it to our database. Further inspection reveals that

publications 2, 3, 6, 8, 9, 10, 12, and 13 deal with the topic of

structural optimization. Publications 5, 7, and 8 are review

studies about applications of neural networks, while

publications 4 and 11 deal with the topic of damage detection.

From the second table including publications after 2010, the top

publication (with 565 citations) is a damaged-detection

technique that leverages the power of deep learning (this

publication also appears in the first table). Furthermore,

publications 3, 4, 5, 9, 10 are also related to the damage

detection and assessment in structures. Publications 2 and

13 explore methods to enhance the mathematical procedures

of FEM while publications 7 and 8 treat the structural

optimization topic.

3.5 Bibliometric maps

3.5.1 Graphics and visualization
The graphical representation adopted to draw the maps is as

follows: each item (keyword, author, etc.) is drawn as a single

point. The occurrenceOi of each item is represented by the size of

the point. A larger point accounts for high occurrence values and

a smaller point indicates low occurrence values. The co-

occurrence Cij between two items i, j is indicated by a line

that connects them both. The line thickness indicates the

TABLE 2 Top 25 journals in terms of the number of published papers contained in the studied database.

Journal Title # Pub # Cit CiteScore SNIP

1 Composite Structures 134 4738 9.7 1.991

2 International Journal of Advanced Manufacturing Technology 115 2389 6.4 1.368

3 Computer Methods in Applied Mechanics and Engineering 82 3560 10.3 2.039

4 Structural and Multidisciplinary Optimization 82 2148 7.2 1.681

5 Computers and Structures 74 2651 8.2 2.04

6 Journal of Materials Processing Technology 55 2188 11.3 2.168

7 International Journal for Numerical Methods in Engineering 51 1805 5.4 1.285

8 Finite Elements in Analysis and Design 49 2185 5.6 1.124

9 Applied Sciences (Switzerland) 46 235 3.7 1.026

10 Materials and Design 40 1504 13.2 2.206

11 Mechanical Systems and Signal Processing 39 1766 15.1 3.234

12 Smart Materials and Structures 39 1479 6.6 1.114

13 Advances in Engineering Software 37 1059 9.3 1.764

14 Engineering Optimization 28 410 5.4 1.24

15 Mathematical Problems in Engineering 28 221 2.1 0.638

16 Key Engineering Materials 28 153 0.9 0.28

17 Construction and Building Materials 27 383 10.6 2.362

18 Engineering with Computers 26 370 10.7 1.862

19 Journal of Mechanical Design, Transactions of the ASME 24 784 6.5 1.435

20 Journal of Constructional Steel Research 24 589 6.3 2.036

21 Computational Mechanics 23 802 6.9 1.46

22 Computational Materials Science 23 758 6.1 1.078

23 International Journal of Solids and Structures 22 664 6.8 1.54

24 Journal of Intelligent Material Systems and Structures 21 935 5.5 1.023

25 International Journal of Mechanical Sciences 21 850 9.7 1.995

The included CiteScore and SNIP refer to the year 2021.
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strength of the co-occurrence, where a higher line thickness

accounts for higher co-occurrences. However, small thickness

values are used to avoid overly saturating the maps with lines.

The colors of the items represent the different computed clusters,

so that points with the same color belong to the same cluster. The

maps are created with a limited number of items n so that they

can be easily interpreted and understood given the limited space

dictated by the size and format of this paper. In a virtual

environment provided by a computer program, bibliometric

maps can usually contain many more items as they can be

properly explored with zoom, panning, and scaling capabilities

provided by an interactive graphical user interface. The presented

maps are created and visualized with our own tailor-made

computational tools and algorithms. Python and Java are used

for the backend, and the Javafx library has been used for the

frontend (i.e. the graphics).

3.5.2 Bibliometric map of keywords
The total number of unique keywords in the whole database

is nkey = 40, 830, considering both authors and index keywords.

Prior to the construction of the map, a list of various similar

keywords is manually created and fed to the algorithm so that

similar keywords are merged together. This step is performed to

remove redundant keywords, e.g. the keywords “neural

networks” and “artificial neural network(s)” are all merged

into a single keyword “neural network.” The number of

TABLE 3 Top 15 most cite publications in the studied database from 1990 to 2022.

Title Reference # Citations

1 An efficient constraint handling Deb, (2000) 2952

method for genetic algorithms

2 A new structural optimization method Lee and Geem, (2004) 917

based on the harmony search algorithm

3 Discrete optimization of structures (Rajeev and Krishnamoorthy, 1992) 612

using genetic algorithms

4 Autonomous Structural Visual Inspection Cha et al. (2018) 565

using Region-Based Deep Learning

for Detecting Multiple Damage Types

5 Neural networks in civil Adeli, (2001b) 560

engineering: 1989–2000

6 Particle swarm approach Perez and Behdinan, (2007) 535

for structural design optimization

7 Neural networks in civil engineering Flood and Kartam, (1994a) 524

I: Principles and understanding

8 Neural network design for Rafiq et al. (2001) 521

engineering applications

9 Optimization of laminate stacking Riche and Haftka, (1993) 495

sequence for buckling load

maximization by genetic algorithm

10 Convergent and mesh-independent Huang and Xie, (2007) 489

solutions for the bi-directional

evolutionary structural optimization

11 Use of neural networks in detection Wu et al. (1992) 471

of structural damage

12 Reliability-based structural optimization Papadrakakis and Lagaros, (2002) 420

using neural networks and Monte

Carlo simulation

13 Evolutionary structural optimisation Querin et al. (1998) 417

(ESO) using a bidirectional algorithm

14 Analysis of uncertain structural Rao and Berke, (1997) 410

systems using interval analysis

15 A survey of non-probabilistic uncertainty Moens and Vandepitte, (2005) 372

treatment in finite element analysis
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keywords to be displayed in the map is chosen to be n = 150 so

that the image is readable and fits the provided space in this

paper. The number of computed clusters is set to five to facilitate

the identification of general research trends. The resulting map is

shown in Figure 3 and a zoom-in of the obtained clusters is

presented in Figure 4.

3.5.3 Bibliometric map of authors
In this map, each item represents an author. The author-ID

field provided by Scopus is used to avoid redundancies of two

authors having similar or equal names, or the case where a single

author has published papers using different names. The

occurrence value of an author denotes the number of

TABLE 4 Top 15 most cite publications in the studied database from 2010 to 2022.

Title Reference # Cit

1 Autonomous Structural Visual Inspection Cha et al. (2018) 565

using Region-Based Deep Learning

for Detecting Multiple Damage Types

2 An energy approach to the solution of partial Samaniego et al. (2020) 367

differential equations in computational

mechanics via machine learning

Concepts, implementation and applications

3 Structural Damage Detection with Automatic Lin et al. (2017) 320

Feature-Extraction through Deep Learning

4 Dealing with uncertainty in model updating Simoen et al. (2015) 280

for damage assessment: A review

5 Automatic Pixel-Level Crack Detection Yang et al. (2018) 272

and Measurement using Fully Convolutional

Network

6 Data-driven Computational Mechanics Kirchdoerfer and Ortiz, (2016) 268

7 A framework for data-driven analysis of Bessa et al. (2017) 267

materials under uncertainty

Countering the curse of dimensionality

8 On the usefulness of non-gradient approaches Sigmund, (2011) 249

in topology optimization

9 An improved ant colony optimization for Kaveh and Talatahari, (2010) 238

constrained engineering design problems

10 Machine learning algorithms for damage detection Figueiredo et al. (2011) 236

under operational and environmental variability

11 Review and application of Artificial Neural Chojaczyk et al. (2015) 236

Networks models in reliability analysis

of steel structures

12 Interpretation of concrete dam behavior with Mata, (2011) 224

artificial neural network and multiple

linear regression models

13 Potential of adaptive neuro-fuzzy inference Safa et al. (2016) 221

system for evaluating the factors affecting

steel-concrete composite beam’s shear strength

14 Non-probabilistic finite element analysis Moens and Hanss, (2011) 220

for parametric uncertainty treatment

in applied mechanics: Recent advances

15 A review on machinability of carbon fiber Altin Karataş and Gökkaya, (2018) 207

reinforced polymer (CFRP) and glass fiber

reinforced polymer (GFRP) composite materials
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publications in which the author is participating. The co-

occurrence value between two authors indicates the number of

publications in which the two authors are collaborating (i.e.

appearing together as authors). There is a total of nat = 19,

916 unique authors in the database making an average of nkey/

nat = 2.05 authors per publication. Only the first 200 authors

with the highest number of publications from the corresponding

list are included in the map. Note that only the publications

contained in the analyzed database are counted. The authors that

appear in this study may have more publications that were not

captured in the search query (see section 3.1). That being said,

from the 200 top authors, some of them have a co-occurrence of

0 with all the other 199 authors. That does not necessarily means

that those authors do not cooperate with others, but rather that

their strongest collaborations are with authors that are not

among the other top 199. Including items with 0 co-

occurrence in the bibliometric map translates into isolated

points that tend to increase the overall error and reduce the

quality of the map considerably (see section 2.1.4). Therefore, the

authors with 0 co-occurrences are removed so that the final map

contains only 127 authors in which every author is connected to

least one other author. The obtained map is shown in Figure 5.

This time, instead of using the k-means algorithm, the clustering

is made following the connectivity of the nodes so that each

cluster contains a different network that is isolated from the rest.

3.5.4 Brain-shaped bibliometric map of
keywords 2015–2021

An alternative keyword map is presented using only the

papers from 2015 to 2021. This results on a secondary list of

npub = 4558 publications with nkey = 27, 337 unique

keywords. For this specific case, the map-space (or the

FIGURE 3
Bibliometric map of keywords. The 200most frequent keywords are displayed in the map. The text of the items is only shown for the keywords
with 200 occurrences or more. The co-occurrence connectivity line is only rendered if the value is higher than 10.
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drawing area) has been restricted to resemble the silhouette of

a human brain, thus, making a small visual analogy to the

Computational Intelligence topic, see Figure 6. The main

purpose of this map is to test our GA-based mapping

methodology with the additional challenge of constraints,

and to investigate potential changes in the research trend in

the years 2015 to 2021 compared to the previous keyword map

that includes years 1990 to 2021. The map is created by

introducing an equality constraint function g(x) = 0 to the

optimization algorithm described in 2.1.4. For a design vector

x, the constraint function is equal to the number of points that

are outside the given bounds.

3.5.5 Authors clusters and their keywords
A final diagram is constructed where the clusters obtained in

the authors map are linked to the top 30 most frequent keywords.

Each group of authors and the keywords are enclosed in

rectangular areas. A straight line connecting the authors with

the respective keywords is generated if the group of authors have

published more than five papers using that particularly keyword.

The connection line gets thicker as the number of publications is

higher than 5. The resulting diagram is presented in Figure 7.

Note that the keywords and author boxes are arranged in random

order to prevent some areas of the map being overly saturated

with lines.

3.6 Interpretation of the bibliometric maps

3.6.1 Main thematic
Looking at the first bibliometric map in Figure 3, the most

frequent keywords in four of the computed clusters can be

easily identified by visual inspection. To facilitate the

discussion of the results, we have opted to associate each

FIGURE 4
Close-up view to the bibliometric map of keywords. (A) Top-left quadrant. (B) Top-right quadrant. (C) Bottom-left quadrant. (D) Bottom-right
quadrant.
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cluster to its most frequent keyword and use such keywords to

refer to the clusters throughout the discussion. With that in

mind, the obtained clusters are the following: 1) the orange

colored “finite element” cluster in the middle-left; 2) the

turquoise “optimization” cluster at the top-left (Figure 4A);

3) the green “neural network” cluster at the bottom

(Figure 4D), and 4) the purple “fuzzy systems” cluster in

the top-right (Figure 4B).

In the middle of the map, the concept of simulation and

modeling of structures is depicted by the “finite element”

cluster where we can read keywords such as “structural

analysis,” “simulation,” and “numerical model.” As it lays

in the center of the map, it is surrounded by the rest of the

clusters that are related to CI methodologies and

applications. Thus, the map is a clear visual analogy to

the studied topic in this paper: Computational Intelligence

methods in the simulation and modeling of structures. Such

finding, which is not a surprise but rather expected, provides

clear evidence that the mapping methodology has worked as

intended.

3.6.2 Research trends
Some of the trending topics and research directions can be

inferred by inspecting the keywords maps in Figures 3, 7. For

FIGURE 5
Author collaborations map. Constructed using the 200 top authors with the highest number of publications from the studied database.
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that, we should look at the areas of the map that are densely

populated with highly recurrent keywords as these may represent

popular topics. However, it is important to keep in mind that

keywords used directly in the search query (see Table 1) are

expected to have the highest occurrence values and may not

necessarily indicate research trends as they were put manually in

the search. Instead, it is better to inspect and consider the whole

area surrounding these keywords. On the following paragraphs,

we expose the topics that we consider to be trending based on the

keyword map in Figure 3. Although the interpretation of

bibliometric maps is a subjective activity influenced by the

own knowledge of the interpreter, we try to be as unbiased as

possible and provide the reasoning of our selections.

Enhancing the FEM with CI

At the very center lays the finite element cluster containing

the keywords: “simulation,” “numerical model,” “structural

analysis,” “numerical methods,” “stiffness,” “matrix algebra,”

“efficiency,” and “computational cost.” We believe that these

keywords symbolize the core mathematical procedure of the

FEM. Considering that from the center all these terms share

multiple connections to all the other keywords in the entire map,

we consider that using CI methodologies to increase the

computational efficiency of the FEM is an implicit research

direction present in the map.

Structural optimization

Perhaps, the most notable research direction is the

applications of CI methodologies to the structural

optimization problem. This conclusion comes after noticing

that the optimization cluster (Figure 4A) looks much denser

than other areas of the map, encompassing many keywords with

high occurrence values such “structural design,” “structural

optimization,” “shape optimization,” “topology optimization,”

“optimal design,” and other similar words.

FEM surrogate models

At the middle-left side of the map, we can observe the

keyword “surrogate model” with a noticeably large size that

denotes a high occurrence value. Furthermore, it lays very

FIGURE 6
Bibliometric map of keywords using only the papers from 2015 to 2021. The 250 most frequent keywords are displayed in the map. The text is
only shown for the keywords with 60 occurrences or more. The co-occurrence connectivity line is only rendered if the value is higher than 10.
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close to the finite element and optimization clusters. We can then

assume that the usage of finite element surrogate models in

optimization problems is one popular research direction.

Earthquake engineering, uncertainty and reliability

analysis

At the top-right side of the map, which corresponds to the

fuzzy system cluster (Figure 4B), we can identify various

keywords related to earthquake engineering and risk

assessment, e.g. “earthquakes,” “seismology,” “dynamic

response,” “structural reliability,” “Monte Carlo methods,” and

“uncertainty analysis.” Therefore, pointing out the success of

applying fuzzy methodologies in earthquake engineering, and for

uncertainty and reliability analysis.

Structural health monitoring

At the bottom part of the map, at the neural network cluster

(Figure 4D), we can observe the keywords “damage detection,”

“structural health monitoring,” “cracks,” “image processing,”

“patter recognition,” and “corrosion.” This highlights one

more popular research direction in the usage of machine

learning methodologies for structural health monitoring.

Modeling concrete material behaviour

Around the right-side of the neural network cluster

(Figure 4D), we can find the keywords “concrete

construction,” “columns,” “reinforced concrete beams,”

“concrete building,” and other similar terms with a relatively

high occurrence value. In the neighborhood around these

keywords, we can also find the terms “prediction,” “neural

network,” “machine learning,” “support vector machine,”

“compressive strength,” “shear strength,” “tensile strength,”

and “reinforcement.” Such arrangement of the items suggest

that NNs and other regression models are commonly used to

overcome the well-known difficulties in the numerical modeling

of reinforced concrete.

FIGURE 7
Map that links the author clusters with the top 30most frequent keywords of the database. The connections lines are rendered only if the group
of authors have five publications or more using the corresponding keyword.
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Machine learning

From the second keywordmap considering only the publications

from 2010 to 2022 (Figure 6), we can observe more or less the same

trends. Although it is difficult to assess visually, when looking at the

numbers we can notice that there are subtle changes such as an

increase of the usage of “machine learning,” “neural network” and

“deep learning” keywords. This is consistent with the recent hype in

machine learning that is happening nowadays in the research

community as pointed out in section 3.2. It is then clear that an

outgoing trend is in the machine learning direction.

3.6.3 Author collaborations
Bibliometric maps constructed from the authoring

information contain far less connections between the items

when compared to the keywords map. Consequentially, the

result is a circular-shaped-map with several isolated groups,

see Figure 5. These groups reveal the collaborations among

the most notable researchers on the studied literature.

Furthermore, we can identify some experts in specific areas by

linking the authors to their most frequent keywords as it is done

in Figure 7. For example, the turquoise colored cluster in the

middle of the map formed by the authors: Lagaros N.D.,

Papadrakakis M., Plevris V., Papadopoulus V., Tsompanakis

Y., Stavrtoulakis G.E., and Ahmad A. Some of the most

frequent keywords of this group of authors are “neural

networks,” “optimization,” “genetic algorithm,” “structural

optimization” and “structural design” (see Figure 7).

Therefore, the data suggest that we have identified a group of

researchers working in the structural optimization topic. This

information is useful as it provides a starting point to investigate

the literature of a certain topic in more detail. One could directly

take a look at the publications by such a group of authors, with

some certainty based on the data that they are experts in the field.

3.7 Limitations of the bibliometric analysis

Although a large number of publications was used in the

bilbiometric study, it has to be noted that only the Scopus

database has been accessed. There are other large scientific

databases such as Web of Science (WoS) which could contain

more publications that may influence the results. However, as the

main purpose is to obtain an overall picture, using any database

that is sufficiently large (Pranckut, 2021), should lead to similar

conclusions. Additionally, there are some processes that are

difficult to automate and require the input of a human being,

thus, influencing the outcome with one’s own knowledge. For

example, the problem of dealing with similar keywords stated in

Section 3.5.2, or the interpretation of the bibliometric maps 3.6.

Still, the adoption of data-driven bibliometric analysis has proven

to be highly valuable to study the literature of a specific domain,

and most of the times, it can provide an initial perspective which

is far more efficient than exploring the literature manually.

4 Applications

After obtaining a global panorama based on the results of our

bibliometric analysis, nowwe focus our investigation in analyzing recent

papers that provide clear examples of application of computational

intelligence methods in modeling and simulation of structures. Note

that our aim is not to provide a comprehensive systematic review of the

whole domain as that could lead to an excessive amount of information.

Instead, we carefully select a number of well-developed studies and

applications to show the main advantages of the CI paradigm over the

traditional hard-computing strategies. For each selected study we

provide a brief, yet complete summary highlighting the

implemented methodologies, the biggest challenges, the most

interesting findings, and the main advantages it offers.

4.1 Machine learning

Machine learning powered applications are definitely one of the

biggest research directions found in the studied literature.

Essentially, ML models are numerical procedures that are able to

process and find patterns from large structured databases without

being explicitly programmed to do so (Ghaboussi, 2010b). One of

the most successful ML models is artificial neural networks which

has proven to be a powerful technique capable of tackling complex

task such as image and speech recognition, both of which are

incredibly difficult to deal with using conventional algorithms.

The enormous success of ANNs is driven by their relatively

simple chain-like numerical formulation that is straightforward to

implement in a computer program and requires little to no

adjustments to scale-up its capabilities. Typically, the same

computer program and core methodology can be used to create

a small model containing just a few parameters, or a larger model

containing billions of parameters trained with vast volumes of data

(Brown et al., 2020). The difference between small models and large

models is normally emphasized by using the term “deep” for the

larger ones, such as in deep learning (DL) or deep neural network

(DNN) Alzubaidi et al. (2021). Naturally, the limits to the

capabilities of ANNs appears to be imposed by the availability

and efficiency of computational resources, which are becoming

more easily accessible and powerful every day. There exist

different types of ANNs, each one particularly efficient or suited

to solve specific types of problems. For instance, convolutional

neural networks (CNN) (Aloysius and Geetha, 2017) and

physical informed neural networks (PINN) (Vadyala et al., 2022),

just tomention a couple. However, the essencemethodology and the

scalability properties remain the same for all the different kinds.

Therefore, ML-based applications, and specifically neural networks,

are methodologies that are gaining an immense popularity. In the

following Sections 4.2–4.6, many of the discussed CI applications

related to the simulation andmodeling of structures are in fact using

ML-based methodologies such as regular ANN, DNN, CNN,

and PINN.
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4.2 Structural optimization

Structural optimization deals with the problem of finding the

most optimal configuration of a structure or a structural component.

In the context of structural engineering, the most optimal

configuration of a structure may be defined as the final design that

minimizes or maximizes a desired property, e.g. a design that

minimizes the material volume or the material cost. The two most

common problems in the optimization of structures are topology

optimization and shape optimization (Mei and Wang, 2021). In

topology optimization, the goal is to find the most optimal

distribution of a limited quantity of material inside a given

arbitrary design domain. On the other hand, in size optimization

the shape is predefined and composed of several individual parts (e.g. a

truss structure). The problem is then to find the size of each individual

element that leads to the most optimal design of the whole structure.

Hybrid problems that combine topology and shape optimization are

also common (Christiansen et al., 2015). Evidently, finding such

optimal designs is a computationally intensive operation that

involves a highly iterative process of trial and error. It is then no

surprise that engineers have looked after CI-powered methodologies

to deal with structural optimization problems, especially the usage of

nature-inspired metaheuristic search strategies which have yielded

numerous successful optimization strategies (Yang et al., 2014;

Lagaros et al., 2022). Next, we present a few examples of recent

and innovative applications using CI-powered methodologies for

structural optimization.

Ahrari andDeb (Ahrari andDeb, 2016) developed an optimization

algorithm for the simultaneous topology, shape, and size optimization

of truss structures based on fully-stressed design and evolutionary

strategies (referred as FSD-ES-II). They test their algorithm in various

truss-design problems containing a large number of variables and

depicting real-life truss design conditions considering multiple load

cases as well as stress limits due to buckling and yielding of the

members. They estimate that a reduction of the weight up to 32%

maybe achieved, compared to an iterativemanual design. Furthermore,

the examples that they developed for their case studies may serve as

benchmark problems can be used by other optimization strategies as

they are realistic structural engineering design tasks.

Liu and Xia (Liu and Xia, 2022) proposed a hybrid strategy

using Genetic Algorithms and Deep Neural Networks (called

Hybrid Intelligent Genetic Algorithm HIGA) for the

optimization of truss structures. In their approach, they

enhance a GA-based optimization technique by progressively

training a DNN with the data generated during the iterative GA

process. This DNN is then used as a surrogate model to substitute

the FEA and perform a second nested GA where a set of

populations are randomly generated. The best individual from

each population, plus the current overall best, are used to create a

new population for the next outer GA loop iteration. Thus,

greatly increasing the exploration capabilities of the search

strategy. Their DNN uses two hidden layers with 200 neurons

each, ReLU activation functions and Adam optimizer. Their

methodology is tested for several truss optimization problems

showing more stable optimization procedures and reducing the

computational cost to 7.7% compared to a pure GA approach.

Kallioras et al., (Kallioras et al., 2020) developed a

methodology to enhance the popular SIMP (Bendsøe and

Kikuchi, 1988) method that is used in topology optimization

problems by means of deep belief networks (DBN). They

implement a two-stage procedure. In the first phase, a specific

number of iterations of the SIMP are executed. Then, a pre-

trained DNB is used to compute the optimal element density

based on the density history throughout these initial SIMP

iterations. In the second phase, the SIMP is used to fine-tune

the results obtained with the DBN at the first phase. The

procedure is tested for various 2D and 3D examples. For the

3D cases, they test three problems with a domain discretized with

72,000, 86,000, and 140,000 finite elements. They achieve optimal

results comparable to those obtained with the full SIMP approach

but using 81%, 62%, and 52% less iterations in each problem

respectively. Furthermore, by using GPU-based acceleration,

they are able to speedup the procedure up to 17× times

(compared to pure SIMP-CPU) for the larger 3D example.

4.2.1 Structural design
CI techniques, and particularly Genetic Algorithms, are also

widely used for the optimal design of entire structures or individual

elements such as beams, columns, walls, footings, etc.These problems

fall into the category of size optimization and are in fact the regular

everyday task of structural engineers working on real-life

construction projects. The traditional approach usually consists of

iterating the design manually until the engineer is satisfied with the

result. This may lead to an inefficient and expensive design process.

Alternatively, one could leverage the advantages of CI-powered

methodologies such as GA to fully automate the design task

(Hamidavi et al., 2018). However, the practical application of such

optimization strategies is still not widely adopted.We believe that this

is mainly due to the exhaustive training in optimizationmethods that

is required for their successful implementation, as well as the limited

availability of ready-to-use and easy to implement optimization tools.

Therefore, researchers are trying to bring down the gap between the

research-oriented and real-life applications by developing accessible

methodologies, algorithms, tools, and even benchmark functions and

problems (Ahrari andDeb, 2016; Plevris and Solorzano, 2022). A few

examples in this direction are presented next.

Solorzano and Plevris (Solorzano and Plevris, 2020) used

Genetic Algorithms to find the optimal design of concrete

isolated footings (both pure axially loaded and with eccentricities)

according to the ACI318-19 code regulations. They use the

minimization of the material cost including both the concrete

and the steel reinforcement as the objective function. The

compliance with the ACI318 code is enforced by a set of

constraint functions based on the multiple checks that are

specified in the code, e.g. the allowable bearing pressure, the

punching shear and flexural strength of the slab. Their work
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shows that the optimal design can be obtained in a few seconds (4.8 s

for their tested example), thus, greatly reducing the time spent by the

engineer in the design process.

Similarly, Moayyeri et al. (Moayyeri et al., 2019) proposed a

methodology for the optimum design of RC retaining walls using

the Particle Swarm Optimization algorithm. In their strategy,

they test three different techniques to model the soil-structure

interaction to obtain the bearing capacity. They define a total of

26 constraint functions to enforce a code-complying design

consistent with the ACI318-14 code. Their study shows

promising results as they were able to successfully obtain

optimal designs for various examples despite the large number

of constraints, pointing out that the Meyerhof soil-structure

modeling produced the most cost-effective designs.

Another similar approach is proposed by Chen et al. (Chen

et al., 2019). They develop a methodology for the design of RC

framed structures using Genetic Algorithms. The optimization

problem is defined with various constraints that control the

design of the beam and columns based on the ACI318-11 code.

Their design variables include the cross sectional dimensions of each

beam and column as well as the reinforcement ratios on three

different points for the beams and two points in the columns.

Optimizing multiple types of elements at once, such as beams and

columns, is an interesting challenge given that the dimensions of one

element may be link to another to obtain realistic designs (e.g. the

column dimensions must be big enough to allow the connectivity of

the beams). They solve such problem by imposing additional

constraints to restrict the dimensions to realistic conditions.

Their GA approach is able to find an optimal value in a single

optimization run, thus, reducing considerable the design time of a

full RC building. Additionally, it is noted that the obtained result is

2% higher (in terms of the material cost) than the optimal design

obtained without considering realistic dimensions as a constraint.

4.3 FE surrogate models

There are certain applications in structural engineering that

require numerous repetitive numerical simulations that may result

in high computational cost, and consequentially, turn the application

impractical for engineering purposes. A few examples which appear in

our bibliometric maps are the areas of topology and shape

optimization of structures, multi-scale analysis of composite

materials, reliability, failure, and uncertainty analyses, among other

areas. It is then a very attractive and active area of research the

development of less expensive alternative numerical models. Soft

computing techniques, and neural networks in particular, have

proven as powerful and reliable methods to create computationally

efficient data-driven surrogate models (Kudela and Matousek, 2022).

These type of surrogate models are able to approximate the results of

an expensive model with only a fraction of the computational cost.

However, most of the times, the training procedure of the surrogate

model requires a large database of reliable and accurate results that

must be created using the same computationally expensivemodel that

is being substituted. Thus, the creation of a surrogatemodelmay seem

paradoxical as it may end up being a computational expensive

operation, as well. Nevertheless, usually that is not the case as the

data creation and the training procedures are one-time-only processes

that can be conveniently done at any given time. Furthermore, one can

take advantage of advanced computational capabilities such as

parallelization and GPU processing. Once the surrogate model is

fully trained, it can be used indefinitely as a significantly less

computational expensive alternative. Next, we present a few

examples of recent developments of computationally efficient

surrogate models for FEM simulations.

Hau et al. (Mai et al., 2021) developed a deep neural network

surrogate model to replace the FEM analyses in a truss

optimization algorithm that considers the geometrically non-

linear behaviour. Their DNNmodel has an architecture of 4-335-

335-335-335-2 and is trained with 1320 samples. Using this

methodology, the authors were able to significantly reduce the

computational demand of an optimization run which normally

requires thousands of NLFE analyses. The time reduction goes

from 8559 s using NLFE, to 0.56 s with the DNN surrogate model

(almost 16,000 times faster). The training and data collection

took around 3756 s showing that the total procedure including

training and data collection is still 2× times faster.

Abbueidda et al. (Abueidda et al., 2020) developed a

convolutional neural network (CNN) surrogate model for 2D

topology optimization considering non-linear hyperelastic

materials. A single optimization task using the hyperelastic

material and a 32 × 32 mesh takes around 90 min to be

computed on a regular Core-i5 laptop. Thus, generating a

large database of optimal solutions is a computationally

intensive operation. To alleviate the cost, they use high

performance computing (HPC) to run 10 parallel processes,

achieving a data generation rate of 3.2 min per data point.

They created a database of 18,000 optimum topologies which

were used to train a NN model. The NN can then infer almost

instantly good quality non-linear topology optimization results.

Papadopoulos et al. (Papadopoulos et al., 2017) created a neural

network surrogate beam element for the geometrically non-linear

analysis of carbon nanotubes. They use about 500 results of NLFE

simulations of a detailed carbon nanotube (CNT) model for the

training procedure. Their NN surrogate model can be used in

stochastic multi-scale optimization problems that implements

realistic RVEs (representative volume elements) reinforced with

embedded CNT, reducing the computational effort by

remarkably two orders of magnitude.

White et al. (White et al., 2019) present a novel topology

optimization strategy to optimize a large macroscale structure

made of a spatially varying micro architected material. The

micromaterial is characterized by 21 elastic stiffness

coefficients which can be obtained by using highly detailed

FEM simulations. Simulating a representative cell of the

microstructure material to compute the stiffness coefficients
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with an error of 1% requires a mesh of 10 million elements. To

reduce the computational cost, they developed a novel approach

using a single layer feedforward NN trained with the Sobolev

norm to create a surrogate model. The network input is the

material layout of an unit cell of the micromaterial, and the

output are its 21 stiffness coefficients and the effective density. By

substituting the expensive model in the macroscale analaysis,

they are able to perform topology optimization of multiscale

materials, which otherwise is practically impossible due to the

extremely high computational cost.

4.4 Enhancing the FE procedure with CI

While surrogate models substitute entirely the FE model, CI

techniques also provide various ways of enhancing some of the core

numerical procedures of the FE. A few examples are: alleviating the

computational cost on the generation of the stiffness matrix,

developing computationally efficient constitutive models,

approximating the solution of partial different equations (PDEs),

accurately estimating material parameters (Ahmad et al., 2020).

Naturally, due to their efficiency and robustness, NNs are among the

most preferred CI methodologies for these type of problems. The

resulting strategy is a hybrid NN-FE methodology where only a

specific part of the FE is substituted with a NN. The development of

a general neural network methodology that can represent physical

phenomena without problem-specific restrictions such as the

geometry, loading, and boundary conditions, is still an open

challenge. (Pantidis and Mobasher, 2022).

Jung et al. (Jung et al., 2020) developed an innovative approach

to compute the stiffness matrix of solid 2D isoparametric finite

elements with four and eight nodes using DNN (called Deep

Learned Finite Elements). They implemented a geometry

normalization technique to create a vast data set comprised of

elements of all kind of shapes, thus, considerably reducing the

required amount of data for the training procedure. Their

network takes as input the Poisson’s ratio and the nodal

coordinates of the element which are pre-processed and

transformed to the normalized space; the output is the strain-

displacement matrix which is then post-processed back to the

original geometric space and the final stiffness matrix is

computed. The DNN is trained with 300,000 data points and

uses an architecture containing six fully connected layers with

378 neurons each. They tested their developed elements (DL4,

DL8) with several FE examples that implement standard

elements such as Q4, Q8, Q9 and QM6. Their DL8 formulation

outperformed most of them, both in terms of computational

efficiency and convergence.

The previous authors and Jun (Jung et al., 2022) developed a

similar strategy called self updated four-node finite element (SUFE).

Their approach aims to eliminate the shearlocking effect that affects

FE models with coarse meshes, eliminating the necessity of mesh

refinement. They achieve this by using amode-base description of the

isoparametric 4-node element and an internal iterative procedure to

correct the stiffness matrix. Such correction requires the solution of a

costly optimization problem to find the optimal bending directions of

the FE. The DNN is implemented to alleviate the cost of the

optimization procedure. The DNN takes as input the nodal

coordinates, displacements and the Poisson’s ratio; the output is

the optimal bending direction. The DNN architecture uses 10 fully

connected layers with 320 neurons each and is trained with a large

number of 3,000,000 samples (vast data is required in order to

generalize the DNN to account for any possible FE geometry).

The element shows promising results, outperforming the tested

standard FEs in several examples. Furthermore, their idea can be

extended to other types of finite elements.

Samaniego et al. (Samaniego et al., 2020) developed a Deep

Neural Network approach to approximate the solution of PDEs in

computational mechanics. Their approach consists of defining a

physical informed DNN using the energy of the system as a loss

function, thus, the NN is directly used to built the approximation

space. In their paper, they solve various problems related to

mechanical engineering. For each problem, the DNN architecture

and the corresponding loss function are designed accordingly. For a

hyperelasticity problem consisting of a cuboid subjected to twisting,

they use a 3-30-30-30-3 DNN where the inputs are the nodal

coordinates and the output are the displacements. They use a

total of 64,000 points for the training phase. The loss function is

the potential energy of the system which contains the information

related to the boundary conditions and constitutive equations. By

training the neural network with standard gradient-based methods,

the potential is minimized and the corresponding solution is

obtained in the form of nodal displacements.

Ortiz and Kirchdoerfer (Kirchdoerfer and Ortiz, 2016)

presented a new paradigm which they refer as data-driven

computational mechanics. Their methodology substitute the

hard-coded material constitutive law in the FE procedure with

reliable experimental data. The solver seeks to assign each

material point of the model with the closest material state from a

predefined material dataset by solving a constrained optimization

problem during an iterative procedure. They argue that by

incorporating the experimental data directly in the mathematical

model, simulations outside the data range are discouraged and the

errors and uncertainties are greatly reduced.

4.5 Earthquake engineering, uncertainty,
and risk assessment

One of the most evident drawbacks of the hard computing

techniques in the simulation and modeling of structures is their

lack of mechanisms to treat uncertainties in the solution process.

Uncertainties are inherent, and can be considered as an

irremovable characteristic that is present in all engineering

problems. They arise from simple situations such as errors or

inaccuracies in the measurement of properties; or from highly
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complex phenomena that are nearly impossible to model

accurately, e.g. the micro-structure of materials or the

expected seismic loads in a building. Needless to say,

uncertainties are tied with the risk assessment of structures. It

is virtually impossible to accurately predict the failure probability

of a structure due to the numerous uncertainties involved in their

design and construction. However, it is possible to develop

reliable estimations exploiting the advantages of CI-powered

techniques. Similarly, predicting or modeling the response of

structures to seismic events and designing appropriated control

systems to reduce their impact (Lagaros et al., 2001) are other

challenging endeavours in which CI-powered techniques have

proven valuable.We provide a few examples of relevant studies in

the following paragraphs.

Ebrahimi et al. (Ebrahimi et al., 2022) developed a methodology

based on fuzzy systems to properly address the uncertainties

encountered when defining the performance levels and the loading

conditions in the performance based design of buildings. They

perform a fuzzy structural analysis (Möller et al., 2000) using

fuzzy sets to define the loading conditions and apply a Genetic

Algorithm to find the minimum and maximum response of the

corresponding alpha-cut. Finally, they derive a novel method for

comparing the two fuzzy sets (i.e. fuzzy structural response and the

corresponding loading conditions) to assess the performance level of

the structure more reliably. Thus, significantly reducing the

uncertainty that characterizes such decisions. Similarly, Guo et al.

(Guo et al., 2022) propose a fuzzy global seismic vulnerability analysis

framework to investigate the effect of stochastic and epistemic

uncertainties in RC structures. The stochastic uncertainties refer to

the ground motion and the structural design parameters, while the

epistemic uncertainties refer to the definition of the limit states and

the parameters of the probabilistic model. In their approach, each

story is idealized as a random variable and the correlations between

these random variables are computed using the vine copula theory.

They use a FEM model of a RC building using non-linear beam and

column elements with a displacement-based fiber section in

OpenSees. The failure limit state is described using the maximum

inter-story drift and the peak ground acceleration based on the IDA

method (Wu et al., 2020). With their methodology, they obtain a

fuzzy global vulnerability curve for each performance level that

considers both stochastic and epistemic uncertainties; helping

engineers and researchers in the decision-making process in the

context of risk assesment.

Javidan et al. (Javidan et al., 2018) developed a NN-based

surrogate model to estimate the collapse probability of structures

under extreme actions. They apply their methodology in a case

scenario of a multi-story framed structure subjected to car impact

load. The reliability analysis requires 20,000 realizations using

Monte Carlo sampling. A detailed NLFE simulation using LS-

DYNA takes 112 h to compute, and therefore, is not a viable

option to run 20,000 different cases. An alternative simplified

model using adaptively shifted integration method (ASI) is

implemented to reduce the cost to 20 s per analysis. To

achieve a further reduction of the computational time, a NN-

based surrogate model is created and trained using

10,000 samples generated with the ASI model. They compare

the surrogate model with the ASI method and observe good

agreement in the results (low MSE and good R2). By substituting

the ASI method with the trained NN in the reliability analysis, the

computational demand is reduced approximately from

20,000*(20 s) = 400,000 s per analysis, to only a few seconds.

4.6 Structural health monitoring

Sometimes the initial conditions or purposes for which a

structure was initially build may change over time.

Consequentially, the simulation and modeling of existing

structures for retrofitting or conservation purposes is another

important area in structural engineering. This fact can be clearly

observed in the bilbiometric map at Figure 3. In the neural

networks cluster, there are several terms related to structural

health monitoring and damage detection. Therefore, the data

itself points out to the usage of Machine Learning models for

structural health monitoring (Azimi et al., 2020). A couple of

examples are given next.

Georgioudakis and Plevris (Georgioudakis and Plevris,

2018) implemented an innovative technique for the damage

identification in structures based on incomplete modal data.

They create a finite element model of the structure and assign

a damage index to each member. The idea is then to define a

unconstrained optimization problem to find the appropriated

damage index for each member. They solve such task with an

implementation of the differential evolution algorithm using

as objective function a combination of two different

correlation criteria between the real damage

(experimentally measured) and the damaged that is

predicted by the finite element model. It is shown in

various simulated examples that their developed technique

using the combined criteria throws better results than those

obtained using each criteria individually.

Wand and Cheng (Wang et al., 2021) propose a new crack

detection method using deep neural networks. Their

methodology, namely the reference anchor point method,

employs a deep convolutional neural network that is based

on the ResNet architecture. In principle, the approach

discretizes the image with a 2D array of points and the NN

is trained to detect whether or not each point is near a crack.

Therefore, obtaining a full map of the cracks made up by

closely positioned points. This is a particularly challenging

problem as cracks comes in all sizes and shapes, however, they

propose clever ideas such as the fixed-distance decentalization

algorithm to solve the problem. Their approach is able to map

the cracks on an image in just a fraction of a second (using a

NVIDIA GeForce GTX 1080 GPU). Furthermore, the

resolution (i.e. number of points used for crack detection)
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can be easily manipulated for better quality or faster results,

depending on the problem specific needs.

5 Summary and conclusion

We have conducted a thorough data-driven bibliometric

analysis on the topic of Computational Intelligence techniques

in the simulation and modeling of structures. The results

presented in this study correspond to the analysis of a

database of 8107 publications in the aforementioned field. We

present metrics such as the yearly growth of scientific

publications, the most utilized journals, the most cited papers,

and most notable authors. Furthermore, we create various

bibliometric maps using the keywords and the authorship

information contained in all the publications in the database.

From the bibliometric maps created with the keywords, we

obtain a general overview of the research directions in the

field where we have successfully identified the following seven

topics: 1) FEM enhanced by CI; 2) structural optimization; 3)

surrogate modeling; 4) earthquake engineering, uncertainties,

and risk assessment; 5) structural health monitoring; 6) modeling

of complex RC behaviour; and 7) machine learning applications.

Alternatively, from the bibliometric map created from the

authorship information, we obtain valuable information on

the most notable authors and the collaborations between

them. We relate these authors to the top 30 (most recurrent)

keywords to discover the most influential authors in particular

topics. Based on the results and our interpretation of the

bibliometric analysis, we provide several examples of recent

publications implementing innovative CI-related approaches,

highlighting the main methodologies and achievements of

each individual study. Additionally, since the interpretation of

bibliometric maps is highly subjective, we have dedicated a full

section of the paper to provide a detailed description of the

science mapping methodology that was implemented in the

construction of the presented maps. Thus, empowering the

reader with the necessary information for their own

interpretation of the results.

The analyzed data and the findings obtained in this study

suggest that there is a clear hype and an increasing trend

regarding the implementation of CI techniques in engineering

applications. Particularly, in the studied topic of simulation

and modeling of structures, we can observe that many of the

traditional long-lasting methodologies are being substituted

or enhanced by some form of CI. Engineers no longer have to

manually iterate to find the most optimal design of a structure,

as they can leverage the power of innovative optimization

techniques such as genetic algorithms. The risk assessment of

structures has become much more efficient and reliable by

modeling uncertainties using fuzzy systems and variables.

Neural Networks have demonstrated an unmatched

performance for the automatic damage identification in

structures, greatly improving and facilitating the retrofitting

process. Additionally, Neural Networks also serve as powerful

non-linear mapping functions providing an ideal framework

to create computational efficient surrogate models of large FE

simulations. Naturally, all these applications are driven by the

enormous advances and availability in computational

technology and resources, as well as due to the continuous

investment in research and development of Artificial

Intelligence applications, both of which are likely to keep

growing and accelerate in the near future. Therefore, it is

conceivable that we will continue to see many innovative

applications and a fast-paced growing output of research in

this direction. Inevitably, these strategies are heading to

become standard practices in the future, for both research

and industrial applications.
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