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With increasing urbanization and depleting reserves of raw materials for construction,
sustainable management of existing infrastructure will be an important challenge in this
century. Structural sensing has the potential to increase knowledge of infrastructure
behavior and improve engineering decision making for asset management. Model-
based methodologies such as residual minimization (RM), Bayesian model updating
(BMU) and error-domain model falsification (EDMF) have been proposed to interpret
monitoring data and support asset management. Application of these methodologies
requires approximations and assumptions related to model class, model complexity and
uncertainty estimations, which ultimately affect the accuracy of data interpretation and
subsequent decision making. This paper introduces methodology maps in order to
provide guidance for appropriate use of these methodologies. The development of
these maps is supported by in-house evaluations of nineteen full-scale cases since
2016 and a two-decade assessment of applications of model-based methodologies.
Nineteen full-scale studies include structural identification, fatigue-life assessment, post-
seismic risk assessment and geotechnical-excavation risk quantification. In some cases,
much, previously unknown, reserve capacity has been quantified. RM and BMU may be
useful for model-based data interpretation when uncertainty assumptions and
computational constraints are satisfied. EDMF is a special implementation of BMU. It is
more compatible with usual uncertainty characteristics, the nature of typically available
engineering knowledge and infrastructure evaluation concepts than other methodologies.
EDMF is most applicable to contexts of high magnitudes of uncertainties, including
significant levels of model bias and other sources of systematic uncertainty. EDMF also
provides additional practical advantages due to its ease of use and flexibility when
information changes. In this paper, such observations have been leveraged to develop
methodology maps. These maps guide users when selecting appropriate methodologies
to interpret monitoring information through reference to uncertainty conditions and
computational constraints. This improves asset-management decision making. These
maps are thus expected to lead to lower maintenance costs and more sustainable
infrastructure compared with current practice.
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INTRODUCTION

Annual spending of the architecture, engineering and
construction (AEC) industry is over 10 trillion USD (Xu et al.,
2021). It is the largest consumer of non-renewable raw materials
and accounts for up to 40% of world’s total carbon emissions
(World Economic Forum and Boston Consulting Group 2016;
Omer and Noguchi 2020). Additionally, each year, the gap
between supply (new plus existing) and demand for
infrastructure is increasing (World Economic Forum 2014).
Therefore, sustainable and economical management of existing
civil infrastructure is currently an important challenge (ASCE
2017; Amin and Watkins 2018; Huang et al., 2018; Tabrizikahou
and Nowotarski 2021).

Civil infrastructure elements are designed using justifiably
conservative models. Therefore, most civil infrastructure has
reserve capacity beyond that was intended by safety factors
(Smith 2016). This is provided at the expense of unnecessary
use of materials and resources. However, without quantifying this
reserve capacity, decisions on managing civil infrastructure may
be prohibitively conservative, leading to uneconomical and
unsustainable actions. Reserve capacity, in this context, is
defined as the capacity available that is beyond code-specified
requirements related to the critical limit state (Proverbio et al.,
2018c). Improving understanding of structural behavior through
monitoring helps avoid such actions.

Today, the availability of inexpensive sensing (Lynch and Loh
2006; Taylor et al., 2016; Wade 2019; Vishnu et al., 2020) and
computing tools (Frangopol and Soliman 2016; Jia et al., 2022)
has made it feasible to monitor civil infrastructure. However, use
of monitoring for asset management is limited by lack of methods
for accurate, precise and efficient interpretation of data to support
decision making. Asset management activities, such as in-service
infrastructure evaluations, under contexts such as increased
loading and events such as code changes, may involve
structural behavior extrapolation predictions at unmeasured
locations under conditions that are different from those
present during monitoring. Extrapolating behavior predictions
outside the domain of data requires physics-based behavior
models; data-driven model-free strategies are not intended to
be used in such situations.

Structural identification is the task of interpreting monitoring
data using physics-based models. In probabilistic structural
identification, parameters of physics-based models (usually
finite-element representations) are updated using monitoring
data and by taking into account uncertainties from various
sources. In the context of civil infrastructure, simulation
models are approximate and typically conservative. These
approximations may be related to modelling of boundary
conditions, structural geometry, material properties etc.
Assumptions related to such modelling decisions, usually
result in significant and biased modelling uncertainties
(Steenackers and Guillaume 2006; Goulet et al., 2013). In these
situations, the accuracy of model-based data interpretation
depends upon how well biased uncertainties are quantified
(Goulet and Smith 2013; Pasquier and Smith 2015; Astroza
and Alessandri 2019).

Much research has been carried out to develop model-based
data interpretation methodologies, for example (Worden et al.,
2007; Beck 2010; Cross et al., 2013; Moon et al., 2013).
Methodologies that have been studied comprehensively are
residual minimization (RM) (Beven and Binley 1992; Alvin
1997), traditional Bayesian model updating (BMU) (Beck and
Katafygiotis 1998; Behmanesh et al., 2015a) and error-domain
model falsification (EDMF) (Goulet and Smith 2013; Pasquier
and Smith 2015). EDMF is a special implementation of BMU that
has been developed to be compatible with the form of typically
available engineering knowledge and infrastructure evaluation
concepts (Pai et al., 2019). These methodologies differ in the
criteria used to update models using data and assumptions related
to quantification of uncertainties. Since every civil infrastructure
element is unique in its geometry, function, and utility, no one
data-interpretation methodology is suitable for all infrastructure
management contexts. No guidelines are available in literature for
selecting the most appropriate methodology for data
interpretation based on uncertainty estimations and other
more practical constraints, such as flexibility when
information changes.

In this paper, methodology maps have been developed for
selection of appropriate data-interpretation methodologies based
on uncertainty estimations and practical constraints such as
computational cost and ease of recalculation when information
changes. These maps have been developed through synthesizing
knowledge gained from many research projects and by reviewing
hundreds of research articles over the past 20 years. This review
includes comparisons between RM, traditional BMU and EDMF
in terms of their ability to support asset management of built
infrastructure. Finally, open-access software that supports use of
EDMF and subsequent validation is presented.

METHODOLOGIES FOR MODEL-BASED
SENSOR DATA INTERPRETATION

Monitoring of civil infrastructure enhances understanding of
structural behavior. Using this improved knowledge, asset
managers and engineers have the possibility to enhance
decision making. The value of monitoring has improved with
the availability of many cheap sensing and computing tools.
Developments in data storage capabilities and increased ability
to transfer and store data has made infrastructure monitoring
feasible in practice.

While infrastructure monitoring is feasible, important
challenges exist when interpreting monitoring data to make
accurate and informed decisions. Interpretation of data
requires development of appropriate physics-based models and
knowledge-intensive assessments of uncertainties related to
modelling and measurements. In this section, the importance
of uncertainties and various methodologies for data
interpretation is explained.

Uncertainties in Data Interpretation
Design of civil infrastructure involves many conservative (safe)
choices. These choices lead to existing structures that are safer
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and have higher serviceability than design requirements.
However, conservative models used for design may not be safe
for the inverse task of management of existing structures (Pai and
Smith 2020). Management of built infrastructure (Pai and Smith
2020) involves predicting structural behavior based on
observations in order to make decisions such as repair
strategies and loading limitations.

Acknowledging model uncertainty may help ensure accurate
predictions and conservative management (Smith 2016; Pai et al.,
2019). Quantification of model uncertainty is challenging in the
context of incomplete knowledge of model fidelity and the
physical principles that govern real structural behavior.
Uncertainties, including those from modelling sources, are
generally estimated to be distributed normally.

Civil-infrastructure elements are typically built tomeet the design
requirements as a lower bound. For example, on-site inspectors
would not allow a reinforced-concrete beam with dimensions
smaller than design requirements. Conversely, a beam that is
slightly larger (within reasonable tolerance limits) and
consequently stiffer would pass inspection. Construction practice
often leads to stiffer-than-designed built infrastructure. Therefore,
models developed with design information are biased compared
with built infrastructure behavior and this leads to biased
uncertainties related to model predictions.

Civil infrastructure is built to at least meet design
specifications. The uncertainty following construction can
therefore be estimated to have a lower bound approximately
equal to the design value (excluding unforeseen construction
errors). The upper bound may be estimated with engineering
information such as heuristics, site-inspection results and local
knowledge of material properties such as concrete stiffness. In
most full-scale situations, bound-value estimations are the only
available engineering information. While practicing engineers
often refer to maximum and minimum bounds, they are
typically unable to provide values for more sophisticated
metrics such as mean and standard deviation. Also,
throughout the service life, important information may change
and engineers may not be able to modify accurately such metrics.
Themost appropriate choice for uncertainty quantification in this
context is thus a bounded uniform distribution (Jaynes 1957).
Assuming uniform distributions for data interpretation using
models has other advantages, such as robustness to changes in
correlations amongst measurement locations (Pasquier 2015; Pai
2019). In the presence of additional knowledge, other probability
distributions may also be used for quantifying uncertainties
(Cooke and Goossens 2008) such a modulus of elasticity.
Quantification of uncertainty in parameters such as boundary
conditions as a Gaussian distribution is challenging compared
with using a uniform distribution. Additionally, use of more
sophisticated distributions may require quantification of poorly
known quantities, such as correlations between measurement
locations in the presence of bias (Simoen et al., 2013).

Residual Minimization
Residual minimization (RM), also called model updating, model
calibration and parameter estimation, originated from the work
of Gauss and Legendre in the 19th century (Sorenson 1970). In

RM, a structural model is calibrated by determining model
parameter values that minimize the error between model
prediction and measurements. In this method, the difference
between model predictions and measurements is assumed to be
governed only by the choice of parameter values (Mottershead
et al., 2011), that is, there is no other source of model uncertainty.

In this method, the systematic model bias from typically
conservative assumptions related to modelling are not taken
into account. Additionally, uncertainties are assumed to be
independent and have zero means. These assumptions may
not be satisfied, particularly in the presence of significant
uncertainty bias (Rebba and Mahadevan 2006; Jiang and
Mahadevan 2008; McFarland and Mahadevan 2008). RM may
not provide accurate identification when inherent assumptions
are not satisfied in reality (Beven 2000). Moreover, due to the ill-
posed nature of structural identification task, unique solutions are
inappropriate due principally to parameter-value compensation
(Neumann and Gujer 2008; Beck 2010; Goulet and Smith 2013;
Moon et al., 2013; Atamturktur et al., 2015).

RM may occasionally result in accurate identification.
However, models updated using RM are limited to the domain
of data used for calibration (Schwer 2007). While updated models
may be suitable for interpolation (predictions within the domain
of data used for calibration) (Schwer 2007), they are not suitable
for extrapolation (predictions outside the domain of data used for
calibration) (Beven 2000; Mottershead et al., 2011).

Despite limitations related to accuracy of solutions obtained
with RM, this method is widely used in practice due to its
simplicity and fast computation time (Brownjohn et al., 2001,
2003; Rechea et al., 2008; Zhang et al., 2013; Chen et al., 2014;
Mosavi et al., 2014; Feng and Feng 2015; Sanayei et al., 2015;
Hashemi and Rahmani 2018). This underscores the needs for ease
of use, as well as accuracy, to ensure practical adoption of more
modern data-interpretation methodologies to support the
extrapolations that are needed for good asset management.

Traditional Bayesian Model Updating
BMU is a probabilistic data-interpretation methodology that is
based on Bayes’ Theorem (Bayes, 1763). Structural identification
using Bayesian model updating gained popularity in late 1990’s
(Alvin 1997; Beck and Katafygiotis 1998; Katafygiotis and Beck
1998). In BMU, prior information of model parameters, p(θ), is
updated using a likelihood function, p(y|θ), to obtain a posterior
distribution of model parameters, p(θ|y), as shown in Eq. 1.

p(θ∣∣∣∣y) � p(θ) · p(y|θ)
p(y) (1)

In Eq. 1, p(y) is a normalization constant. The likelihood
function, p(y|θ) is the probability of observing the measurement
data, y, given a specific set of model-parameter values, θ.

Traditionally, BMU has been carried out using a zero-mean
L2-norm-based Gaussian probability-distribution function (PDF)
as a likelihood function, which is shown in Eq. 2.

p(y|θ)∝ e
[−1

2(g(θ)−y)TΣ−1(g(θ)−y)]
(2)
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While employing this likelihood function, uncertainties at
measurement locations are estimated as zero-mean Gaussian
(no model bias with a bell-shaped normal distribution).
Additionally, traditional application of this likelihood function
assumes independence between measurement uncertainties (no
correlations) (Beck et al., 2001; Ching and Beck 2004; Katafygiotis
et al., 1998; Muto and Beck 2008; Yuen et al., 2006). Also, variance
in uncertainty, σ2 (diagonal terms of the covariance matrix Σ in
Eq. 2, is assumed to be the same for all measurement locations.
Assumptions made for the development of traditional BMU are
rarely satisfied in civil engineering (Tarantola 2005; Simoen et al.,
2013), and this leads to inaccurate identification (Goulet and
Smith 2013; Pasquier and Smith 2015). Such challenges have
motivated improvements to BMU, some of which are described in
the next section.

Bayesian Model Updating With
Parameterized Model-Error
Measurement data may be used to identify characteristics of the
model error to avoid incorrect assumptions related to
development of the likelihood function. This procedure of
parameterizing the model error for BMU applications is called
as parameterized BMU in this paper to distinguish it from the
traditional application discussed in Traditional Bayesian Model
Updating.

Typically, the standard deviation terms, σ2, of the covariance
matrix, Σ, are parameterized and estimated using measurements
as part of the BMU framework (Ching et al., 2006; Christodoulou
and Papadimitriou 2007; Goller et al., 2011; Goller and Schueller
2011). This attempts to overcome the challenge related to
estimating the magnitude of model error. Simoen et al. (2013)
demonstrated that determining the values of the non-diagonal
correlation terms in the covariance matrix using measurement
data improved accuracy of structural identification.

Many researchers have parameterized and estimated the
model-error terms in a hierarchical application of BMU, for
example (Behmanesh et al., 2015a; Behmanesh and Moaveni
2016). Hierarchical BMU overcomes further challenges related
to estimating the model error and bias. However, estimating
model error terms involves estimation of additional parameters,
which lead to identifiability and computational challenges
(Prajapat and Ray-Chaudhuri 2016).

Magnitudes of systematic bias and correlations are related
(Goulet and Smith 2013) and cannot be estimated independently.
Additionally, the magnitudes of systematic bias, variance and
correlations differ from one measurement location to another.
Assuming these parameters to be the same at all locations may
not be accurate. Due to these challenges, solutions obtained with
BMU, while possibly suitable for damage assessment applications,
are not suitable to support extrapolation predictions in civil-
engineering contexts (Song et al., 2020).

Error-Domain Model Falsification
Error-domain model falsification (EDMF) is a population-based
data-interpretation methodology. This methodology was
developed by Goulet and Smith, 2013) and builds on more

than a decade of research (Robert-Nicoud et al., 2005a; Saitta
et al., 2008; Smith and Saitta 2008). The application of this
methodology has been evaluated with applications to over ten
full-scale case studies (Smith 2016).

In this methodology, model instances (physics-based model
with instances of parameter-values as input) that provide
predictions that are incompatible with observations
(measurements) are falsified (refuted). Compatibility is
assessed using thresholds (tolerance) on residuals between
model predictions and measurements. These threshold values
are computed based on uncertainty associated with the
interpretation task at each measurement location.

Threshold values for each measurement location are
calculated based on the combined uncertainty at each
measurement location. This uncertainty is a combination of
uncertainties from many sources such as measurement noise,
modelling error and parametric uncertainty (from sources not
included in the interpretation task). A few of these uncertainties,
such as measurement noise and some material properties, may be
estimated as normal random variables when sufficient
information is available. Other uncertainties from sources such
as geometrical assumptions, modelling of load and boundary
conditions are unique to the model and are usually biased, as
discussed earlier. With incomplete knowledge, these uncertainties
are best quantified as uniform random variables (Jaynes 1957).

Threshold bounds from combined uncertainty PDFs are
calculated based on a user-defined target reliability of
identification. This user-defined metric determines the
confidence (probability) that solutions of data-interpretation
include the correct solution (real model). Model instances that
provide predictions within threshold values of measurements, for
all measurement locations, are accepted. Model instances whose
predictions lie outside threshold bounds on measurement for any
measurement location are rejected.

Model instances accepted by EDMF (not refuted by
measurements) form the candidate model set (CMS). All
model instances within this set are assumed to be equally
likely, i.e., no model instance is more likely to be the correct
solution than other model instances. It is rare to have enough
accurate information on uncertainty do conclude otherwise.
Candidate models are then used for making predictions with
reduced uncertainty compared with predictions with no
measurements (Pasquier and Smith 2015).

Using thresholds for falsification enables EDMF to be robust
to correlation assumptions between uncertainties (Goulet and
Smith 2013). Additionally, EDMF explicitly accounts for model
bias based on engineering heuristics (Goulet and Smith 2013;
Pasquier and Smith 2015). Consequently, EDMF, when
compared with traditional BMU and RM, has been shown to
provide more accurate identification (Goulet and Smith 2013)
and prediction (Pasquier and Smith 2015; Reuland et al., 2017)
when there is significant systematic uncertainty. In Figure 1, a
comparison of solutions obtained using EDMF traditional BMU
and RM is presented. These solutions have been obtained for a
full-scale case-study with simulated measurements (known true
values of model parameters) as described in Pai (2019). For this
case study, as shown in Figure 1, EDMF and modified BMU
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provide accurate albeit less precise solutions compared with
traditional BMU and residual minimization. Similar
observations have been made by many researchers for various
applications (Goulet and Smith 2013; Pasquier and Smith 2015;
Pai and Smith 2017; Reuland et al., 2017; Pai et al., 2018).
Accuracy in this context is defined as the correct value of the
model parameter to be identified. In reality, the correct value of
model parameters is not known. Therefore, the assessment of
accuracy can be performed using cross-validation by comparing
updated predictions with new measurements (measurements not
included in identification) as described by Pai and Smith (2021).
Precision is defined as the relative reduction in model-parameter-
value uncertainty width due to information obtained using
measurements. This is also quantified using the relative
reduction in prediction uncertainty due to updated knowledge
of model parameters, as described in Pai and Smith (2021).

EDMF has been shown analytically and empirically to be
equivalent to BMU when a box-car shaped likelihood function
is used for incorporating information from measurements
(Reuland et al., 2017; Pai et al., 2018, 2019). This likelihood
function is determined using the same EDMF thresholds. As
these thresholds are calculated based on explicit quantification of
bias, the function is robust to incomplete knowledge of
correlations, as is EDMF. Therefore, BMU with a modified
likelihood function, similar to EDMF, provides more accurate
solutions compared with traditional BMU and RM. EDMF may
be interpreted as a practical implementation of BMU with
uniform uncertainty characterization for model-based data
interpretation.

CHALLENGES IN SENSOR DATA
INTERPRETATION

Use of sensor data for updating knowledge of structural behavior
enhances asset management. However, many challenges exist
related to development of measurement systems, data processing

and development of appropriate physics-based models. Most
data-interpretation studies have been limited to laboratory
experiments and simulated hypothetical cases. Extending
conclusions to full-scale cases must be done with care. In this
section, a few common challenges are discussed along with
methods to overcome weaknesses.

Outliers in Data
Use of data interpretation methodologies typically involves the
assumption that measurement datasets do not include spurious
data. Outliers are anomalous measurements that may occur due
to sensor malfunction (Beckman and Cook 1983) and other
factors such as environmental and operation variability
(Hawkins 1980). The presence of outliers in measurement
datasets reduces accuracy and performance of structural
identification methods (Worden et al., 2000; Pyayt et al., 2014;
Reynders et al., 2014).

Most developments related to outlier detection are focused on
continuous monitoring applications (Burke 2001; Hodge and
Austin 2004; Ben-Gal 2006; Posenato et al., 2010; Vasta et al.,
2017; Deng et al., 2019). These methods are not suitable to detect
outliers in datasets that consist of sparse measurements recorded
during static load tests (Pasquier et al., 2016). Suggested an
outlier-detection method for EDMF based on sensitivity of
identified solutions to each measurement. A measurement data
point that falsifies uncharacteristically high number of models
was flagged as a potential outlier. A drawback of this approach is
that when onemeasurement data point is muchmore informative
than other measurement data points, this data point could be
labelled as an outlier even when the measurement is valid.
Exclusion of the most informative data point from
identification procedures may severely limit the information
gained from monitoring.

Proverbio et al. (2018a) suggested comparing the expected
performance of a sensor configuration (as estimated with a sensor
placement algorithm) with observed performance based on
monitoring data. Measurement data that showed large

FIGURE 1 | Comparison of data-interpretation solutions obtained using (A) EDMF, (B) traditional BMU, and (C) residual minimization for the Ponneri Bridge case
study. The results are adapted from the Ponneri Bridge case study described in Pai (2019). EDMF and modified BMU provide accurate, albeit less precise, solutions
compared with traditional BMU, and residual minimization.
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variations from expected performance were flagged as outliers
and excluded during identification. This approach is able to detect
outliers in sparse datasets and overcomes several limitations of
other outlier-detection methodologies (Proverbio et al., 2018a).

Measurement System Design
The use of information entropy for measurement system design
has been studied extensively (Papadimitriou et al., 2000;
Papadimitriou 2004; Robert-Nicoud et al., 2005b; Kripakaran
and Smith 2009). However, most researchers have not accounted
for the possibility of mutual information between sensor locations
while designing measurement systems (Papadimitriou and
Lombaert 2012; Barthorpe and Worden 2020). Papadopoulou
et al. (2014) developed a hierarchical sensor-placement algorithm
that accounts for mutual information. This algorithm was
demonstrated for designing a measurement system to study
wind around buildings (Papadopoulou et al., 2015, 2016).
Bertola et al. (2017) extended this algorithm for multi-type
sensor placement to monitor civil infrastructure systems under
several static load tests.

Typically, measurement data for structural identification is
acquired by conducting either dynamic or static load tests.
Information from dynamic and static load tests may be either
unique or redundant (Schlune et al., 2009). Many studies have
been carried out to maximize information gained through
dynamic and static load tests (Goulet and Smith 2012; Argyris
et al., 2017). However, little research has been carried out for
design of measurement systems involving static and dynamic
load tests. Bertola and Smith (2019) suggested an information
entropy-based methodology for designing measurement systems
when dynamic and static load tests are planned.

There are several challenges involved with designing
measurement systems. The task of sensor placement is
computationally expensive and requires use of adaptive
search techniques such as global (Chow et al., 2011) and
greedy (Kammer 1991; Bertola and Smith 2018) searches.
Also, since measurement-system design methodologies
cannot be easily validated, Bertola et al. (2020a) developed
a validation strategy using hypothesis testing. Then, the
optimal measurement-system design depends on several
performance criteria such as information gain, monitoring
costs and robustness of information gain to sensor failure.
Bertola et al. (2019) introduced a framework where
measurement-system recommendations are made based on
a multi-criteria decision analysis that accounts for several
performance-criterion evaluations as well as asset-manager
preferences.

The task of measurement system design is critical to ensure that
measurement data for structural identification is informative and
leads to reduction in uncertainty related to system behavior (Peng
et al., 2021a). Poor design of measurement systems will lead to
weak justification for monitoring and ultimately, to uninformed
asset-management decision making. Measurement systems must
thus be justified using cost-benefit analyses. Bertola et al. (2020b)
proposed a framework to evaluate the value-of-information of
measurement systems based on the influence of the information
collected on the bridge reserve-capacity estimation.

Measurement-system-design methodologies has the potential
to select informative data among large existing data sets. Wang
et al. (2021) proposed an entropy-based methodology to reduce
the number of measurements used for data interpretation. Using
the reduced sets of data (up to 95% reduction) led to additional
information gain compared with using complete data sets.

Model-Class Selection
Physics-based models include parameters that represent physical
phenomena affecting structural behavior. For real-world
applications, not all phenomena affecting infrastructure
behavior are known. Engineering knowledge is important for
development of physics-based models and inclusion of
appropriate parameters.

As structural behavior is not known perfectly, some
parameters of physics-based models are quantified as random
variables. As previously described, appropriate quantification of
their values is necessary for accurate data interpretation. The task
of model-based data interpretation is to reduce uncertainty
related to parameter values that govern structural behavior.

Model-based data interpretation involves searching for
solutions (parameters that lead to model behavior that is
compatible with measurements) in a large model-parameter
space. The larger the parameter space to be explored, the
greater the computational cost of finding solutions. Moreover,
all measurements are not informative for all parameters. Hence,
selecting parameters that are compatible with the information
that is available from measurements is important to improve
computational efficiency while maintaining precision.

For a given physics-based model, from a large set of potential
model parameters, many smaller subsets of parameters can be
selected for identification. Each of these subsets defines a model
class for identification. The task of selecting an appropriate model
class for identification and subsequent predictions of structural
behavior is called model-class selection (or feature selection) (Liu
and Motoda 1998; Bennani and Cakmakov 2002; Guyon and
Elisseeff 2006).

Selection of a model-class for identification without utilizing
information from measurements is called as a-priori model class
selection. Traditionally, selection of a model-class has been
carried out using sensitivity analysis based on linear-regression
models (Friedman 1991). Other methods include assessment of
coefficient of variation, analysis of variance (Van Buren et al.,
2013; Van Buren et al., 2015), information criterion such as
Akaike information criterion (Akaike 1974) and Bayesian
information criterion (Schwarz, 1978) and regularization.

Most methods available in literature are restricted to linear
models and Gaussian uncertainties. Also, these methods focus on
finding a good subset of parameters that influence model
response at one measurement location. For civil infrastructure,
model response at various measurement locations may not be
governed by the same set of parameters. To select an optimal
model class that is suitable for all measurement locations, either
the importance of parameters to model responses have been
averaged (Matos et al., 2016) or an intersection of parameters
important to response at all sensor locations (Van Buren et al.,
2015) have been assumed. However, novel sensor placement
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strategies (Papadopoulou et al., 2015; Argyris et al., 2017; Bertola
et al., 2017) have been developed that minimize number of
sensors and maximize information from each sensor. Ideally,
these strategies result in each sensor providing new information
about model parameters. Under such conditions, use of averaged
sensitivities is not an appropriate metric for model-class selection.

Pai et al. (2021) proposed a novel model-class selection
method to overcome many challenges related to existing
methods, especially in context of developments related to
novel sensor placement strategies. In this method, the selection
of parameters is not carried out by evaluating the importance of
parameters to response at each measurement location. Instead, a
global understanding of structural behavior is evaluated using
clustering. As parameter values vary, global changes in structural
behavior are estimated using clustering. Parameters governing
these clusters of response are identified using a classifier whose
features are selected based on a greedy search.

Validation
EDMF, when compared with traditional BMU and RM, has been
shown to provide accurate model updating for theoretical cases
using simulated measurements (Goulet and Smith 2013; Pasquier
and Smith 2015; Reuland et al., 2017). In these theoretical
comparisons, the ground-truth values are known. For
assessment of accuracy of full-scale structures, cross-validation
methods have the potential to demonstrate quantitative
validation.

Comparisons of EDMF with traditional BMU and RM have
been made for full-scale case studies using leave-one-out cross-
validation (Pai et al., 2019) and hold-out cross-validation (Pai
et al., 2018). In these comparisons, one or more measurements
(data points) are excluded during identification. Subsequent to
identification, the updated parameter values are used to predict
response at measurement locations that were excluded. If the
predicted response is similar to the measurement value, then
structural identification is assumed to be validated (Vernay et al.,
2018).

However, in cross-validation methods (Golub et al., 1979;
Kohavi, 1995) such as leave-one-out and hold-out cross-
validation (Hong and Wan 2011), the data points left out may
or may not contain new information. If information contained in
the validation dataset is not exclusive, then validation with
redundant data is not suitable for assessment of accuracy.
Therefore, information entropy metrics (Papadopoulou et al.,
2015; Bertola and Smith 2019) may be used to assess exclusivity of
information in validation data and suitability of validated
solutions for making further predictions to support asset
management decision-making.

Pai and Smith (2021) demonstrated the utility of assessing
mutual information between data used for identification and
validation to ensure appropriate assessment of accuracy.
Structural identification of a steel-concrete composite bridge
was carried out using the three data-interpretation
methodologies described in Methodologies for Model-Based
Sensor Data Interpretation. To assess accuracy of the
identification results, leave-one-out and hold-out cross-
validation strategies were carried out. As validation data

became more exclusively informative (less mutual information
with identification data), the number of cases where identification
was assessed to be accurate was observed to reduce. Therefore,
using exclusive information (not redundant information) for
validation may lead to better assessment of accuracy of
structural identification.

CASE STUDIES

Model-based data interpretation enables use of updated
knowledge of structural behavior for prognosis and estimation
of capacity available beyond design calculations. The use of a
physics-based model enables propagation of uncertainty from
various sources during prognosis to support the extrapolation
that is needed for asset management decision-making. These
decisions may be related to remaining fatigue life estimation,
retrofit design, load-carrying capacity, post-earthquake capacity,
localization of damage and ultimately, replacement.

Challenges in Sensor Data Interpretation outlines key
challenges in practical implementation of the three data-
interpretation methodologies that are described in
Methodologies for Model-Based Sensor Data Interpretation.
Laboratory experiments are designed to reduce unknowns and
uncertainties cannot contribute to challenges that are typically
encountered in real world-applications. In this section, a
summary of case studies that have been evaluated from 2015
to 2020 are described. A list of these case studies is provided in
Table 1 with a brief description.

Reserve Capacity Estimation
Some of the case studies listed in Table 1 have been studied to
improve understanding of reserve capacity in built infrastructure.
Reserve capacity is defined as the capacity available in built
infrastructure beyond code-specified requirements related to
the critical limit state (Proverbio et al., 2018c). Typical limit
states are defined to be either fatigue failure, or serviceability
limits. For the ultimate limit state, a special strategy has been
developed (Proverbio et al., 2018c). Quantifying reserve capacity
provides useful information for performing asset-management
tasks such as comparing repair scenarios with replacement. Case
studies listed in Table 2 have been investigated to identify reserve
capacity related to the ultimate limit state (ULS), the serviceability
limit state (SLS) and fatigue.

In Table 2, the data-interpretation methodology used to
interpret monitoring data (static and dynamic) is indicated.
Typically, data is interpreted using multiple methodologies
and solutions obtained are compared and validated using
methods described in Validation. Only solutions that have
been validated are used to predict the reserve capacity.
References that provide more details regarding these
evaluations have been provided in the table. The reserve
capacities are calculated so that unity is the situation where
calculations with all relevant safety factors exactly attains the
critical limit state. A reserve capacity that is greater than unity
indicates that there is additional safety built into the structure
beyond the critical limit state.
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Reserve capacities listed in Table 2 suggest that most built
infrastructure has significant reserve capacity compared with
code-based requirements, and this confirms similar
observations made previously (Smith 2016). Quantifying this
reserve capacity using monitoring data enhances decision
making related to asset-management actions. Overdesign
reflected by reserve capacity values that are over one also leads

to unnecessary material and construction costs as well as
unnecessarily high carbon footprints.

For two case studies listed in Table 2, Singapore Flyover and
Rockingham Bridge, the reserve capacity assessment was
compared with the present verification code (CEN 2012a; b;
NAASRA 2017) and the design code at the time of
construction (NAASRA 1970; BSI 1978, 1984). Both

TABLE 1 | Full-scale case studies evaluated with monitoring data since 2015. Case studies evaluated before 2015 are described in Smith (2016).

Structure type No. Case study Description

Bridges 1 Venoge Bridge Steel-concrete composite bridge in Switzerland of 5 spans with a total length of 220 m.
2 Powder Mill Bridge Steel-concrete composite bridge in the United States of 3 spans with a total length of 47 m.
3 Norton Bridge Pre-stressed concrete bridge in the United Kingdom with one span of 11.2 m.
4 Crêt de l’Anneau Bridge Steel concrete composite bridge in Switzerland of 8 spans with a total length of 230 m.
5 Singapore Flyover Pre-stressed concrete bridge in Singapore with in-situ cast deck and a 32 m span
6 Exeter Bascule Bridge A 17 m long single span bridge in the United Kingdom with steel girders and aluminum deck on

secondary steel beams
7 Rockingham Bridge Pre-stressed concrete bridge in Australia of 3 spans (13 m/25 m/13 m) with I-girders and in-

situ cast deck.
8 Fort Siloso Skywalk Steel truss bridge with in-situ cast concrete deck in Singapore and 8 spans for a total length of

181 m.
9 Dowling Hall Footbridge A steel frame bridge with concrete deck in the United States made of two spans and 22 m long.

Test building 10 Shake-table test Half-scale mixed unreinforced-masonry reinforced-concrete building with four floors has been
tested in Switzerland under an earthquake sequence with increasing shaking amplitudes

Buildings 11 Villa Marguerite, EPFL Swiss masonry building with 4 floors that has been built in the early 20th century
12 SS80 building, L’Aquila Two-story masonry building in Italy with mixed masonry-concrete slabs
13 School building Bex Five-story masonry building in Switzerland. The building was renovated wherein wooden slabs

were replaced by concrete slabs and anchored concrete walls were added.

Occupant localization 14 MED Hall Continuous reinforced concrete slab that forms the entrance hall of a building on the EPFL
campus, Switzerland

15 IMAC corridor Continuous reinforced-concrete slab supported by steel beams in an office environment within
EPFL, Switzerland

16 IMAC seminar room Continuous reinforced-concrete slab in a seminar room of EPFL, Switzerland
17 BRE building Continuous reinforced-concrete slab supported by ten concrete columns as well as several

reinforced-concrete walls in the BRE Building, Singapore.

Geotechnical
Excavations

18 Bukit Timah canal expansion A 22 m-deep excavation in Singapore supported by contiguous bored pile walls and four levels
of struts. The excavation was carried out in residual soils.

19 Bukit Panjang Hawker Centre basement
excavation

A 10 m-deep excavation in Singapore supported by a 0.8 m-thick diaphragm wall and two
levels of struts. The excavation was carried out in residual soils.

TABLE 2 |Methodologies compared and reserve capacity assessments of civil infrastructure cases according to the critical limit state in parentheses and determined using
EDMF.

Case study Methodology Data Validation Reserve capacity Reference

EDMF RM BMU Static Dynamic

Venoge Bridge ✓ ✓ ✓ ✓ ✓ 1.54 (fatigue life) Pai et al. (2018)
Powder Mill Bridge ✓ ✓ ✓ ✓ ✓ 10.9 (fatigue life) Pai et al. (2021)
Norton Bridge ✓ ✓ ✓ 1.7 (SLS) Pai (2019)
Crêt de l’Anneau Bridge ✓ ✓ ✓ ✓ ✓ 4 (fatigue life) Bayane et al. (2021)
Singapore Flyover ✓ ✓ ✓ ✓ 1.3 (ULS) (Proverbio et al., 2018c; Cao et al., 2020)

1.7 (SLS)
Exeter Bascule Bridge ✓ ✓ ✓ ✓ 2.09 (SLS) Proverbio et al. (2018a)
Rockingham Bridge ✓ ✓ ✓ ✓ 1.34 (ULS—Old code) Proverbio (2019)

1.07 (ULS—Current code)
Fort Siloso Skywalk ✓ ✓ ✓ ✓ ✓ SLS verified Cao et al. (2021)
Dowling Hall Footbridge ✓ ✓ ✓ ✓ ✓ SLS verified Cao et al. (2021)

Fatigue life is the ratio of lower-bound updated fatigue life to code calculations. SLS is serviceability limit state. ULS is ultimate limit state. Most civil infrastructure elements are built with
reserve capacity compared with design requirements (values greater than one). Quantifying this additional capacity can enhance asset management.
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infrastructure elements were significantly over-designed during
construction with respect to the prevalent codes at the design
stage. Additionally, for the Singapore Flyover, not only did the
reserve capacity change, the critical limit state at design stage was
different from the new-code-verification stage (Proverbio et al.,
2018c). Monitoring and reserve-capacity assessment with
enhanced models can potentially avoid unnecessary repair
actions in such situations.

For most of the case studies listed in Table 2, EDMF was able
to provide accurate data interpretation upon validation to
support asset management. This observation was made for
various types of bridges, from different decades, built with a
range of materials and monitored to provide heterogeneous data,
including static and dynamic data. Validation was possible
because of the explicit quantification of multi-sourced biased
uncertainties as well as the intrinsic robustness of EDMF to
unknown correlations as described in Error-Domain Model
Falsification.

Other Applications
Interpreting monitoring data with physics-based models can also
be used to enhance decision making in other application areas.
For example, applications in post-earthquake hazard assessment,
risk mitigation during excavations, damage detection and
occupant localization have been studied.

Post-earthquake monitoring data has been used to update
physics-based models and predict residual capacity (Reuland
et al., 2019a). Residual capacity is defined as the ability of an
infrastructure to resist aftershocks and subsequent earthquake
events. While EDMF has been used for post-earthquake
evaluation of many case studies (Reuland 2018; Reuland et al.,
2015, 2017), due to limitations in data available from real
earthquakes, validation with data from aftershocks could not
be performed for every case study. However, data-interpretation
results from the shake table test were validated to show that
EDMF provided the accurate identification (Reuland et al.,
2019b). Models updated with measurement data reduce
uncertainty in predictions and improve understanding of
structural capacity. This enhanced knowledge can be used to
avoid unnecessary post-hazard closures of buildings while
supporting a risk-based assessment to either close or retrofit
essential buildings.

Wang et al. (2020, 2019) studied the use of data-interpretation
methodologies for reducing uncertainty related to excavations.
Data from one stage of excavation is used to predict behavior at
further stages of excavation leading to less conservative practices.
In addition, Wang et al. (2021) combined EDMF and a
hierarchical algorithm based on a joint-entropy objective
function to select field response measurements that provide
the most useful knowledge of material parameter values in a
model-based data interpretation exercise. Also, (Cao et al.,
2019a), combined information from monitoring data and
physics-based models to predict damage location in train
wheels to improve infrastructure management.

Another application of monitoring data is localizing occupants
within buildings. Information about occupancy in buildings can
be used for security needs and non-intrusive monitoring in care-

homes and other applications. Drira et al. (2019) investigated the
use of model updating to localize occupants in buildings. These
investigations were performed on floor slabs of buildings with
various structural and occupancy characteristics. EDMF was
found to be able to accurately localize and track occupants in
buildings with floor-vibration data from sparse sensor
configurations.

In this section, applications of data-interpretation to real-
world case studies are briefly presented. More information
regarding these studies can be found in the references
provided in Tables 2, 3. Challenges encountered while
evaluating these case studies along with relevant research are
presented briefly in Challenges in Sensor Data Interpretation.

In the next section, methodology maps have been developed
following experience with the case studies presented in this
section. Significant literature was also reviewed while
evaluating these case studies and knowledge acquired from
these reviews was also used to develop these maps. While the
maps are in no way absolute indications of the best method for all
cases, they are intended to guide users towards appropriate
choices of methodologies to interpret data.

METHODOLOGY MAPS

In this section, methodology maps are presented that guide the
choice of the best data interpretation methodology based on the
following four criteria:

• Magnitude of uncertainty
• Magnitude of bias
• Model complexity
• Ease of implementation in practice

The magnitude of uncertainty refers to the total uncertainty
(difference between model and measured response) affecting the
task of data interpretation at each measurement location. This
includes combination of uncertainties from sources such as
sensor noise, operational conditions, modelling assumptions,
parametric uncertainty, geometrical simplifications and
numerical errors. For example, if the combined uncertainty is
assumed to be zero-mean Gaussian then the magnitude of
uncertainty is defined by the standard deviation of the
distribution. If the combined uncertainty is assumed to be
uniformly distributed, then the magnitude of uncertainty is
defined by the range of the distribution (upper bound minus
the lower bound value).

The magnitude of bias refers to the systematic bias between
model response and real system behavior. As most civil
engineering models are safe for design, implicit
assumptions made during model development are biased to
provide conservative predictions of system behavior. For
example, if the combined uncertainty is assumed to be
Gaussian, then the magnitude of bias is defined by the
non-zero mean of the distribution. If the combined
uncertainty is defined as a uniform distribution then the
bias magnitude is defined as the mid-point of the uniform
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distribution (0.5 times range of the distribution plus the lower
bound value).

Model complexity refers to the level of model detail and
fidelity of the model to real system behavior. For example, a
three-dimensional FE model of a bridge is more complex than an
analytical one-dimensional model based on Euler-Bernoulli beam
theory. The computational cost associated with obtaining
solutions for the task of structural identification is often
related to the model complexity. A complex model is
computationally more expensive than a simpler model.
Complex models (for example FE models) are often defined
by more parameters than simple models (for example a Euler-
Bernoulli beam) that may have to be identified, which would
increase number of simulations required, thereby increasing the
computational cost. However, a complex model could have better
fidelity with real system behavior compared with a simpler model.

Three methodology maps are developed with magnitude of
uncertainty and systematic bias as the two axis. These
methodology maps correspond to three levels of model
complexity: low (Low Model Complexity), medium (Medium
Model Complexity) and high (High Model Complexity). Maps
in these sections are two-dimensional projections of a three-
dimensional map, which is schematically shown in Figure 2. This

three-dimensional map is separated into three maps along the
axis of model complexity. For the purpose of developing
methodology maps in this paper, the discrimination between
low, medium and high model complexity, uncertainty and bias
are quantified based on the experience of authors gained by
evaluating many case studies as described in 4. Using the
Methodology Maps includes examples on the use of these
methodology maps to select an appropriate data-interpretation
methodology.

Other than the three criteria of the magnitude of uncertainty,
systematic bias, and model complexity, another criterion, ease of
implementation, governs the choice of data interpretation
methodologies. Ease of implementation in practice refers to
the challenges associated with the data interpretation task.
This includes computational costs, prior knowledge,
developing the strategy for updating (for example the
likelihood function, see Traditional Bayesian Model Updating)

TABLE 3 | Comparison of ease of use of model-based data interpretation methodologies at three stages of application.

Methodology Prior Updating criteria Posterior

RM Pai et al. (2019) (Sanayei et al., 1997; Majumdar et al., 2012; Koh and
Zhang 2013; Nanda et al., 2014)

Pai et al. (2019)

BMU (Freni and Mannina 2010; Efron
2013; Uribe et al., 2020)

(Feynman 1965; Smith et al., 2010; Simoen et al.,
2013; Behmanesh et al., 2015b)

(Feynman 1965; Qian et al., 2003; Kuśmierczyk et al., 2019;
Pai et al., 2019; Aczel et al., 2020)

EDMF Parpart et al. (2018) (Proverbio et al., 2018b; Pai et al., 2019) Pai et al. (2019)

Defining the prior, criteria for updating and understandability of solutions (posterior) from data interpretation are important for practical use of monitoring-data interpretation for asset
management. The number of stars is an evaluation of the ease of use, for example three stars indicate high ease of use. Ease of use also reflects compatibility with mental models
(understanding) of the challenge for practicing engineers. Good compatibility helps ensure successful revision of input when information changes.

FIGURE 2 | Schematic representation of the three dimensions of a
methodology map to guide practitioners in selecting the appropriate data-
interpretation methodology.

FIGURE 3 |Methodologymap describing best use of data-interpretation
methodologies in relation to systematic bias and magnitude of uncertainty
when using models with low complexity (computational cost).
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and understanding solutions of the interpretation task. Typically,
this criterion governs whether data-interpretation can be applied
in practical contexts.

In the next sections, methodology maps that support users in
selecting appropriate methodologies based on these criteria are
presented. The data interpretation methodologies that are
considered are RM (see Residual Minimization), BMU (see
Traditional Bayesian Model Updating and Bayesian Model
Updating With Parameterized Model-Error) and EDMF (see
Error-Domain Model Falsification). The objective of these
maps is to help users select a good data-interpretation
methodology according to criteria related to uncertainty
(amount as well as bias), model complexity and transparency
(ease-of-use).

Low Model Complexity
A methodology map to select an appropriate data interpretation
methodology considering magnitude of uncertainty and
magnitude of systematic bias for interpretation using models
with low complexity (computational cost) is presented in
Figure 3. Low complexity models are analytical models such
as beam deflection equations and simple 1D beam models.
Therefore, models that have a complexity O(n) and finite
element models with a small number of nodes and elements
(such as beam element models with O(n3) complexity) can be
considered as low complexity models, where n is number of
degrees of freedom.

The two axes of the map shown in Figure 3 are uncertainty
magnitude and bias in uncertainty. In civil engineering contexts,
the main contribution for this uncertainty involves model error,
which is the difference between response obtained using a
physics-based model and real system behavior (not known).
For the purpose of developing methodology maps in this
paper, the discrimination between low, medium and high
uncertainty as bias as shown in Figure 3 is quantified based
on the experience of authors in evaluating many case studies as
described in 4.

RM (or calibration), as shown in Figure 3, is suitable for tasks
involving low bias (less than 3% bias from zero mean) and low
uncertainty magnitudes (less than 10%). Such conditions require
models that are high-fidelity approximations of reality, which is
not common in full-scale civil engineering evaluations. However,
RM is also suitable for developing regression models and data-
only approaches (Bogoevska et al., 2017; Hoi et al., 2009; Laory
et al., 2013; Neves et al., 2017; Posenato et al., 2008, 2010).
Calibration in this context is typically limited to estimating
coefficients of regression models where interpolation
predictions are required.

BMU, involving either traditional or more advanced
applications, is suitable for tasks that have low to medium bias
(up to 10% deviation from zero-mean) and low to high
uncertainty magnitudes. Traditional implementation of BMU
is suitable for tasks with low model bias. This encompasses
tasks that may be performed using RM such as Bayesian
optimization of data-only models (Gardoni et al., 2002). BMU
is best employed for analyzing laboratory experiments conducted
in controlled environments (Prajapat and Ray-Chaudhuri 2016;

Zhang et al., 2017; Rappel et al., 2018, 2020; Mohamedou et al.,
2019; Rappel and Beex 2019) to reduce bias from modelling
assumptions. BMU is also appropriate for analyzing large-scale
systems when the physics-based models developed are unbiased
approximations of reality as is often the case for mechanical-
engineering applications (Abdallah et al., 2017; Avendaño-
Valencia and Chatzi 2017; Hara et al., 2017; Argyris et al.,
2020; Cooper et al., 2020; Patsialis et al., 2020).

When the bias is neither low nor high (between 3 and 10%
deviation from zero-mean), advanced BMUmethods can be used
for data-interpretation. These include parameterization of the
model error terms (Kennedy and O’Hagan 2001) as explained in
Bayesian Model Updating With Parameterized Model-Error.
Users have to be careful while employing these advanced
methods as they may provide more precise solutions than
EDMF (Goulet and Smith 2013; Pasquier and Smith 2015),
while also being prone to unidentifiability challenges (Prajapat
and Ray-Chaudhuri 2016; Song et al., 2020) due to requirements
of estimating many parameters relative to information available
from measurements.

While RM is the best method when uncertainty and bias
magnitudes are low, EDMF is suitable (not necessarily optimal)
for all tasks ranging from low to high uncertainty magnitudes and
bias. However, EDMF was developed specifically for analyzing
tasks with high magnitude of bias such as civil infrastructure
(Goulet and Smith 2013). Models of civil infrastructure typically
involve conservative modelling assumptions that lead to large
systematic biases between model and real behavior (Goulet et al.,
2013). Application of EDMF to tasks with large magnitude of bias
and uncertainty have been listed in Table 2.

FIGURE 4 |Methodologymap describing best use of data-interpretation
methodologies in relation to systematic bias and magnitude of uncertainty
when using models with medium complexity (computational cost).
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Validation of solutions obtained with data-interpretation is
important as explained in Validation. Many researchers have
used data-interpretation methodologies under conditions where
the inherent assumptions are not satisfied in reality. RM does not
account for model bias in the traditional form as described in
Residual Minimization. However, applications of RM to tasks
with large uncertainty magnitudes and large bias are common in
literature (Chen et al., 2014; Sanayei et al., 2011; Sanayei and
Rohela 2014). Similarly, traditional BMU has also been applied to
tasks involving large systematic bias (Behmanesh et al., 2015a; b).
While solutions obtained in such applications may be suitable for
damage detection (interpolation) (Li et al., 2016), they are not
suitable for asset management tasks where extrapolation
predictions are required (Brynjarsdóttir and O’Hagan, 2014;
Song et al., 2020).

Lowmodel complexity ensures that not only deterministic RM
but also probabilistic BMU and EDMF may be used to interpret
data. Increasing model complexity increases the computational
cost associated with practically implementing probabilistic data-
interpretation methodologies such as BMU and EDMF.

Medium Model Complexity
In this section, a methodology map to select an appropriate data
interpretation methodology while using medium complexity
models is presented. Figure 4 presents a methodology map to
select the most appropriate data interpretation methodology
based on the criteria of systematic bias and model uncertainty
when the complexity of models available to interpret data is
medium. Medium complexity models include finite element
models involving two and three-dimensional elements such as
shell and brick elements. These models when used for static and
modal analysis involving matrix inversion have a complexity of
O(n3), where n is the number of degrees of freedom in the model.

RM, as described in Residual Minimization, is suitable for
tasks with low systematic bias and low magnitude of uncertainty
using models with medium complexity (Behmanesh and
Moaveni 2016). While medium complexity models are
computationally more expensive than low complexity models,
efficient application of RM for model updating is possible using
adaptive sampling methods (Bianconi et al., 2020).

BMU in its traditional formsmay be used for tasks with low levels
of systematic bias and low-to-high uncertainty magnitudes.
However, use of medium-complexity models for probabilistic
evaluation is challenging. Adaptive sampling methods such as
Markov Chain Monte Carlo (MCMC) sampling (Qian et al.,
2003), transitional MCMC (Ching and Chen 2007; Betz et al.,
2016) and Gibbs sampling (Huang and Beck 2018) may help to
reduce the computational cost. However, the increase in number of
parameters to be identified (in addition to the model parameters)
while using the advanced forms of BMU (Kennedy and O’Hagan
2001; Behmanesh et al., 2015a) may be prohibitive for practical data
interpretation using medium complexity models. Additionally,
complex sampling and interpretation methods increase difficulty
of practical implementation, which will be discussed in Suitability for
use in Practice.

EDMF is suitable for all levels of systematic bias and
uncertainty magnitudes, particularly cases involving high

systematic bias (Reuland et al., 2017; Proverbio et al., 2018b;
Pai et al., 2018, 2019, 2021; Reuland et al., 2019a; Reuland et al.,
2019b; Drira et al., 2019; Wang et al., 2020). Depending upon the
computational constraints, EDMF can be implemented with
either a grid sampling approach or an adaptive sampling
(Raphael and Smith 2003; Proverbio et al., 2018b). Although
grid sampling is computationally expensive, it is convenient when
data interpretation has to be revised with new information (Pai
et al., 2019). For tasks involving medium levels of systematic bias,
BMUmay be used with its advanced forms. However, using these
implementations with medium complexity models may be
inefficient. EDMF is suitable for interpreting tasks with
medium levels of systematic bias and provides choices for
implementation of adaptive and grid-based sampling
approaches to reduce computational cost while interpreting
with models of medium complexity.

High Model Complexity
In this section, a methodology map to select an appropriate data
interpretation methodology while using high complexity models
is presented. In Figure 5, a methodology map is presented to
select the most appropriate data interpretation methodology
based on the criteria of systematic bias and model uncertainty
when the complexity of models available to interpret data is high.
Models such as finite element models that incorporate complex
physics such as material non-linearity, geometric non-linearity as
well as analysis involving contact mechanics and transient
analysis can be considered as high complexity models. These
models have many degrees of freedom and involve iterations

FIGURE 5 |Methodologymap describing best use of data-interpretation
methodologies in relation to systematic bias and magnitude of uncertainty
when using models with high complexity (computational cost).
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either over time domain (transient analysis) or for convergence
related to non-linear simulations. Each of these iterations with a
model of complexity O(n3) leads to high computational cost.

RM, as described in Residual Minimization, is suitable for
tasks with low magnitudes of uncertainty and systematic bias.
However, as previously mentioned, this is a popular methodology
in practice (Bogoevska et al., 2017; Hoi et al., 2009; Laory et al.,
2013; Neves et al., 2017; Posenato et al., 2008, 2010) due to its ease
of implementation and its low computations cost. The
computational cost of using RM with high complexity models
is usually much lower than other probabilistic methodologies.
Strategies such as particle swarm optimization (Gökdaǧ and
Yildiz, 2012), genetic algorithms (Chou and Ghaboussi 2001;
Gökdaǧ, 2013) and other sampling methods (Zhang et al., 2010;
Majumdar et al., 2012) have been used by researchers tomake RM
over many dimensions a cost-effective data interpretation
methodology.

While BMU may be used for data-interpretation tasks
involving medium-to-high systematic bias and uncertainties,
the cost of using high complexity models is prohibitive.
Therefore, EDMF is a better choice for interpretation tasks
involving medium-to-high systematic bias (greater than 3%)
and uncertainties (greater than 10%) using high complexity
models. EDMF, similar to BMU, is suitable for medium-to-
high magnitudes of uncertainty with models of all levels of
complexity and can be implemented with grid sampling
approach and adaptive sampling (Raphael and Smith 2003;
Proverbio et al., 2018b). EDMF has the added advantage of
being computationally efficient when data interpretation has to
be revised compared with BMU (Pai et al., 2019). The task of data
interpretation in practice is typically iterative in nature due to
changing operational and environmental conditions and also, as
new information becomes available (Pasquier and Smith 2016;
Reuland et al., 2019b; Pai et al., 2019).

Scalability of RM to various levels of model complexity and the
array of sampling methodologies available for BMU demonstrate
that significant research effort has been directed at improving
computational efficiency. While this is sufficient for individual
analyses at a given moment, such as damage detection, the task of
asset management and prognosis is iterative in nature due to
changing conditions and emergence of new information. Non-
adaptive sampling methods and heuristic searches (Sanayei et al.,
1997) are more amenable for use in practice for repeated data
interpretation compared with sampling methods that would
require a complete restart (Pai et al., 2019). RM and EDMF
are most suitable for use of non-adaptive sampling methods
making them better choices when using high-complexity models.

Suitability for use in Practice
Methodology maps presented in Figures 3–5 assist a user in
selecting an appropriate data interpretation methodology
considering uncertainty magnitudes, bias magnitudes and
model complexity. However, practical implementation of these
methodologies presents additional challenges. Application of any
data interpretation methodology has three components:

• Estimation of prior distribution of model parameters.

• Updating strategy (objective function for RM, likelihood
function for BMU and falsification thresholds for EDMF) as
well as solution-exploration methods (for example,
optimization techniques, adaptive sampling etc.).

• Interpretability of posterior (updated) distribution of model
parameters for decision making.

The above three components are in addition to the task of data
collection and quality control checks, such as assessing sensor
noise and detection of outliers, that have to be performed.

The BMU methodology has gained popularity in the research
community with an objective to support real-world data-
interpretation tasks. Therefore, applicability of BMU is
discussed first in this section. Subsequently, applicability of
RM and EDMF is discussed relative to challenges in practical
implement of BMU.

The choice of prior distribution for BMU is one of the first
steps (see Traditional Bayesian Model Updating). Appropriate
quantification of prior distributions of parameters in a model
class can significantly influence results obtained with BMU (Freni
and Mannina 2010; Efron 2013; Uribe et al., 2020). In the context
of civil infrastructure, model parameters related to aspects such as
boundary conditions are specific to each case and cannot be
generalized. This complicates the task of informatively
quantifying the prior of model parameters.

Traditional BMU, as described in Traditional Bayesian Model
Updating, does not include parameters related to the model error
in the model class. Novel BMU developments such as hierarchical
BMU (Behmanesh et al., 2015b) estimate errors to improve
accuracy, as explained in Bayesian Model Updating With
Parameterized Model-Error. However, a small number of
studies allow for various sources of uncertainty for specific
measurement locations. Simoen et al. (2013) studied the effect
of correlations on the posterior of model parameters, albeit with
same error variance for all data points. Explicit modelling of the
prediction error (variance, bias, and correlations) for specific
measurement locations increases dimensionality of the inverse
task. Consequently, this may lead to identifiability challenges and
high computational costs (Prajapat and Ray-Chaudhuri 2016).

Another implementation step involved in carrying out BMU is
the development of the likelihood function that incorporates
information from measurements. Traditionally, this is defined
by a zero-mean independent Gaussian PDF as shown in Eq. 2.
Many researchers have demonstrated that the use of a zero-mean
independent Gaussian likelihood function provides inaccurate
solutions in the context of civil infrastructure (Simoen et al., 2012;
Goulet and Smith 2013; Pasquier and Smith 2015). The choice of
the likelihood function and its developments affect the accuracy
of model-parameter estimation in BMU (Smith et al., 2010).
Aczel et al. (Aczel et al., 2020) emphasized the need to perform
checks for robustness to this choice while selecting a likelihood
function (and priors). Appropriateness of choices made in
estimating priors and developing the likelihood function can
only be measured by testing predictions against reality
(Feynman 1965), which in the absence of situations of either
simple theoretical or experimental cases, requires statistical
knowledge.
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The results obtained with BMU are a joint posterior PDF of
model parameters. Interpretation of this PDF is important for
making decisions based on updated knowledge acquired from
measurements. However, for appropriate decision making, asset
managers have to be provided with information of the joint
posterior PDF along with assumptions and choices that were
made to define it, such as the prior, likelihood function and the
physics-based model. Additionally, statistical knowledge is
necessary for interpreting the posterior PDF (Aczel et al., 2020).

Application of BMU also suffers due to the requirement of
adaptive samplers such as Markov Chain Monte Carlo sampling
(Tanner 2012) and other variants (Ching and Chen 2007;
Angelikopoulos et al., 2015; Huang and Beck 2018), which are
difficult to implement (Pai et al., 2019). Random sampling such as
Monte Carlo sampling may lead to poor and inaccurate
estimation of the posterior (Qian et al., 2003) leading to
inappropriate and unsafe asset management (Kuśmierczyk
et al., 2019).

RM is widely used in practice despite providing inaccurate
solutions in presence of large magnitudes of uncertainty and
systematic bias as detailed in Residual Minimization, Low
Model Complexity, Medium Model Complexity, High Model
Complexity. This is due to the simplicity in application of RM.
In RM, there is no strong requirement regarding the
estimation of priors for model parameters. In typical civil-
engineering contexts, a uniform prior is assumed for RM. The
updating criteria is a minimization of error between model
response and measurements. This minimization task may be
performed using optimization algorithms (Majumdar et al.,
2012; Koh and Zhang 2013; Nanda et al., 2014) as well as
simple trial and error methods (Sanayei et al., 1997). Finally,
the solution is a unique set of model-parameter values that
provide the least error between model response and
measurements. Admittedly, uniqueness of the result
reduces the possibility of error in interpretation of solution
due to lack of statistical knowledge.

EDMF, in a similar way to RM, has advantages over BMU due
to ease of implementation. Additionally, EDMFmay be used for a
wider range of applications with large magnitudes of uncertainty
and bias, as explained in Low Model Complexity, Medium Model
Complexity, High Model Complexity. In EDMF, the prior PDF of
model parameters is estimated using engineering knowledge and
is typically assumed to be uniform. This is compatible with
observations by researchers that using heuristic information
can lead to quantification of appropriate priors (Parpart et al.,
2018).

The updating procedure in EDMF is based on the philosophy
of falsification as hypothesized by Karl Popper (Popper 1959). In
EDMF, model instances that provide responses that are
incompatible with measurements are rejected (falsified). The
criteria for compatibility are defined based on the uncertainty
associated with the interpretation task from sources such as
modelling imperfections and sensor noise. As the engineer has
to quantify this uncertainty and determine the falsification
criteria, basic knowledge of statistical bounds is required.
Fortunately, practicing engineers often use bounds to describe
uncertainty.

The solution obtained with EDMF is a population of model
instances that are compatible with observations. Due to lack of
complete knowledge of uncertainties, all model instances in this
solution set are assumed to be equally likely. The asset manager
may use this population to make decisions. Unlike RM, the asset
manager, while using EDMF, has to either use the entire
population of solutions for decision making or may use
specific model instances for decision making based on expert
opinion and statistical knowledge. Working with a population of
solutions rather than a joint posterior PDF (as obtained with
BMU) requires less statistical knowledge and is more transparent
for use by decision makers.

Application of EDMF is typically carried out with grid
sampling (Pai et al., 2019), which has practical advantages
over adaptive sampling methods (Proverbio et al., 2018b)
when information has to be interpreted iteratively. Other
sampling methods, such as Monte Carlo sampling and Latin
hypercube sampling, have also been used to perform EDMF (Cao
et al., 2019b). Unlike BMU, EDMF does not require sampling
from the posterior to achieve accuracy, which allows use of
simpler sampling techniques.

RM is the easiest method for use in practice, albeit with a
limited range of applications as described in Residual
Minimization, Low Model Complexity, Medium Model
Complexity, High Model Complexity. BMU has a wider range
of applications based on uncertainty considerations but is limited
by challenges for use in practice due to expertise required in
implementation. EDMF may be employed for a wide range of
applications and overcomes many practical limitations associated
with BMU for probabilistic data-interpretation. A summary of
this discussion is presented schematically in Table 3.

In Table 3, the checkmarks indicate ease of implementation
related to the specific step involved such as estimating the prior.
The number of checkmarks from one to three indicate increasing
ease of implementation. EDMF and RM have greater ease of
implementation compared with BMU while performing the steps
involved such as estimating the prior, updating, sampling and
interpreting the posterior (solutions). EDMF, with possibilities
for a wider range of applications as explained in Residual
Minimization, Low Model Complexity, Medium Model
Complexity, High Model Complexity, and relatively simpler
implementation should thus be the methodology of choice for
interpreting data related to most civil-infrastructure
assessment tasks.

To aid in application of EDMF to full-scale case studies, an
open access software called MeDIUM (Measurement Data
Interpretation Using Models) has been developed. The
software is available for downloading at the following link:
https://github.com/MeDIUM-FCL/MeDIUM. MeDIUM
facilitates predictions (prognoses), particularly extrapolations,
through representing ranges of values of variables. MeDIUM
is a software implementation of EDMF with additional tools for
validation and assessment of uncertainty estimations. MeDIUM
improves accessibility of EDMF to new users of data
interpretation methods especially for the context of data
interpretation when managing civil infrastructure. With this
software, users may interpret monitoring data to obtain
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validated and updated distributions of model parameters to
support asset management decision making. The welcome tab
of the software is shown in Figure 6.

The software provides users functionalities such as performing
what-if analysis. Users may assess the impact of uncertainty
estimation on solutions of EDMF with simple sliders that
controls factors such as magnitude of uncertainty and target
reliability of identification. Users are also provided with options
to perform cross-validation of solutions by leaving out (holdout)
measurements. The users have full control over the
measurements to be left out and uncertainty definitions. The
results of performing EDMF and validation may also be
visualized with the software.

Using the Methodology Maps
Methodology maps presented in LowModel Complexity, Medium
Model Complexity, High Model Complexity, have been developed
with knowledge of the data-interpretation methodologies that are
described in Residual Minimization, Traditional Bayesian Model
Updating, Bayesian Model Updating With Parameterized Model-
Error, Error-Domain Model Falsification as well as the experience
acquired through interpreting data from multiple case studies as
outlined in Case Studies. The objective of these maps is to help
users select an appropriate data-interpretation methodology.

In this section, the methodology maps are used to select an
appropriate data-interpretation methodology for three examples
based on uncertainty conditions and model complexity.
Additionally, practical aspects as discussed in Suitability for
use in Practice influence selection of the most appropriate
methodology.

Example 1—Low Bias, Low Magnitude of Uncertainty
and Low Model Complexity
Consider a cantilever beam of length, l = 3 m, loaded at the free
end by a point load, P = 5 kN. The beam has a square cross section

of 300 × 300 mm with a moment of inertia, I = 6.75 × 108 mm4.
The true modulus of elasticity of the beam, E, is not known and
hence it is modelled as a random variable with a uniform
distribution and bounds 20 and 100 GPa.

The deformation of the beam under the point load is recorded
with two deflection sensors placed 1.75 and 3 m from the clamped
end of the beam. The measurements recorded with these sensors
are affected by noise that is normally distributed with zero mean
and a standard deviation of 0.02 mm.

The objective in this example is to interpret the true value
(distribution) of the modulus of elasticity of the beam. The model
for data-interpretation is that of an idealized cantilever beam loaded
at the free end, derived using Euler-Bernoulli beam theory. Themodel
response at any location x on the beam is given by Eq. 3.

ν(x) � Px2(3l − x)
6EI

(3)

The measurement data used to interpret the distribution of
modulus of elasticity is simulated for this example. The simulated
measurements are obtained using a true (hypothetical) modulus
of elasticity of 80 GPa in Eq. 3 and then adding measurement
uncertainty based on the assumed sensor noise (normally
distributed with zero mean and standard deviation of 0.02 mm).

The model described in Eq. 3 is computationally inexpensive
and of low complexity. As the same model is used to simulate
measurements and real structural behavior, the magnitude of
systematic bias is low. Additionally, the only source of uncertainty
affecting the interpretation task is the measurement noise, which
is also low. For low model complexity, refer to the methodology
map in Figure 3. In this figure, for low systematic bias and
magnitude of uncertainty, the appropriate choice of data
interpretation methodology is RM.

The example described in this section is adapted from Goulet
and Smith (2013). The uncertainty conditions assumed are those
studied as the first scenario in the paper. For this scenario, using

FIGURE 6 | A software for measurement data interpretation using uncertain models (MeDIUM) for effective and sustainable asset management.
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two measurements, RM provides an accurate estimation of
modulus of elasticity. BMU and EDMF also provide accurate
estimation of modulus of elasticity albeit less precise and at a
larger computational cost. As indicated in Table 3, RM is the
most practical choice of data-interpretation methodology when
its uncertainty assumptions are strictly satisfied. Therefore, RM is
the appropriate choice of data interpretation methodology in this
situation.

Example 2–Medium Uncertainty, Low Bias and Low
Model Complexity
Consider a multiple degree of freedom model of a four-story
building. Let a hypothetical “real” model of this building be
defined by a partially lumped mass at each floor and
distributed vertically. Let plasticity be concentrated at each
floor level with non-linear hysteretic rotational springs defined
by the modified Takedamodel (Takeda et al., 1970). This model is
used to simulate the real behavior of the four-story building
during the main shock of the Alkion, Greece, earthquake of 24
February 1981.

To ease the computational load, the simulation model for this
building was developed using assumptions that are different from
the model used to simulate the real behavior. In this behavior
model, the mass is only lumped at each floor level. The hysteretic
behavior of plasticity springs is defined by a Gamma-model
(Lestuzzi and Badoux 2003).

The model class for identification includes parameters such as
flexural stiffness, rotational stiffness of springs, base yield
moment, post-yield stiffness of rotational springs and the
Gamma factor of the hysteretic behavior model. Variations in
mass distribution and hysteretic models between the simulation
model and the true behavior model lead to low bias and medium
uncertainty conditions. Additionally, the simplified lumped mass
models with non-linearity can be considered to be low complexity
models. Therefore, the user has to refer to Figure 3 to select an
appropriate data interpretation methodology.

In Figure 3, the appropriate choice of data interpretation
methodology for low bias and medium uncertainty condition is
traditional BMU. Reuland et al. (2017) evaluated this example
and concluded that under the assumed uncertainty conditions
traditional BMU provides accurate identification while
accounting for this uncertainty. Therefore, the methodology
selected using Figure 3 is the initial choice.

Reuland et al. (2017) also concluded that EDMF provides accurate
identification for this scenario. Based on Table 3, EDMF would be
practically more advantageous to use than BMU. EDMF involves a
simpler updating criteria and identification bounds. Additionally,
Reuland et al. (2017) used a sequential grid sampling approach for
EDMF to reduce computational cost of identification. This approach
is more robust to changes and availability of new information
compared with adaptive sampling algorithms such as MCMC
sampling (Pai et al., 2019). In this example new information
could be in the form of additional modal data and changes in
structural condition after the main shock for post-hazard
assessment. Therefore, using Table 3, EDMF would be practically
a more appropriate choice for this example.

Example 3—High Uncertainty, High Bias, and Medium
Model Complexity
Consider a steel railway bridge of span 18.3 m. The bridge is
composed of two I-section steel girders and these girders are
connected transversally with diagonal cross-bracing for
transversal stiffness with a uniform spacing of 1.6 m.

A finite-element model of the bridge is developed in ANSYS
using two-dimensional plate elements to model the steel girders
and the one-dimensional beam elements to model the bracing
between the girders. The boundary conditions at either support of
the bridge are modelled using six one-dimensional zero-length
spring elements, one for each degree of freedom (three
translational, three rotational). The model is more complex
than the one described in Example 1—Low Bias, Low
Magnitude of Uncertainty and Low Model Complexity and less
complex than those used for case studies involving long-span
bridges with multiple supports, structural elements and
connections that may even involve aspects such as contact
modelling. Therefore, this a medium complexity model.

To select the model class, measurements are initially simulated
using the finite element model. While simulating the
measurements, the supports of the bridge were assumed to be
partially stiff in rotation. This factor is ignored while selecting the
model class for identification, leading to large systematic bias
between model behavior (with the wrong model class) and true
(simulated) structural behavior. This is representative of many
real-world cases where the correct model class is rarely known
and all physical phenomena affecting system behavior cannot be
taken into account during data interpretation.

The model class that is selected for identification includes the
modulus of elasticity and the vertical stiffness of one end support
that are treated as random variables. No other sources of
uncertainty related to the model are present. A combination of
large variability between the model behavior (wrong assumption
of rotational stiffness at supports) and true system behavior
contributes to high systematic bias and a high magnitude of
uncertainty.

The task of data-interpretation has to be carried out using a
model of medium complexity. For these conditions refer to the
methodology map shown in Figure 4. According to this map,
EDMF is the most appropriate choice of data-interpretation
methodology. Additionally, based on Table 3, EDMF is most
suitable for use in practice when RM cannot be used. Therefore,
EDMF is the most appropriate choice of data-interpretation
methodology for this example.

This example has been adapted from (Pai et al., 2019). In Pai
et al. (2019), the data-interpretation results of the example used in
this section is presented for scenario 2. The results from the paper
show that EDMF provided accurate data-interpretation solutions
and was also computationally efficient when new information
had to be incorporated during the process of data interpretation.
BMU and RM provided inaccurate solutions for this example as
shown in Pai et al. (Pai et al., 2019). This is the second impact of
the wrong assumption related to modelling uncertainties and
bias. Therefore, users may rely on the methodology map to select
an appropriate data-interpretation methodology. In all cases, it is
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important to validate solutions in order to verify assumptions
made while interpreting data (Pai and Smith 2021).

DISCUSSION

Uncertainties affect the accuracy of data-interpretation tasks and
thus, they have to be quantified accurately (see Uncertainties in
Data Interpretation). The task of uncertainty quantification is
challenging due to the lack of complete information in the context
of civil infrastructure. Therefore, engineers rely on heuristics and
local knowledge while quantifying these uncertainties. Heuristics
based on experience are essential for decision making in this field
(Klein et al., 2010). Significant research has been carried out on
addressing many other challenges associated with interpreting
monitoring data with physics-based models (Peng et al., 2021b)
and several of these have been discussed in Challenges in Sensor
Data Interpretation.

Case Studies describes case studies that have been evaluated
with monitoring data to support asset management. A general
conclusion from these case studies is that most existing civil-
infrastructure elements possess reserve capacity well beyond
design requirements (see Table 2). Most choices and decisions
based on heuristics tend to be biased (Tversky and Kahneman
1974). Quantification of reserve capacity introduced due to these
biased choices using appropriate methodologies provides
opportunities to enhance decision making related to asset
management actions.

Methodology Maps presents methodology maps based on
aspects such as model complexity (either cost or time to
perform analysis), magnitude of uncertainties and
magnitude of systematic bias. These maps have been
developed based on the experience acquired by evaluating
the case studies described in Case Studies and an extensive
review of available literature on application of data-
interpretation methodologies for evaluation of full-scale
case studies. While developing these methodology maps, a
key shortcoming observed was the lack of explicit
quantification of model bias and complexity in many
research studies. Such explicit quantification enhance
systematic comparisons and supports standardization of
decision support, such as use of methodology maps, in a
more holistic manner.

Themethodologymaps developed in this paper are not limited
to data-interpretation for quantifying reserve capacity. These
maps may also be used to interpret monitoring data for other
applications such as residual strength assessments, earthquake
damage detection and occupant localization. Case studies related
to these applications have been described in Other Applications.
Further validation of these maps is possible with application to
additional case studies. These maps can also be incorporated into
a decision tree structure similar to the methodology developed by
Peng et al. (2021b).

While instrumenting infrastructure has a cost, the benefits
from interpreting the data acquired can outweigh the expenses
(Bertola et al., 2020b). Instrumented civil infrastructure enables
management and renovation actions to be undertaken after

interpreting data accurately. The choice of methodology for
data-interpretation is based on of the magnitude and types of
modelling uncertainties as well as model complexity. Avoiding
unnecessary retrofit, repair and replacement actions within
instrumented infrastructure reduces life-cycle costs and enables
sustainable maintenance.

Large reserve capacities are typically observed due to
conservative design and construction of existing civil
infrastructure. Therefore, safety factors for future designs
might be reduced when the engineers add instrumentation to
their designs. For example, when a slender bridge has deflection
as a critical limit state, a reduced load factor could be justified at
the design stage if a load test precedes bridge opening. The
designer might provide a potential retrofit design if this test
fails. Reduced costs from efficient designs also contribute to
sustainability through reduces consumption of non-renewable
materials and lower embodied energy.

CONCLUSION AND FINAL REMARKS

Accurate and efficient interpretation of sensing data enables
better understanding of behavior of structural systems and this
enhances decision making through more accurate predictions.
Following assessments of nineteen full-scale case studies, a
detailed literature review and development of methodology
maps, the following conclusions are drawn:

• Effective implementation of data interpretation methodologies,
residual minimization, RM, Bayesian model updating, BMU
and error domain model falsification, EDMF, often depends
upon whether or not the assumptions that were made for their
development are satisfied. Methodology maps developed in this
paper provide graphical support for appropriate use.

• When biased uncertainties are high, model falsification
(EDMF) is the most appropriate data-interpretation
methodology for civil infrastructure management. This
methodology is applicable for a range of uncertainty
magnitudes, systematic model bias and model complexities,
particularly when information is likely to change. However,
since it is computationally expensive, RM and traditional BMU
might be more appropriate in certain situations.

Model-based data interpretation supports quantification of
reserve capacity that is often present in built infrastructure due to
conservative design and construction practices. Quantification of
this reserve capacity helps avoid unnecessary replacement,
retrofit and repair actions, reduces maintenance costs and thus
improves sustainability.

Interpretation of monitoring data during the service lives of
built infrastructure also supports management in other contexts
such as earthquake-damage localization, post-hazard resilience
assessment and building occupancy assessment for facilities
management.

An open-source EDMF software, MeDIUM, has been
developed to support data-interpretation, subsequent
validation and what-if analyses.
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