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Advances of the analytical, numerical, experimental and field-measurement approaches in wind engineering offers unprecedented volume of data that, together with rapidly evolving learning algorithms and high-performance computational hardware, provide an opportunity for the community to embrace and harness full potential of machine learning (ML). This contribution examines the state of research and practice of ML for its applications to wind engineering. In addition to ML applications to wind climate, terrain/topography, aerodynamics/aeroelasticity and structural dynamics (following traditional Alan G. Davenport Wind Loading Chain), the review also extends to cover wind damage assessment and wind-related hazard mitigation and response (considering emerging performance-based and resilience-based wind design methodologies). This state-of-the-art review suggests to what extend ML has been utilized in each of these topic areas within wind engineering and provides a comprehensive summary to improve understanding how learning algorithms work and when these schemes succeed or fail. Moreover, critical challenges and prospects of ML applications in wind engineering are identified to facilitate future research efforts.
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1 INTRODUCTION
Wind engineering is an interdisciplinary field to provide rational treatment of interaction between the atmospheric boundary-layer winds and human activities (Cermak 1975). There is a long and significant history for machine learning (ML) applications in several subfields involved in wind engineering, such as fluid mechanics (Brunton et al., 2020), meteorology (Chen et al., 2020) and mechanics of structures (Salehi and Burgueño 2018). The application of statistical learning to turbulence modeling in early 1940s (Kolmogorov 1941) and perceptron learning to structural design in late 1980s (Adeli and Yeh 1989) are representative examples. On the other hand, it seems similar passions have not been shared by researchers in the wind engineering community. Actually, ML-based wind engineering is still in its infancy stage and the full-capacity of ML has not been leveraged yet. However, the exceptional performance of ML to extract hidden informative features from data shows great promise for addressing unresolved complexities and issues originated from first principles investigations in the field of wind engineering. In addition, recent advances in performance-/resilience-based wind engineering have placed new demands on wind characterization, aerodynamics modeling and structural analysis that need powerful simulation tools such as ML to overcome the emerging challenges by simultaneously achieving high computational efficiency and accuracy. It is reasonable to expect the revitalization of ML within the wind engineering field that is fueled by 1) rapidly evolving learning algorithms and high-performance computational hardware, 2) unprecedented volume of data generated with improved wind engineering techniques and methodologies, and 3) urgent needs for more accurate and efficient learning and modeling of complex phenomena in wind-related problems.
As a key subfield of artificial intelligence (AI) [that together with natural intelligence plays a role of the computational part of the ability to achieve goals in the world (McCarthy 2007)], ML develops learning algorithms that use inputs from a sample generator and observations from a system to generate an approximation of its outputs (Cherkassky and Mulier 2007). The evolution of learning algorithms started when McCulloch and Pitts (1943) invented the first mathematical model of a neural network. In 1952, Arthur Samuel from IBM introduced the first self-learning computer program to play the game of checkers (Wiederhold et al., 1990). Then, Rosenblatt (1957) designed the first neural network for computers (the perceptron) that set the foundation of deep neural networks (DNNs). Kelley (1960) presented the method of gradients (or method of steepest descent) in his analytical development of flight performance optimization, which was used to develop the basics of a continuous backpropagation model for training feedforward neural networks (Rumelhart et al., 1986). On the other hand, Hopfield (1982) created a feedback neural network that was considered as the first recurrent neural network (RNN). LeCun et al. (1989) combined convolutional neural network (CNN) and backpropagation algorithm to recognize handwritten digits. Watkins (1989) introduced the concept of Q-learning based on Markov process to significantly enhance the practicability and feasibility of reinforcement learning. Later, Cortes and Vapnik (1995) designed a support-vector network considered as a new learning machine for two-group classification problems with high generalization ability. Hochreiter and Schmidhuber (1997) introduced a long short-term memory cell to address the long-term dependency issue in RNN. To overcome the learning difficulty in DNNs, Hinton et al. (2006) derived a fast, greedy algorithm that can learn deep, directed belief networks one layer at a time and hence facilitate the rapid development of deep learning. Recently, Goodfellow et al. (2014) proposed a generative adversarial network consisting of two models (i.e., generative and discriminative models) that compete with each other in a zero-sum game. The sophisticated ML algorithm needs the help of advanced computational hardware [e.g., graphics processing unit (GPU) and tensor processing unit (TPU)] to unlock its full potential (Berggren et al., 2020). For example, the great success of AlexNet (a deep CNN on GPU) is essentially attributed to its ability to leverage GPU for training (Krizhevsky et al., 2012).
Equipped with both sophisticated algorithms and advanced computational hardware, the learning machine (LM) is driven by data. Both the quantity (data rich and comprehensive) and quality of the training/testing data are important to ensure good performance of ML applications. Wind engineering by nature is a data-rich field (e.g., high spatial and temporal resolution), and it is rapidly becoming a data-comprehensive domain due to recent advances of analytical, numerical, experimental and field-measurement methods (Kareem and Wu 2013; Hangan et al., 2017). The data of spatiotemporally varying wind flows are extended from synoptic events measured by airport wind observation system with traditional anemometers to non-synoptic events measured by several field campaigns with advanced doppler radars and Lidars (Light Detection and Ranging) [e.g., Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX) and Radar Observations of Tornadoes and Thunderstorms Experiment (ROTATE) campaigns for tornado events and Severe Convective OUtflow in Thunderstorms (SCOUT) and Wind Ports and Sea (WPS) campaigns for thunderstorm downburst events]. Massive wind data over complex terrain/topography are collected by continuous-wave short-range WindScanner systems (e.g., Berg et al., 2013). The low Reynolds-number, straight-line-wind, stationary aerodynamics data generated in conventional boundary-layer wind tunnels are extended to 1) high-Reynolds-number aerodynamics data resulting from recently built large-scale facilities [e.g., windstorm simulation facility at Insurance Institute for Business and Home Safety (IBHS), Wall of Wind (WOW) at Florida International University and Wind Engineering Energy and Environment (WindEEE) at Western University], 2) vortex-flow aerodynamics data produced by tornado simulators (e.g., tornado-like vortex simulator at Iowa State University and VorTECH at Texas Tech University), and 3) transient aerodynamics data generated in emerging actively controlled wind tunnels (e.g., individually-controlled multi-fan wind tunnels at Tongji University, University at Buffalo and University of Florida). Also, significant nonlinear and inelastic structural dynamics data under strong winds are being created in laboratories due to advances in performance-based wind design methodology (Abdullah et al., 2020). In addition to the experimental and field-measurement approaches the comprehensive data are further enriched by high-fidelity large-scale simulation tools that are advanced by theoretical developments in wind engineering field (Blocken 2014; Kareem 2020), such as computational fluid dynamics/computational structural dynamics (CFS/CSI)-based hybrid modeling of transient structural response (Hao and Wu 2018) and statistics-based synthesis of nonstationary wind field (Wang and Wu 2021). The Computational Modeling and Simulation Center (SimCenter) of the Natural Hazards Engineering Research Infrastructure (NHERI) program provides an effective way to integrate various simulation tools (Deierlein and Zsarnóczay 2021). Furthermore, novel real-time aerodynamics hybrid simulation techniques are emerging to effectively generate nonlinear and full-scale data in wind engineering by seamlessly stitching the numerical modeling in computer and physical testing in wind tunnel (Wu et al., 2019; Wu and Song 2019). Data quality is essential to facilitate curation and reuse of the diverse and large datasets generated in the field of wind engineering. There are numerous methods and criteria specified by various wind engineering research groups/centers to ensure the high data quality, and the NHERI DesignSafe cyberinfrastructure platform recently suggested the best practices for detailed data quality assessment in terms of metadata quality, data content quality, data completeness and representation and data publications review (Rathje et al., 2017).
The improved understanding concerning the complex nature of wind fields (e.g., nonstationary and non-Gaussian features), the associated structural aerodynamics/aeroelasticity (e.g., transient and nonlinear features) and the resulting load effects (e.g., nonlinear and inelastic structural response), as well as the necessary shift from a prescriptive design approach to performance-based design methodology and further to resilience-based design philosophy (i.e., improving the rapidity, robustness, resourcefulness and redundancy), poses new challenges in wind engineering field. Hence, there is an urgent need of more accurate and efficient learning and modeling tools for effective solutions. The conventional stationary and linear analysis framework for wind-structure interactions established by Robert H. Scanlan (1914–2001) and Alan G. Davenport (1932–2009) has been very successful due to its simplicity and applicability, however, its shortcomings have begun to surface since the underlying complexities associated with many wind engineering problems clearly show a departure from implicit assumptions of stationarity, Gaussianity and linear features. A number of semi-empirical nonlinear reduced-order models have been developed in this context and improvement in their efficiency and robustness is a topic of cutting-edge research in the wind engineering community (Wu 2013). Unfortunately, these reduced-order models do not always have a satisfactory representation of the full nonlinear equations which govern the complex phenomena in wind-related problems. An alternate way is to utilize the CFD techniques, however, their computational effort is too high considering the three-dimensional nature of winds and associated bluff-body aerodynamics. While CFD plays a significant role in generating high-fidelity data of complex wind-structure interactions, its high computational cost makes it not easy to be used either in an informational mode to enhance wind hazard-related planning and development activities (e.g., risk mitigation that needs to quickly run thousands of scenarios at minimal computational expense) or in an operational mode to support emergency management and response associated with a wind hazard (e.g., decision making that needs real-time prediction capability under an uncertain environment). To address the emerging challenges, data-driven machine learning offers a promising approach that is capable of processing big data in wind engineering field as well as modeling associated complex phenomena with high computational efficiency and simulation accuracy.
With the rapid development of ML applications in wind engineering due to the confluence of advanced learning algorithms, high-performance computational hardware and big data, it is believed that a systematic review on this subject is important to suggest to what extend ML has been utilized in each of the topic areas within wind engineering and provide a comprehensive summary to improve understanding how learning algorithms work and when these schemes succeed or fail. Specifically, a total of 65 ML algorithms (Appendix A) are identified for their applications in the five topic areas of wind climate, terrain/topography, aerodynamics/aeroelasticity, structural dynamics and damage assessment, and mitigation and response. This review first presents technical background of typical ML approaches in terms of supervised learning, unsupervised learning, semi-supervised learning and reinforcement learning (RL), followed by the state of research and practice of ML applications to each topic area within wind engineering field, and concluded with critical research gaps and future prospects. While ML can augment the analytical approaches [e.g., data-driven discovery of closure models (Raissi et al., 2019)], numerical schemes [e.g., data-driven turbulence modeling (Duraisamy et al., 2019)], experimental tests [e.g., data-driven active control of transient wind simulation (Li et al., 2021a)] and field measurements [e.g., data-driven sparse sensor placement (Manohar et al., 2018)] in wind engineering, the review only focuses on its role to complement existing methodologies and hence potentially extend/transform current lines of wind engineering research and practice.
2 BACKGROUND OF MACHINE LEARNING
Machine learning (ML) is a subclass of artificial intelligence (AI) that extracts the underlying pattern within a set of data (e.g., Murphy 2012; Goodfellow et al., 2016; Mohri et al., 2018). To acquire the hidden pattern and knowledge of a problem, the learning process involves in general five important steps, namely data collection, data preparation, training, evaluation and parameters tuning. Once the learning machine is trained based on the available data (usually retrieved from analytical solutions, numerical simulations, experimental tests or full-scale measurements), it can predict future or unseen events. Based on the data fed into the learning machine, ML algorithms can be classified into four categories, namely supervised learning, unsupervised learning, semi-supervised learning and reinforcement learning (Figure 1).
[image: Figure 1]FIGURE 1 | Machine learning categories.
To train the algorithm, the supervised learning fully depends on labeled data, the unsupervised learning relies purely on unlabeled data and the semi-supervised learning combines limited labeled data with a large amount of unlabeled data. For reinforcement learning (RL), there is essentially no predefined data. Although RL is occasionally treated as semi-supervised learning considering the agent learns from its own experiences in terms of infrequent and partial rewards, it is classified here into separate category to highlight there is no explicit, external supervisory information provided to the learning agent. It is noted the kriging and polynomial chaos expansions as two widely-used, data-driven statistical interpolation approaches are not reviewed in this study.
2.1 Supervised Learning
Supervised learning models are a set of algorithms that learn the mapping, from given labeled training data, between known inputs and outputs. The trainable parameters of these models are determined based on the minimization of the loss function. Supervised learning models usually require a large amount of reliable and unbiased data for training which might not be always available. These algorithms can be employed for two important tasks, namely regression and classification.
2.1.1 Regression
Regression is a type of supervised learning in which the output is a numeric variable. Among many regression models, feed-forward neural networks (FFNN) are widely utilized in wind engineering field [Figure 2]. They are statistical models inspired by biological learning (McCulloch and Pitts 1943) and characterized by adaptive weights between neurons which are tuned using a learning algorithm from observed training data. For simplicity, the FFNN is also denoted as artificial neural network (ANN) in this study.
[image: Figure 2]FIGURE 2 | Architecture of a typical FFNN.
Deep neural networks (DNN) are also a type of FFNN characterized by a deep architecture equipped with multiple layers, and hence allows for better generalization and accuracy (Deng and Yu 2014; Pouyanfar et al., 2018). The convolutional neural networks (CNN) is another important FFNN with sparse convolutional matrices that are usually employed for pattern recognition and image classification (Krizhevsky et al., 2012; Goodfellow et al., 2016). Recurrent neural networks (RNN) are a class of feedback neural networks that allow previous outputs to be used as inputs while having hidden states and are suited to model time-dependent regression problems (e.g., Medsker and Jain 1999; Mandic and Chambers 2001). Long short-term memory (LSTM) are an advanced version of RNN to alleviate the gradient vanishing and exploding issue by only keeping necessary past information in future model states (Bengio et al., 1994).
2.1.2 Classification
Classification is another type of supervised learning in which the output is a categorical variable or a class. Support vector machines (SVM) (Scholkopf and Smola 2018) and random forest (RF) (Breiman 2001) are two classical examples of classification algorithms. SVM classifier identifies a hyperplane in a high-dimensional space in which a simple linear classification can be performed. RF classifier, on the other hand, fits a number of decision tree classifiers on various sub-samples of the dataset, then averages the results to improve outcome accuracy [Figure 3].
[image: Figure 3]FIGURE 3 | Architecture of a typical random forest classifier.
2.2 Unsupervised Learning
Unsupervised learning models draw inferences from datasets to describe hidden structures from unlabeled data based on inherent characteristics (Russell and Norvig 2016). These models usually group instances of input data using a defined similarity index (global criterion). Clustering and dimensionality reduction are two standard examples of unsupervised learning applications.
2.2.1 Clustering
Clustering is an unsupervised learning task used for pattern recognition that automatically discovers natural groups or clusters in data. A cluster refers to a collection of data points aggregated together with similar features (Maulik and Bandyopadhyay 2002). The k-means clustering is one of the simplest unsupervised ML models. It is a centroid-based algorithm that partitions the data into k clusters. Mean-shift clustering is another unsupervised model with a sliding-window-based algorithm to identify dense areas of data points. Other clustering algorithms such as the density-based spatial clustering of applications with noise, the expectation–maximization clustering using gaussian mixture models and the agglomerative hierarchical clustering are also popularly used for statistical data analysis.
2.2.2 Dimensionality Reduction
Dimensionality reduction aims to find the most important features within the dataset by identifying lower-dimensional representations for high-dimensional data. It minimizes the storage space, reduces the computation time and avoids overfitting. The ML-based dimensionality reduction can be divided into linear and nonlinear algorithms. The principal component analysis (PCA) is a commonly used linear technique that can be regarded as a two-layer neural network with a linear activation function. It essentially provides new uncorrelated variables, also denoted as principal components, which maximize the variance. The nonlinear autoencoder is a specific type of FFNN that compresses the initial input space into a reduced dimensional space using the encoder and then decompresses the obtained latent space back to the original input space using the decoder. Accordingly, deep autoencoders have a “bottleneck” architecture designed for extraction of representative features [Figure 4]. The autoencoder algorithm has been attracting attention in fluid mechanics community for efficient development of reduced-order models.
[image: Figure 4]FIGURE 4 | Architecture of a typical autoencoder model.
2.3 Semi-Supervised Learning
Semi-supervised learning models operate based on limited labeled data with a large amount of unlabeled data. Hence, they can be regarded as combination results of supervised learning and unsupervised learning algorithms. The generative adversarial network (GAN) is a well-known semi-supervised learning algorithm for estimating generative models via an adversarial process. One important feature of semi-supervised learning algorithms is their labelled-data efficiency. To this end, it may be reasonable to consider the physics-informed deep learning (PIDL) as a semi-supervised model that leverages physics-based equations in the augmented loss function to significantly reduce the data demand during training process.
2.3.1 Generative Adversarial Network
The GAN model consists of two competing neural networks, namely the generator and the discriminator (Goodfellow et al., 2014). It generates new data based on a probability distribution that approximately represents the training data (true or labelled data). Specifically, the generator produces fake samples to imitate the distribution of a real dataset, then the discriminator tries to distinguish (through a classification process) between the real samples and fake ones (from the generator). The GAN model is trained such that the new generated samples accurately represent the underlying mechanisms of the studied system. The architecture of a typical GAN model is illustrated in Figure 5.
[image: Figure 5]FIGURE 5 | Architecture of a typical GAN model.
2.3.2 Physics-Informed Deep Learning
The concept of PIDL models was originally proposed several decades ago (Psichogios and Ungar 1992; Dissanayake and Phan-Thien 1994) in which prior knowledge (in terms of the physics-based governing equations) is integrated within the neural networks to reduce the high-volume of required training data. Typically, a small amount of labelled data along with a large number of unlabeled data that satisfy the underlying physics of the system of interest (also denoted as collocations points) are used to train these models. Hence, self-supervision plays a significant role in PIDL models. Recently, Raissi et al. (2017a, b) advanced the PIDL models by leveraging the automatic differentiation technique to solve partial differential equations. The architecture of a typical PIDL model is presented in Figure 6.
[image: Figure 6]FIGURE 6 | Architecture of a typical PIDL model.
2.4 Reinforcement Learning
RL algorithm is usually formulated based on Markov decision process (Sutton and Barto, 2018). The core part of RL is its agent that interacts with its environment. Accordingly, the agent learns a policy that maps the states to the actions by maximizing the expected cumulative reward using an automated trial-and-error process (e.g., Mnih et al., 2015; Silver et al., 2017). Typical reinforcement learning models include value-based models (e.g., Q-learning or deep Q-learning) (Watkins and Dayan 1992), policy-based models (e.g., deep deterministic policy gradient) (Lillicrap et al., 2015) and hybrid models (e.g., actor-critic) (Williams 1992). Recently, the deep RL (with DNN-based policy) has been gaining attention in wind engineering community as an efficient way for dynamic control and shape optimization (Li et al., 2021a; 2021b). The architecture of a typical deep RL is depicted in Figure 7.
[image: Figure 7]FIGURE 7 | Architecture of a typical RL.
3 APPLICATIONS OF MACHINE LEARNING TO WIND ENGINEERING
This section provides a comprehensive review of the state of research and practice of ML for its applications to wind engineering. In addition to ML applications to wind climate, terrain/topography, aerodynamics/aeroelasticity and structural dynamics (following traditional Alan G. Davenport Wind Loading Chain), the review also extends to cover wind damage assessment and wind-related hazard mitigation and response (considering emerging performance-based and resilience-based wind design methodologies). Considering the overwhelming number of existing research publications, this review is by no means exhaustive. Rather, it attempts to provide a state-of-the-art perspective on ML applications to wind engineering-related fields.
3.1 Wind Climate
The review of ML applications to wind climate is organized by classifying it into classical boundary-layer winds, tropical cyclones and non-synoptic events. By leveraging the increasingly available datasets (e.g., satellite data), ML has become a supporting tool or even a reliable competitor of classical approaches for wind climate modeling (e.g., CFD). Most reviewed articles employed ML algorithms as a regression (e.g., long-term prediction of surface wind speed) or a classification (e.g., downburst occurrence prediction) tool. The selected metrics to evaluate the performance of ML algorithms included the root mean square (RMS), coefficient of correlation, mean squared error (MSE), mean absolute error (MAE), mean absolute percentage error (MAPE), coefficient of determination (R2), among others.
3.1.1 Classical Boundary-Layer Winds
Air movement in the planetary boundary layer plays a fundamental role in current wind design of structures and infrastructure. Although a detailed universal description of flow characteristics in the boundary-layer region has not been possible, the classical boundary-layer winds in gales from large depressions or in monsoons can be well represented by a number of empirical or semi-empirical models [e.g., power-law profile for distribution of mean wind speed (Davenport 1960) and power spectrum for turbulent fluctuations (Panofsky and McCormick 1960)]. The major research efforts have been focused on the accurate estimate of design wind speed in a statistical analysis framework (Simiu and Scanlan 1978). Specifically, long-term wind data from meteorological observations are analyzed based on extreme value theory to obtain the design wind speed at each location. However, the accurate forecast of classical boundary-layer winds is very challenging since it involves a large range of various temporal and spatial scales (e.g., from fractions of a meter to several thousand kilometers for spatial scale and from fractions of seconds to several years for time scales). Usually, the temporal and spatial resolutions from the state-of-the-art weather forecast models [e.g., global forecast system from National Oceanic and Atmospheric Administration (NOAA)] are not sufficient for wind engineering purpose. On the other hand, the unprecedented volumes of data from field measurements (e.g., weather station and satellite) provide a solid foundation to advance ML applications for classical boundary-layer winds.
Table 1 presents the reviewed applications of ML for classical boundary-layer winds, where the ML model, training scheme, input data, output data, data source and performance metric are summarized for each application. The training/testing data were essentially retrieved from field measurements. From Table 1, it can be concluded that most applications used ML as a regression model for prediction of mean wind speed (averaging time ranged from minutes to months), while the short-term prediction of turbulent fluctuations that are very important to structural dynamics is very limited. In many applications, the selection of ML models is simply based on gut feeling or past experience. Although several researchers conducted comparison studies to select good ML models for their specific applications, it might be very challenging to generalize the obtained results to other applications due to a lack of a systematic comparison framework.
TABLE 1 | Summary of ML applications for classical boundary-layer winds.
[image: Table 1]3.1.2 Tropical Cyclones
Tropical cyclones (TCs), also commonly known as hurricanes in North Atlantic, typhoons in western North Pacific and cyclones in Australia, are low-pressure storms that form over a warm ocean surface (Holton and Hakim 2013). With an average of 90 events reported annually (Zhao et al., 2012), TCs and their cascading hazards (e.g., wind, rain, storm surge and wave) pose a serious threat to public safety, livelihoods and local economies in many coastal regions around the globe. Hence, significant efforts have been made in modeling and predicting TCs and relatively well-established mesoscale numerical weather prediction frameworks [e.g., Weather Research and Forecasting (WRF) model] are available for high-fidelity simulations. However, the high-fidelity computationally expensive models might not be always appropriate for planning activities in an uncertain environment where Monte Carlo simulations are needed or emergency managements where real-time or near-real-time predictions are required. The high demand for a rapid and reliable technique used to assist decision-makers and planers results in many ML models for efficient simulations of key stages in the life cycle of a TC. These ML applications to TCs are fueled by increasingly available remotely-sensed and high-fidelity numerical data. The review in this section is organized following the four important components of full track of a TC, namely genesis, translation, intensity and wind field.
3.1.2.1 Tropical Cyclone Genesis
TC genesis requires several necessary environmental conditions (e.g., existence of low-pressure area and sea surface temperature of at least 26°C), however, the exact mechanisms of TC formation are still not well understood (Gray 1968, 1979; Emanuel 2003; Holton and Hakim 2013). To predict the TC genesis, both numerical and statistical models were developed. The numerical models (e.g., global forecast system) are essentially based on the physical principles and their performance heavily depends on improved understanding of TC genesis mechanism. The statistical models (e.g., Michael 2017; Chen and Duan 2018; Cui and Caracoglia 2019) linearly relate the TC genesis to a few selected environmental factors, and hence show poor interpolation and limited predictability. The lack of a deep understanding of underlying mechanisms stimulated data-driven techniques for TC genesis simulations. As a result, increasing ML applications are available to accurately predict TC genesis. Table 2i presents the reviewed applications of ML for TC genesis, where the ML model, training scheme, input data, output data, data source and performance metric are summarized for each application. The training/testing data were essentially retrieved from satellite measurements along with reanalysis results. It is expected the improved spatial resolution of currently available datasets will further enhance simulation results of ML models. From Table 2i, it can be concluded that most applications used ML as a classification model for either short-term or long-term forecasting of TC genesis. Although more dynamic and thermodynamic environmental factors can be retrieved using advanced remote sensing technologies in recent years, the identification of the most appropriate set of inputs to ML models (predictors) is still very challenging.
TABLE 2 | Summary of ML applications for tropical cyclones.
[image: Table 2]3.1.2.2 Tropical Cyclone Translation
Numerical forecast models have been successfully applied in forecasting normal TC trajectories, but they are computationally expensive. Although several statistical models were also developed based on a large amount of historical TC path records (e.g., Vickery et al., 2000,2009; Emanuel et al., 2006; Hall and Jewson 2007; Chen and Duan 2018; Snaiki and Wu 2020a; Snaiki and Wu 2020b), their linear nature makes them incapable of capturing the inherent nonlinearities in such a complex dynamic system (Zhang and Nishijima 2012). Both numerical and statistical models or their combinations (statistical-dynamics models) show poor performance in forecasting sudden speed change, recurvature and stagnation in TC movement (Chen et al., 2020). To satisfy both simulation accuracy and efficiency, increasing ML applications emerged for TC path prediction. Table 2ii presents the reviewed applications of ML for TC translation, where the ML model, training scheme, input data, output data, data source and performance metric are summarized for each application. The training/testing data were essentially retrieved from meteorological databases (e.g., satellite data) and reanalysis results. Typically, the TC track information is available only at each 6-h interval. From Table 2ii, it can be concluded that most applications used ML as a regression model for TC path prediction. Since the forecast of TC track can be regarded as a time series prediction problem, the feedback neural networks such as RNNs and LSTMs are preferred and lead to good performance. However, their performance within each 6-h interval is unknown due to the sampling limitation in the training data.
3.1.2.3 Tropical Cyclone Intensity
The TC intensity (over ocean or land) can be measured in terms of central pressure or maximum sustained wind speed. It is impacted by several complicated physical phenomena (e.g., atmosphere-ocean interaction and vertical wind shear), and hence remains one of the most challenging issues in TC forecasting especially for rapid intensification prediction. To avoid the high computational cost of numerical forecast models, both statistics-based (e.g., Vickey et al., 2000; DeMaria et al., 2005; Hall and Jewson 2007; Vickey et al., 2009) and physics-based (e.g., Snaiki and Wu 2020a) tools were developed for fast prediction of TC intensity. However, neither statistical nor physical models guarantee prediction accuracy of TC intensity due essentially to the over-simplification of such a complicated dynamic system. To improve simulation accuracy while keeping a high efficiency, increasing ML applications are available for TC intensity prediction. Table 2iii presents the reviewed applications of ML for TC intensity, where the ML model, training scheme, input data, output data, data source and performance metric are summarized for each application. The training/testing data were essentially retrieved from meteorological databased (e.g., satellite data) and reanalysis results. From Table 2iii, it can be concluded that most applications used ML as a regression (or a classification) model for estimation of intensity time series (or levels). Although encouraging simulation results indicate a good performance of ML models in predicting TC intensity for their specific applications, the selection of the most appropriate set of inputs (including the number of predictors and previous time steps) is still very challenging. In addition, it is not easy to conduct a systematic comparison among reviewed ML models since the used performance metrics differ substantially from one application to another.
3.1.2.4 Tropical Cyclone Wind Field
TC wind hazard is of great significance since it (directly) induces significant damage to life and property and (indirectly) triggers other TC-induced hazards (e.g., storm surge and waves). Substantial research efforts have been made for development of numerical models (e.g., WRF) or analytical models (e.g., Snaiki and Wu 2017a; Snaiki and Wu 2017b; Snaiki and Wu 2018; Snaiki and Wu 2020c; Fang et al., 2018; He et al., 2019) to simulate the boundary-layer wind field. However, none of these models can simultaneously achieve simulation accuracy and efficiency. To address this issue, increasing ML applications emerged for TC boundary-layer wind field simulation. Table 2iv presents the reviewed applications of ML for TC wind field, where the ML model, training scheme, input data, output data, data source and performance metric are summarized for each application. The training/testing data were essentially retrieved from meteorological databases (e.g., satellite data) and high-fidelity simulations. It is expected the improved spatial resolution of currently available datasets will further enhance simulation results of ML models. From Table 2iv, it can be concluded that most applications use ML as a regression model for prediction of surface wind speed. Since these ML models were often trained and fine-tuned to predict the TC wind field at a specific region, it might be very challenging to generalize the obtained results to other locations. It is noted that only wind field at a certain altitude is available in most ML applications due essentially to training data sparsity issue in vertical dimension. The widely-used logarithmic or power-law profiles are typically employed to obtain the TC boundary-layer winds. Accordingly, the supergradient winds that may have significant implications to the wind design of tall buildings is not captured (Snaiki and Wu 2020c).
3.1.3 Non-synoptic Winds
Unlike synoptic winds that are associated with large-scale meteorological systems characterized by horizontal scales of thousands of kilometers and time scales of days, the non-synoptic wind systems are local phenomena (e.g., a horizontal scale of several hundreds of meters) and short lived (e.g., a time scale of a few minutes) (Chowdhury and Wu 2021). Furthermore, the transient nature of non-synoptic winds makes them exhibit time-varying mean wind speeds and nonstationary/non-Gaussian fluctuations. Accordingly, the detection, measurement, and modeling of non-synoptic wind systems lag behind those of synoptic winds. However, numerous studies have demonstrated the importance of the non-synoptic wind events on the structural design (e.g., Holmes 1999; Letchford et al., 2002; Hao and Wu 2017). For example, the design wind speeds with relatively high return periods are usually dominated by the thunderstorm downbursts (Twisdale and Vickery 1992; Solari et al., 2015) and the ASCE 7–22 includes the first-ever criteria for tornado-resistant design (ASCE, 2021). Recently, there is a rapid development of field-measurement networks (e.g., THUNDERR project at University of Genova) and laboratory facilities (e.g., WindEEE at Western University) for improved understanding of non-synoptic wind systems. These advances offer an unprecedented volume of data, and hence provide an opportunity to facilitate ML applications to non-synoptic winds. Although the non-synoptic wind systems can be originated from various mechanisms (e.g., convective storm, gravity wave or negative buoyancy) (Bluestein 2021), the review only focuses on those associated with convective storms. Specifically, ML applications to thunderstorms (subsynoptic-scale weather system) are first presented, followed by detailed reviews of its applications to two important types of non-synoptic wind events associated with thunderstorms, namely downbursts and tornadoes.
3.1.3.1 Thunderstorms
A thunderstorm is short-lived atmospheric weather system accompanied by lightning and thunder, gusty winds, heavy rain, and sometimes hail (Solari 2020). The life cycle of a thunderstorm usually consists of cumulus stage, mature stage and dissipative stage, and it typically lasts around 30 min. Both mesoscale and microscale numerical models have been developed for simulation of thunderstorms (Hawbecker 2021). Mesoscale modeling covers a large-scale computational domain (and hence fully considers physics involved), however, it is limited to a low spatiotemporal resolution. Microscale modeling utilizes a high spatiotemporal resolution (and hence obtains important small-scale features in the simulation of winds), however, it is limited to a relatively small-scale computational domain resulting in insufficiently reliable boundary conditions. To avoid shortcomings of currently available numerical models, ML models may provide a promising approach for efficient and accurate simulation of key stages in the life cycle of a thunderstorm. Table 3i presents the reviewed applications of ML thunderstorms, where the ML model, training scheme, input data, output data, data source and performance metric are summarized for each application. The training/testing data were essentially retrieved from meteorological databases and reanalysis results. From Table 3i, it can be concluded that most applications used ML as either a classification or a regression model for prediction of thunderstorm occurrence. Obviously, there is still room for more comprehensive applications of ML in terms of modeling and forecasting each aspect of the thunderstorm from formation to dissipation. In addition, most ML applications to thunderstorm were limited to simple models with standard algorithms (e.g., ANN with backpropagation).
TABLE 3 | Summary of ML applications for non-synoptic winds.
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Downbursts are one of the most spectacular and dangerous events resulting from thunderstorms (Solari 2020). Their radial outflows and ring vortices after touchdown produce strong wind gusts very close to the ground and therefore lead to substantial structural damages (e.g., Yang et al., 2018). Downbursts are typically simulated numerically using CFD (e.g., Mason et al., 2009; Aboshosha et al., 2015; Haines and Taylor 2018; Hao and Wu 2018; Oreskovic et al., 2018; Oreskovic and Savory 2018; Iida and Uematsu 2019) or experimentally using wind tunnels (e.g., Jesson et al., 2015; Jubayer et al., 2016; Hoshino et al., 2018; Aboutabikh et al., 2019; Asano et al., 2019; Junayed et al., 2019; Romanic et al., 2019). Both numerical and experimental approaches to obtain wind fields associated with downbursts are very time consuming (either computational expensive or labor intensive). This shortcoming motivated increasing use of ML tools for efficient and accurate simulations of downbursts. Table 3ii presents the reviewed applications of ML for downbursts, where the ML model, training scheme, input data, output data, data source and performance metric are summarized for each application. The training/testing data were essentially retrieved from field measurement. From Table 3ii, it can be concluded that most applications used ML as a classification model for prediction of the occurrence of downburst or probability of damaging wind. There are a very limited number of ML applications for modeling and forecasting the downburst wind field, hence more research efforts are needed in this aspect. It is noted that the reviewed ML applications usually involved a high number of predictors. The employment of relatively high number of input variables may be necessary due to the complexity of downburst prediction. However, it makes the ML models not easy to use since these input variables might not be always available.
3.1.3.3 Tornadoes
Tornadoes are characterized by a rotating column of air descending from supercell thunderstorms lasting from several minutes to few hours. They are the most intense of all non-synoptic wind events, and hence result in significant damage and collapse of structures (Hao and Wu 2016, 2020). Several analytical and empirical models have been developed to simulate the vertical and radial wind profiles of tornado-like vortices (e.g., Wen and Chu 1973; Baker and Sterling 2017). These models are clearly over-simplified. The tornado wind fields are also modeled using CFD simulations (e.g., Kuai et al., 2008; Ishihara et al., 2011; Liu and Ishihara 2015; Eguchi et al., 2018; Gairola and Bitsuamlak 2019; Kawaguchi et al., 2019; Huo et al., 2020; Liu et al., 2021) or laboratory tests (e.g., Sarkar et al., 2006; Refan and Hangan 2016; Razavi and Sarkar 2018; Tang et al., 2018; Ashton et al., 2019; Gillmeier et al., 2019; Hou and Sarkar 2020; Razavi and Sarkar 2021). However, CFD simulations of tornadoes are computational expensive while the laboratory tests are labor intensive. These shortcomings motivated increasing use of ML tools for efficient and accurate modeling of tornadoes. Table 3iii presents the reviewed applications of ML for tornadoes, where the ML model, training scheme, input data, output data, data source and performance metric are summarized for each application. The training/testing data were essentially retrieved from meteorological datasets (e.g., Radio-based data). From Table 3iii, it can be concluded that most applications use ML as a classification or a regression model for prediction of tornado occurrence. Obviously, there is still room for more comprehensive applications of ML in terms of simulation of the full track of a tornado (including its intensity and associated wind field). Just like ML applications to downbursts, a high number of input variables (predictors) were utilized for the reviewed ML models. The identification of the most appropriate set of predictors is still very challenging, and a trail-and error approach was typically employed. In addition, it is not easy to conduct a systematic comparison among reviewed ML models since the used performance metrics differ substantially from one application to another.
3.2 Terrain and Topography
Wind characteristics including mean wind speeds and turbulent fluctuations are much affected by the surrounding terrain and topography. As a consequence, careful consideration of local terrain roughness and topographic features as well as surrounding obstacles is vital to the accurate determination of wind pressures on structures and pedestrian level winds. Wind codes and standards consider the terrain effects corresponding to limited (and simplified) terrain geometries (e.g., escarpment and single hill) through correction factors. To examine the effects of complex terrain condition on wind fields, wind tunnel tests are usually employed with a very small geometric scale (e.g., 1:500). Alternatively, numerical schemes such as the mass-conservation or momentum-conservation model can be used to capture the terrain effects on oncoming wind fields. Although the topographic effects can be well simulated based on momentum-conservation models (e.g., using Reynolds-averaged Navier-Stokes equations), the needed computational time makes it impractical for use as a real-time decision support tool. The mass-conservation model computes wind fields over complex terrain in seconds to a few minutes (Forthofer et al., 2014a; 2014b), but the accuracy of simulation may be poor because nonlinear momentum effects are not considered (Jackson and Hunt 1975). Considering the complex terrain-wind data from high-fidelity CFD simulations, wind tunnel tests and field measurements are increasingly available, ML tools can be utilized (as computationally efficient reduced-order models that possess high simulation accuracy of complex nonlinear systems) to provide rapid estimation of wind flows over various terrain conditions. However, ML development for terrain and topographic considerations is still at an early stage with a limited number of studies reported in the literature. Table 4 presents the reviewed applications of ML for terrain and topography, where the ML model, training scheme, input data, output data, data source and performance metric are summarized for each application. The training/testing data were essentially retrieved from either CFD simulations or wind tunnel tests. From Table 4, it can be concluded that most applications used ML as a regression model for prediction of wind fields over various terrain conditions and topographic configurations. There are a few studies that applied ML techniques to assist in efficient search for a correct layout of passive flow altering devices (e.g., spires and roughness elements) in the boundary-layer wind tunnel. It is noted that the current ML applications to consider topographic effects on wind fields are usually limited to terrain configurations that can be characterized by several parameters, hence, the employed ML models and training schemes are simple and standard (e.g., ANN with backpropagation). However, several advanced ML models such as autoencoder (e.g., Fukami et al., 2019) and GAN (Kim and Lee 2020) have been utilized to assist in the generation of turbulent inflow (as a realistic inlet boundary condition of CFD simulations).
TABLE 4 | Summary of ML applications for terrain and topography.
[image: Table 4]3.3 Aerodynamics and Aeroelasticity
The bluff-body aerodynamics and aeroelasticity play a critical role in the safe and cost-effective design of wind-sensitive structures, and their considerations rely heavily on boundary-layer wind tunnels. In addition to the Reynolds number effects (due to very small model scales), wind tunnel tests are very time consuming and labor intensive. To this end, CFD techniques have been rapidly developed for simulations of structural aerodynamics (gust-induced effects) and aeroelasticity (motion-induced effects). The purpose is to make CFD simulations serve as a complementary or even alternative approach to wind tunnel tests. Despite significant advances of hardware and algorithms, the reliable CFD simulations of wind-structure interactions are still computationally very expensive due to three-dimensional nature of wakes and intensive flow separations from structures. Hence, a number of reduced-order models have been developed to efficiently model structural aerodynamics and aeroelasticity (Wu and Kareem 2013). Unfortunately, these reduced-order models do not always have a satisfactory representation of the full nonlinear equations that govern the wind-structure interactions. Specifically, modern bridge decks and super tall buildings with unusually geometries all exhibit nonlinear unsteady aerodynamics and aeroelasticity that limit the applicability of the state-of-the-art reduced-order modeling methodologies. On the other hand, the Kolmogorov Neural Network existence theorem offers mathematical foundation for applying multilayer neural networks to approximate arbitrary nonlinear systems with any precision (Huang and Lippmann 1988; Hornik, 1991). With high-fidelity data and advanced algorithms, ML models can simultaneously achieve great simulation efficiency and accuracy. It is noted that there are numerous ML applications to aerodynamics and aeroelasticity of both bluff bodies (e.g., circular cylinder) and streamlined bodies (e.g., airfoil) in fluid mechanics community (e.g., Kutz 2017; Brunton et al., 2020), however, they are not discussed here. The review in this section only covers wind-sensitive structures in civil engineering. The ML applications for bridge aerodynamics and aeroelasticity are first reviewed in Table 5i and then followed by buildings and other structures in Table 5ii, where the ML model, training scheme, input data, output data, data source and performance metric are summarized for each application. The training/testing data were essentially retrieved from either CFD simulations or wind tunnel tests. From Table 5, it can be concluded that most applications used ML as a regression model for prediction of steady-state force coefficients, flutter derivatives and vortex-induced vibrations (VIV) of various bridges and for modeling of wind pressure coefficients of various buildings (as well as estimation of the interference factors for adjacent buildings). The different aerodynamic representations in bridges (mainly using global quantities such as force coefficients) and buildings (mainly using local quantities such as pressure coefficients) are partially due to available data types from wind tunnel tests. Although satisfactory ML simulation results have been obtained (in terms of interpolations), most reviewed applications do not necessarily have good performance in terms of extrapolations outside the training datasets. It is noted that the currently available ML models of aerodynamics and aeroelasticity are developed for the main purpose of being used as preliminary design tools to avoid the high-cost wind tunnel tests in the early design stage. There is a lack of systematic comparison among various ML models, hence, their selection for specific applications is rather rudimentary.
TABLE 5 | Summary of ML applications for aerodynamics and aeroelasticity.
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Due to the computational complexity of numerical techniques (e.g., finite element method) for solving wind-induced nonlinear structural response, reduced-order models (e.g., ANN) have been developed to alleviate the computational cost of the high-fidelity models. The ML models have been used for structural dynamics and damage assessment for several decades mainly in the field of earthquake engineering (e.g., Wu et al., 1992; Masri et al., 1993; Jiang and Adeli 2005; Pei et al., 2005; Gholizadeh et al., 2009; Facchini et al., 2014; Derkevorkian et al., 2015; Liang 2019; Wu and Jahanshahi 2019; Yu et al., 2020). However, similar applications have not emerged in wind engineering community until recently due essentially to the linear consideration of the wind-induced structural response [ASCE 7-16 (ASCE, 2017)]. Recent advances of performance-based wind design methodology have placed increasing importance on effective simulations of nonlinear, inelastic structural dynamics response under strong winds. The numerical estimation of wind-induced nonlinear structural response using a high-fidelity finite element model is computationally very expensive due to its small time-step size and long simulation duration. Accordingly, several ML applications to wind-induced structural dynamics have been developed in recent years for simultaneously achieving high simulation accuracy and efficiency. The performance-based (and further resilience-ba sed) wind design philosophies also require accurate damage assessment of structures and infrastructure under extreme storms. The structural damages under winds depend on numerous factors including wind features (e.g., wind speed/direction and topography) and built environment characteristics (e.g., building opening and roof slope), hence its assessment and quantification are extremely challenging. On the other hand, increasingly available field-measurement data characterizing structural damages under strong wind events [e.g., resulting from post-disaster reconnaissance activities such NHERI Natural Hazards Reconnaissance (RAPID) Facility and NSF Structural Extreme Events Reconnaissance (StEER) Network] provide a great opportunity to learn from data by using various ML models. The ML applications for structural dynamics are first reviewed in Table 6i and then followed by damage assessment in Table 6ii, where the ML model, training scheme, input data, output data, data source and performance metric are summarized for each application. The training/testing data were essentially retrieved from numerical simulations, wind tunnel tests and field measurements. From Table 6, it can be concluded that most applications used ML as a regression model for modeling structural dynamics and as a regression or a classification model for structural damage assessment. While many applications employed simple ML models and standard training schemes (e.g., ANN with backpropagation), some advanced schemes such as knowledge-enhanced LSTM have been successfully applied to predict time series of wind-induced nonlinear structural response. It is noted that the selection of the most appropriate set of inputs to ML models for damage assessment (predictors or features) is still very challenging.
TABLE 6 | Summary of ML applications for structural dynamics and damage assessment.
[image: Table 6]3.5 Mitigation and Response
Both long-term and short-term strategies are needed to enhance resilience of individual structures or communities to withstand wind-related hazards. One important long-term consideration is to mitigate structural response/vibration subjected to winds through structural optimization and/or control. For structural optimization under winds, the shape optimization is probably the most effective approach to reduce aerodynamic loading. For wind-induced vibration control, both aerodynamic and mechanical measures are well recognized in wind engineering community. Although the structural performance evaluation under winds is typically a very complicated task, the corresponding simulations during optimization or (active) control process is required to be efficient and accurate because they need to be conducted either repeatedly for numerous scenarios or in a (near) real-time sense. As noted earlier, the ML models are very promising to simultaneously achieve the high simulation efficiency and accuracy goal. In addition, the RL models that have gained increasing popularity in recent years can be used as very effective optimization or control algorithms compared to conventional approaches (Silver et al., 2017). In the consideration of short-term actions, efficient management strategies are critically important. Although the ML models used in the disaster (including wind-related hazard) management framework (i.e., covering preparedness, response and recovery) have recently been systematically reviewed (e.g., Sun et al., 2020), its applications to social media-informed response are still discussed here since the unprecedentedly abundant data from various powerful communication tools (e.g., Twitter) greatly facilitate the rapid ML model developments in this field. Table 7i,ii respectively present the reviewed applications of ML for mitigation and response, where the ML model, training scheme, input data, output data, data source and performance metric are summarized for each application. The training/testing data were essentially retrieved from CFD simulations and experimental tests for structural mitigation or from social media platforms for disaster response. From Table 7i, it can be concluded that the structural performance evaluations in mitigation applications usually used ML as a regression model while RL was typically utilized as an effective optimization or control algorithm. It is noted that relatively few ML applications for structural optimization and control under winds have been generated compared to those in earthquake engineering community (e.g., Ghaboussi and Joghataie 1995; Adam and Smith 2008; Jiang and Adeli 2008; Yakut and Alli 2011; Subasri et al., 2014; Khodabandehlou et al., 2018; Khalatbarisoltani et al., 2019; Hayashi and Ohsaki 2020). From Table 7ii, it can be concluded that most social media-informed response applications used ML as a classification model for disaster rescue and relief information dissemination. Although these ML applications present promising results in terms of effectively supporting timely decision-making, there is a concern of using information from social media platforms due to a lack of data quality control.
TABLE 7 | Summary of ML applications for mitigation and response.
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The ML applications in each topical area of wind engineering are summarized in Figure 8. As shown in the figure, ML models are unevenly distributed among these areas. The wind climate area has the most ML applications followed by the aerodynamics and aeroelasticity area, and they are respectively contributed by wind engineering-related fields of meteorology and fluid mechanics. On the other hand, the wind engineering-exclusive field of terrain and topography has the least applications of ML. Although ML models have been instrumental in modern structural design for winds, their developments are in a very preliminary stage and there is still a long way to go before they can complement or even replace existing approaches of wind tunnel tests and CFD simulations. In general, the supervised learning dominates the ML applications in wind engineering with the podium position attributed to simple models with standard algorithms (e.g., ANN with backpropagation). Actually, the selection of various ML models is rather rudimentary since there is a lack of systematic comparison among them (e.g., in terms of model complexity and performance). It is noted that the great potential of semi-supervised learning and unsupervised learning (as well as RL) with little or no labelled data is not leveraged yet. Accordingly, the current ML developments in wind engineering heavily rely on available labelled data. For example, the ML applications to non-synoptic winds are much less than those of synoptic winds due essentially to the difficulty in obtaining the data of local and short-lived storms. On the other hand, the recent emergence of numerous ML applications to social media-informed disaster response is due mainly to the unprecedentedly abundant data from various powerful communication tools. For the reviewed ML applications, the training/testing data are retrieved from several major sources (e.g., field measurements, wind tunnel tests, numerical simulations and social media platforms). In the determination of ML model inputs and outputs, a good understanding of underlying physics of each application is critical to effectively select an appropriate set of predictors (ML inputs) while the output types heavily depend on the needs of traditional analysis procedure in each application (e.g., local wind pressures for building design and global wind forces for bridge design).
[image: Figure 8]FIGURE 8 | Overview of reviewed ML applications in wind engineering (following Alan G. Davenport Wind Loading Chain).
4 CHALLENGES AND PROSPECTS
The rapidly increasing ML applications to wind engineering have generated a large volume of datasets associated with a large set of domain-specific algorithms. It is strongly believed that the platforms encouraging open sharing of these datasets and algorithms would greatly benefit the ML research progress in wind engineering. The openly available wind engineering datasets will greatly reduce efforts for their creation/collection and pre-processing, and open-source ML algorithms will save significant time for their re-implementation. The reduced need of time and effort to use the state-of-the-art or latest developed ML tools under such a culture of openness would spur interests among researchers in wind engineering, and hence result in more related ML applications. Moreover, the developed cyberinfrastructure to store and share data usually has a systematic curation procedure to ensure the high quality of its standardized benchmark datasets. Also, the open-source software allows the hidden bugs/tricks of ML algorithms to be easily uncovered and accordingly makes them more robust. In addition to availability, the reproducibility and testability of wind engineering data and domain-specific algorithms due to a culture of openness would also facilitate the adoption of the obtained transparent and trustworthy ML tools in real-world problems. Although the wind engineering community has started to embrace the prevalent openness of ML community (e.g., NHERI DesignSafe platform), the culture of openness is still in its early stage. It is expected that more incentives based on the existing reward system (e.g., a digital object identifier for each dataset or algorithm published by the platform) are needed to motivate the ML wind engineering community towards open science. Given a potential open-science environment with openly available datasets and open-source algorithms (supported by open-access scientific publications), some remaining challenges and future prospects are discussed in terms of data in wind engineering and algorithms in ML. It is noted that both challenge and prospect lists are not exhaustive.
4.1 Challenges and Research Gaps
The reviewed various ML models for a wide range of topics in wind engineering suggests that their cross field has recently attracted much interest. However, there are still numerous challenges to advance ML applications to wind engineering from conception and research into practice. These remaining challenges of data in wind engineering and algorithms in ML are discussed in this sub-section.
4.1.1 Wind Engineering Data Challenges
Wind engineering data could be rich in some dimensions but may be poor in others. For example, a large volume of flow data or pressure data could be obtained by one wind tunnel test (using advanced measurement systems with high resolution in space and high sampling rate in time), however, all these data would be located at a point in the Reynolds number dimension. For structural response under winds, most of the data are located in the linear elastic domain, while very limited nonlinear inelastic data needed to advance implementation of performance-based wind design are available. Another example is that the anemometric monitoring network typically generates abundant data in time dimension but sparse data in space. More importantly, it is usually very challenging or expensive to create extra points in currently data-scarce dimensions. Wind engineering data could be short in time span of their collection. For example, the climate changing impacts are not easy to be considered based on the currently available wind data since their record period is much shorter than the time scale of climate changing. Also, few structural performance data under winds are long enough to take the life-span deterioration behaviors into account. Essentially, the learning machine based on current wind-structure interaction data cannot be used for accurately predicting future long-term behaviors of the same wind-structure system. Wind engineering data could be highly heterogeneous for collaborative or large-scale ML applications. Many complex tasks (e.g., life-cycle performance evaluation of structures under winds) and/or real-world problems (e.g., hurricane resilience assessment of coastal communities) in wind engineering need collaborative efforts and/or large-scale implementations. The datasets generated from these activities may result from various CFD simulation tools or field measurement devices, and they are typically interpreted by different entities before sent to a central processing platform. Accordingly, significant processing efforts (e.g., data cleaning, data aggregation, dimension reduction and data standardization) are needed for these heterogeneous datasets with high variability of data types and formats (e.g., mixtures of structured, semi-structured and unstructured data). In addition, advanced powerful learning machines are necessary to generate new knowledge from large, heterogeneous sets of wind engineering data.
4.1.2 Machine Learning Algorithm Challenges
ML algorithms commonly-used in wind engineering are standard ones designed for solving problems in other fields (e.g., handwriting recognition or computer vision). While these classical algorithms (e.g., ANN with backpropagation) achieved great success for simple wind engineering applications, they are not necessarily concise and efficient. More importantly, the immediate applications of these popular algorithms to modern wind engineering (involving nonstationary and non-Gaussian wind flow, transient and nonlinear aerodynamics, nonlinear and inelastic structural dynamics, or time-variant wind-structure system under a changing climate) may be very challenging. On the other hand, the newly developed ML algorithms (e.g., advanced LSTM and GAN) need to be carefully scrutinized for their applicability to these complex problems. ML algorithms commonly-used in wind engineering are supervised ones that need a significant amount of labelled data. Although the cost of obtaining/collecting the data from various sources (e.g., numerical simulations, wind tunnel tests, or field measurements) is greatly reduced and accordingly unprecedented volume of data are increasingly available, these datasets may be limited to unlabeled due to a lack of sufficient human resources (with expert knowledge) for data labeling. ML algorithms commonly-used in wind engineering are purely data-driven ones that are usually consider as black boxes. Furthermore, currently available ML models usually present a conflict between their advances (and hence performance) and explainability. One important feature of human intelligence is the ability to explain the rationale behind its decisions to others, hence, the explainability of learning machines is often an essential prerequisite for establishing a trust relationship between human intelligence and artificial intelligence. The highly non-transparent nature of ML algorithms may be acceptable for some applications in wind engineering (e.g., a CNN mapping the oncoming winds to pressure fields on or velocity fields around various bridge decks), however, it may be a clear drawback for many high-stake applications (e.g., evacuation planning or transportation infrastructure management under a landfalling hurricane) since any error in prediction may have catastrophic consequences. It is noted that the high-stake applications also place a high demand for quantification of uncertainties involved in ML algorithm selection, training and performance evaluation (along with data collection), whereas the formalization of uncertainty quantification for purely data-driven approaches is very challenging and not well established yet. ML algorithms commonly-used in wind engineering are typically selected based on past experience (or simply by “gut feeling”) and the associated model hyperparameters (e.g., layer and neuron numbers, activation function and learning rate) are usually obtained by extensive trial and error. While the selected ML algorithms present good performance for the particular applications of interest, they are not necessarily an optimal choice. A systematic approach to identify the most appropriate ML model and associated best hyperparameters essentially needs a global optimization within a high dimensional space, and is currently very challenging for wind engineering applications.
4.2 Prospects and Future Directions
The remaining challenges, while not trivial, provide new research opportunities for the development of more effective ML tools. The identified prospects of data in wind engineering and algorithms in ML are discussed in this sub-section.
4.2.1 Wind Engineering Data Prospects
To generate/collect wind engineering data that are scarce in certain dimensions, advanced full-scale/laboratory/numerical tools and technologies need to be utilized or developed. In addition to large-scale facilities (e.g., WindEEE), various high-fidelity and efficient modern CFD techniques (e.g., hybrid large eddy simulation/Reynolds-averaged Navier-Stokes schemes) should be exploited to generate data of high-Reynolds number scenarios. The rational loading protocols for extreme wind performance cyclic testing of deformation-controlled MWFRS (Main Wind Force Resisting System) members need to be designed to generate the wind-induced nonlinear inelastic structural response data. Also, data reconstructions using linear/nonlinear dimensionality reduction techniques (e.g., singular value decomposition/autoencoder) should be employed to enhance spatial resolution of full-scale measurements. To generate/collect wind engineering data that cover sufficiently-long time span of structural behaviors, more reliable long-term structural health monitoring systems should be established in addition to high-fidelity modeling of aging and deterioration of wind-sensitive structures. For the consideration of wind engineering data under a changing climate, synthesized wind fields (resulting from tropical cyclones, extratropical cyclones or local non-synoptic storms) need to be generated by global climate models coupled with accurate and efficient downscaling exercises under projected climate conditions [e.g., various RCP (Representative Concentration Pathway) scenarios]. To effectively learn from heterogeneous data that need to be first unified, they can be efficiently processed by advanced big data analytics. For example, unsupervised or semi-supervised clustering techniques could be used for data cleaning, data fusion techniques of Kalman filters could be used for data aggregation, and linear principal component analysis or nonlinear self-organizing map could be used for dimensional reduction.
4.2.2 ML Algorithm Prospects
To facilitate ML applications to complex wind engineering problems, the state-of-the-art or latest algorithms emerging in ML community could be leveraged. For example, the GAN could be used for effectively generating nonstationary and non-Gaussian wind flow through its two competing sub-networks, the CNN could be employed for efficiently mapping oncoming winds to pressure fields (characterizing transient and nonlinear aerodynamics) on structures with an arbitrary shape because it is particularly good at handling input-output data with a known grid-like topology, the LSTM could be utilized for accurately simulating nonlinear and inelastic structural dynamics since its forget gates ensure a reliable consideration of long-term dependencies (where the structural response at the current time depends on not only the current wind load but also the load history), and the lifelong learning networks should be explored for adaptively modeling time-variant wind-structure system assuming their underlying parameters can be continuously modified to accommodate new data inputs. The direct or immediate applications of the advanced ML algorithms to complex wind engineering problems may not necessarily result in parsimonious models that may need specialized customization for each application. To reduce the demand for labelled data in ML applications to wind engineering, both unsupervised learning and semi-supervised learning (including physics-informed machine learning) are promising alternatives to popularly used supervised learning. In addition, advanced ML algorithms have been emerging (e.g., reservoir computing) for processing information generated by complicated dynamical systems using very small training datasets. To open the ML black box, model explainability and interpretability in wind engineering applications needs to be enhanced. Various general techniques have been developed to improve understanding of the ML model predictions, such as sensitivity analysis and layer-wise relevance propagation. On the other hand, the definitions of explainability and interpretability are typically domain dependent, hence, the domain knowledge in wind engineering should be leveraged for enhanced explainability/interpretability of each ML application. It is expected that the explainability/interpretability analysis (along with uncertain quantification) will likely become a fundamental building block for bounding the overall confidence in ML applications in wind engineering (parallel to verification and validation in CFD simulations). To enable an automatic search of ML model hyperparameters in wind engineering applications, increasingly available optimization schemes with improved efficiency and accuracy (e.g., grid search, random search, Bayesian optimization and population-based training) can be utilized to find the best configuration for each task. On the other hand, it is believed that a practical guide to selection of ML models in wind engineering applications will greatly facilitate their appropriate use. The best practices for model selection in each application are essentially consistent with the principle of Ockham’s razo by first testing simple linear ML models (due to their easy to implement and high model explainability), and then followed by more complex nonlinear models (without data overfitting). Among ML models with similar complexity, a predetermined performance metric is typically used for further model selection. Since iteration is generally needed in a purely performance-driven ML model selection, the domain knowledge is suggested to be utilized for a more effective search process.
4.3 Knowledge-Enhanced Machine Learning
As discussed in preceding sections, domain knowledge could be leveraged for improved selection of ML model and its inputs and outputs in wind engineering applications. Hence, a good understanding of fundamental physics and other types of domain knowledge underlying each subfield of wind engineering would enable more effective use of ML tools. It is noted that the fundamental physics in terms of governing equations is a special type of domain knowledge, and recent studies have demonstrated that the required labelled datasets could be significantly reduced by incorporating the underlying physics into training process (and hence enhancing the regularization mechanism) (e.g., Raissi et al., 2017a; 2017b). Other equation-based domain knowledge such as empirical/semi-empirical formulas were also employed as part of the loss function in deep learning to provide machine-readable prior knowledge that facilitates the effective regularization of the neural networks for simulations of tropical cyclone winds (Snaiki and Wu 2019) and nonlinear structural dynamics (Wang and Wu 2020). In addition, the equation-free domain knowledge has been integrated into a deep RL-based aerodynamic shape optimizer (via the transfer-learning and meta-learning techniques) to remarkably enhance the training efficiency for wind engineering applications (Li et al., 2021a). These emerging successful applications indicate that this novel scheme of knowledge-enhanced machine learning (KEML) could significantly enhance ML applications to wind engineering. To fully embrace the promising potential of KEML, systematic research efforts are needed to efficiently identify knowledge representations (invariances, physics equations, empirical formulas, probabilistic relations, logic rules, simulation results, field observations, human feedback, and others) in various subfields of wind engineering and then to effectively integrate them into each module of machine learning pipeline (data preparation, model selection, model training, and others). While domain knowledge could be employed to enhance purely data-driven ML tools, it is expected that learning machines could be utilized for harnessing data to discover new knowledge in wind engineering (e.g., governing laws characterizing transport of turbulence quantities or optimization of wind-structure system).
5 CONCLUDING REMARKS
A total of 65 machine learning (ML) algorithms were reviewed in terms of their applications to each topical area of wind engineering, namely wind climate, terrain/topography, aerodynamics/aeroelasticity, structural dynamics, wind damage assessment and wind-related hazard mitigation and response. The most ML applications were found in wind climate area, while the terrain/topography area had the least applications of ML. Although the ML-based wind engineering is fueled by the unprecedented volume of analytical, numerical, experimental and field-measurement data together with rapidly evolving learning algorithms and high-performance computational hardware, it is still at an early stage of development. Most of wind engineering applications employed supervised learning with standard ML models designed for solving problems in other fields, and the promising unsupervised and semi-supervised learning tools were rarely used to reduce the high demand of labelled data. For the selection of ML models and associated hyperparameters in wind engineering applications, it was typically based on expertise and extensive trial and error. In this review, the culture of openness, explainability/interpretability and uncertainty quantification were identified as important research gaps that need to be addressed in ML-based wind engineering community. Furthermore, the knowledge-enhanced machine learning was considered as a very promising scheme to enhance ML applications to wind engineering.
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APPENDIX A: LIST OF REVIEWED MACHINE LEARNING ALGORITHMS (NOTE: ACRONYMS WITH * REPRESENT THOSE REVIEWED IN THIS CONTRIBUTION).
A2C advantage actor critic
AdaBoost* adaptive boosting
AE* autoencoder
ALEN* adaptive linear element network
ANFIS* adaptive neuro-fuzzy inference system
ANN* artificial neural network
AWN* adaptive wavelet network
BNB* Bernoulli naive Bayes
BNN* Bayesian neural network
CGAN conditional GAN
CNN* convolutional neural network
CNN-AE* convolutional neural network-based autoencoder
ConvLSTM* convolutional Long Short-Term Memory
DCGAN deep convolutional GAN
DDPG* deep deterministic policy gradient
DDQN double deep Q-network
DNN* deep neural network
DQN deep Q-network
DRL* deep reinforcement learning
DRNN* diagonal recurrent neural networks
DT* decision tree
ENN* Elman neural network
ERBFN* radial basis function neural network
ERNN* Elman recurrent neural networks
FIS* fuzzy inference system
FNN* fuzzy neural network
GAN* generative adversarial network
GBRT* gradient boosted regression trees
GBTE* gradient-boosted tree ensembles
GMDH* group method of data handling
GNB* gaussian naïve Bayes
GPR* gaussian process regression
GRU* gated recurrent unit network
GRNN* generalized regression neural network
ICA independent component analysis
IIRANN* infinite impulse response artificial neural network
JRNN* Jordan recurrent neural networks
KEDL* knowledge-enhanced deep learning
KE-DRL* knowledge-enhanced deep reinforcement learning
KE-LSTM* knowledge enhanced long short-term memory
KM k-means
KNN* k-nearest neighbors
LAFMN* local activation feedback multilayer network
LDA* linear discriminant analysis
LNN* linear neural network
LR* logistic regression
LSSVM* least squares support vector machine
LSTM* long short-term memory
MC* multiple correlation
MFQL* modified fuzzy Q-learning
MLR* multiple linear regression
MNB* multinomial naive Bayes
MNN* matrix neural network
MSC mean-shift clustering
NB* naïve Bayes
NESN* nonlinear echo state networks
NLN* neural logic network
OLR* ordinary linear regression
PCA principal component analysis
PI* Physics-informed
PPO proximal policy optimization
QDA* quadratic discriminant analysis
QL* Q-learning
RBF* radial basis function
RBFNN* radial basis function neural network
RF* random forest
RL* reinforcement learning
RNN* recurrent neural networks
RR* ridge regression
SC spectral clustering
SD-AE* stacked denoising autoencoder
SLDA* supervised latent Dirichlet Allocation
SGD* stochastic gradient descent
SVM* support vector machines
SVR* support vector regression
TRPO trust region policy optimization
WGAN Wasserstein GAN
XGBoost* extreme gradient boosting
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different 2-D cross-
sections shapes: 2
velocity components
and pressure

GAN: wind direction
and location of the
interfering building

DT, RF, XGBoost
wind direction, the
coordinates of the
pressure tap and the
location of the
interfering building
Prediction’s location
.y, 2)and the
incoming wind
direction

Turbulence intensity,
incoming wind,
Reynolds number
and circumferential
angle of the cylinder

Output
data

Flutter derivatives (6)
of a rectangular
section

8 flutter derivatives
(each given by 1
ANN separately) of
rectanguiar section
model

8 flutter derivatives
of a cable stayed
biidge

8 flutter derivatives
(each given by 1
ANN separately) of
rectangular section
model

DT: VIV modes (a
total of 6)

SVR: VIV amplitudes

Motion-induced
‘aerodynamic forces

Normaized lt force
and torsional

moment coefficients
at current time step

Criical futter
velocity of
suspension bridge
with closed box
deck sections

Steady-state wind
pressure coefficient
for air-supported
structures (e.g.,
oylindrical and
hemispherical
membranes)

Mean and dynamic
along- and across-
wind directions.

interference factors.

Interference index

Wind pressure
coefficient at the

next time step

ANN1: mean
pressure coeffcients
on a gable roof of
low-rise buiding
ANN2: root-mean-
square pressure
cofficients on a
gable roof of ow-rise.
buiding

Inference factor

FNN1: Mean
pressure coeffcients
on a large flat roof

FNN2: Power
spectral density (at
given input
frequencies) at few
locations in the roof
corners and leading
edge

Statistics of wind
pressure coeficient
on the roof of a
spherical dome:
mean, standard
deviation, skewness
and kurtosis

Along-wind mean
cofficient of base
shear of a
rectangular buiding

Statistics of the
pressure
coefficients: mean,
RMS. Skewness,
kurtosis of pressure
coefficients, three
auto-correlation
coffcients and
coherence exponent
ANN1: mean or
root-mean-square
pressure coefficients
on a high-rise

buiding
ANN2: time series of
wind-induced
pressures on a high-
tise buiding

Mean pressure
coffcients over few
locations on the
roofs and walls (5
outputs for the flat-
rooled, 6 for the
gable-roofed and &
for the hip-roofed)
Mean, root-mean-
square, and peak
pressure coefficients
on the roof (at 152
rooftaps) of 3 scaled
low-rise buildings (1
50, 1:30, and 1:20)
Temporal variation
(next time step) of
the flow field around
different 2-D cross-
sections shapes: 2
velocity components.
and pressure

GAN: mean and
fluctuating pressure
coefficients over al
faces of the buiding
DT, RF, XGBoost:
mean and
fluctuating pressure
coeffcient at one
point on the buiding
surface

Mean and peak wind
pressure coeffcients
on the surface of a
scale model
corresponding to a
low-rise, gable roof
buiding

Mean and
fluotuating wind
pressures around a
circular cylinder for
high Reynolds
i

Data
source

Wind tunnel test
(total of 17
experiments)

Experimental data
from wind tunnel
tests

Wind tunne tests
were retrieved form
Matsumoto et al.
(1996)

GFD simulations and
foroed-vibration test
in awind tunnel

Field measurements
of a full-scale
suspension bridge
over a period of 6-
years (2010-2015)
located in the
eastern ocean of
China

CFD simulations
(total of

14,880 input-output
data corresponding
10 2D bridge deck
cross-section)

2 dimensional GFD
simulations for the
two bridge cross-
sections

Wind tunnel
experiments dlong
with finite element-
based simuiation
corresponding to
various geometrical
and mechanical
parameters of the
bridge deck cross-
section

Wind tunne tests

Wind-tunnel tests
from two references
Saunders and
Melbourne (1980);
Tanike and Inaoka
(1988)

Wind tunnel tests
from several sources
€., Zambrano and
Peterka (1978);
Blessmann and
Riera (1985)

Wind tunnel tests of
a 1:50 scale model

Wind tunnels
experimental data

Experimental data
from lterature e.g.,
Balley and Kwok
(1985)
Boundary-fayer wind
tunnels tests

Experimental wind
tunnel tests.

Wind tunnel tests

Wind tunne tests

Wind tunne tests

Tokyo Polytechnique
University.
experimental
database

Wind tunne tests

Direct numerical
simuation (DNS):
100 different biuf-
bodies shapes (in 2-
D space) with 500
instantaneous time-
series flow fields
each

Aerodynamic
database of Tokyo
Polytechnic
University

Wind tunne tests

From published
papers eg., Cheng
etal. (2016), Gao
etal. (2017)

Performance
metric

MSE

No error metrics

MSE

No erfor metrics.

RMSE, accuracy

(%), squared
correlation
coefficient

No error metrics.

MSE

R2

2

No error metrics

No error metrics

R

MSE

MSE

MSE

Predefined error

index (normalized

by the standard
deviation of the

target data)

RMSE

RMSE

MSE, R?

RMSE, MAE, R

MSE

R

R2

R

Remarks

Acceptable
performance

From the graphical
results, the
simulation results
were in good
agreement with the
experimental ones
Good simulation
results

Good performance

Good simulation
results

Excellent
‘agreement (through
visual inspection)
between the LSTM
model and CFD
was obtained
Good simulation
results were
obtained

While the
performance of the
ANN models varied
according to the
topology, their
performance was
good

Acceptable results

Good simulation
results

Good simulation
results

RBF outperformed
the ANN model

- Acoeptable reslts
for the 1st FNN
model

- No error metrics

were reported for
the 2nd FNN model

- Acceptable resuts

RBFNN
outperformed al
other models

While the mean
pressure coeffcient
was predicted
accurately, the
kurtosis of the
pressure coefiicient
was poorly
predicted

- No error metric
was reported for
the Tst ANN model

- Good simuiation
resuls for the 2nd.
ANN model based
on RMSE.

Good simulation
acouracies

The acouracy of
simulation results
depends on the
pressure taps
location

“The use of GNN-
AE allows the
mapping between
the high-
dimensional space
and a low-
dimensional latent
space which
faciitates the
training of the LSTM
model

- Bxcelent
performance

The GANs-based
model
outperformed the
other three machine
learning algorithms
and provided
accurate mean and
fluctuating pressure
coefficients on the
principle buiding
Excelent
performance
results

GBRT
outperformed all
other models





OPS/xhtml/nav.xhtml
Contents

		Cover

		Applications of Machine Learning to Wind Engineering		1 Introduction

		2 Background of Machine Learning		2.1 Supervised Learning

		2.2 Unsupervised Learning

		2.3 Semi-Supervised Learning

		2.4 Reinforcement Learning





		3 Applications of Machine Learning to Wind Engineering		3.1 Wind Climate

		3.2 Terrain and Topography

		3.3 Aerodynamics and Aeroelasticity

		3.4 Structural Dynamics and Damage Assessment

		3.5 Mitigation and Response

		3.6 Summary





		4 Challenges and Prospects		4.1 Challenges and Research Gaps

		4.2 Prospects and Future Directions

		4.3 Knowledge-Enhanced Machine Learning





		5 Concluding Remarks

		Author Contributions

		Publisher’s Note

		References

		Appendix A: List of reviewed machine learning algorithms (Note: Acronyms with * represent those reviewed in this contribution).









OPS/images/fbuil-08-811460-t004.jpg
Application

Modeling the effects of
topography on the
wind profie
Bitsuamiak (2004);
Bitsuamlak et al.
(2002), (2006), (2007)

Wind field simulation
considering terrain
effects
Martinez-Vézquez and
Rodriguez-Cuevas
(2007)

Estimation of the effect
of wind direction on
wind speed prediction
in complex terrain
Lopez et al. (2008)

Prediction of typhoon
wind speed and profile
over complex terrain
Huang and Xu (2013)

Prediction of the wind
flow over complex
topographies Mayo
et al. (2018)

Selection of the
experimental
hardware within a wind
tunnel Abi et al
(2009)

Prediction of wind
properties in urban
environments based
on wind tunnel tests
Varshney and Poddar
2012)

Designing laboratory
wind simulations
Krizan et al. (2015)

ML model

ANN

ANN
combined
with
conditional
simulation
technique

ANN

ANN

DNN

ANN (2)

ANN (2)

ANN (2)

Training scheme

Cascade correlation

Backpropagation

Bayesian regularization

Backpropagation

Proximal adagrad

cascade correlation

Lavenberg-Marquardt

RPROP Riedmiller and
Braun (1993)

Input data

6 inputs including
simple geometric
properties

(ie., "Windward
slope of the hil",
“Distance between
hils”, *Height from
the crest of the hill"
and “Longitudinal
location”),
roughness element
and hill count
Terrain roughness,
mean wind profile
and spectral density

4 inputs: 10-min
mean wind speed
from 3 stations
nearby and wind
direction from
another nearby
station

Upstream wind
speed and direction
at height z

3 cartesian
coordinates (x.y.2)
of the selected point
and the incoming
uniform mean wind
speed

ANNT: height from
floor, the bottom-
spire width, the
surface roughness
and the top spire
width

ANN2: target mean
longitudinal wind
speed, target
turbulence intensity
and heightfrom floor
ANN1: number of
roughness
elements, number of
barriers, height from
floor and siot width
ANN2: number of
roughness
elements, number of
barriers and siot
width

ANN{: basis barrier
height, barrier
castellation height,
surface roughness
elements” spacing
density, surface
roughness
elements” height
and height of
measurement
points

ANN2: basis barrier
height, surface
roughness
elements’ spacing
density, surface
roughness
elements’ height,
frequency and
height of
measurement

points

Output data

Fractional speed-
up ratio

Wind velocity time
series (3 min of

time series with a
time step of 0.15)
at diflerent points

Annual average
wind speed at a
given site with
complex terrain
configuration

Wind speed and
direction at height
2 on a bridge site

Mean wind speed
over a given site
with complex

topography

ANN1: mean
longtudinal wind
velocity and
turbulence
intensity

ANN2: difference
between top and
bottom spire
wicth and the
surface roughness
ANN1: mean wind
speed, turbulence
intensity and
length scale factor

ANN2:
instantaneous
velocity

ANN1: mean wind
speed, turbulent
intensities (in the
three directions),
length scales (in
the three
directions) and
turbulent
Reynolds stress

ANN2: power
spectral densities
of the velocity
fluctuations in the:
three directions

Data source

CFD simulations
coresponding to
different
topographic
configurations:
single and muliple
hills and
escarpments

The time series of
wind speed were
generated using
the procedure of
Simiu and Scarlan
(1978) at two
heights (ie., 10
and 200 m) with 11
local velocities
(from 0.5t0100 m/
s) and surface
roughness
between 0.001
and 0050 m
Meteo-Galicia
during 2003 at the
Galicia regionin the
northwest Spain
corresponding to 5
stations and
representing
various terrain
conditions (e.g.,
inland and offshore
conditions) and
elevations
Reynolds-
averaged Navier-
Stokes simulations
which provides the
wind profiles at the
bridge site given an
inlet upstream
wind field (which
does not account
for topographic
effects)

4 CFD simulations
ofthe wind field ina
given coastal dune
system with
complex terrain

RWDI USA LLC
wind tunnel in
Miramar, Florida

Boundary-layer
wind tunnel tests of
the National Wind
Tunnel Failty in
Kanpur, India (18
configurations)

Boundary-layer
wind tunnel at the
Technische
Universitat
Minchen with a
total of 23
configurations of
hardware setups

Performance
metric

R? coefficient

MSE

RMS

MAE

MAE

No error scores
were provided

No error scores
were provided

R?

Remarks

~Comparison
with experimental
data from wind
tunnel

-Good
performance

~The condtional
simulation
technique
significantly
decreased the
number of
required layers in
the ANN

~Good simulation
results

Wind direction is
important to be
considered to
improve the
simulation rests
for a site with
complex terrain

Good simulation
results for both

wind speed and
direction

Acceptable
simulation results

- Visual
inspection of the
predicted wind
profile and
turbulence
intensity of the
first neural
network
indicated good
simulation results
- Results from
ANN2 were not

satisfactory

- Visual
inspection of the
predicted results
indicated
satisfactory
simulations

-ANN: except
the turbulent
length scalein the
x-direction (not
that accurate) all
other results were

good

- ANN2: good
simulation resuits
were obtained
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) Structural
optimization &
control under
winds

i) Disaster
response
nformed by
social media

Application

Vibration control of
wing-induced
response of tal
buildings with active
tuned mass damper
Bani-Hani (2007)

Aerodynamic shape
optimization o tall
buidings Elshaer
etal. (2016), (2017)

Aerodynamic shape
optimization o tall
buidings Li et al.
(2021a)

Bluff body active flow
controlin
experiments and
simulations Fan et al.
(2020)

Information
dlassification from
dsaster-related
messages in twitter
Imran et al. (2013)

Classiication of
tweets to inform
disaster response
Ashktorab et al.
(2014)

Information
dlassification from
dsaster-related
messages in twitter
Imran et al. (2016)

Information
diassification from
disaster-related
events O'Neal et al.
(2018)

Real-time disaster
communication
Robertson et al
(2019)

Information
dlassifcation from
disaster-related
events Manna and
Nakai (2019)

Real-time information
dassification from
hurricane-related
events Yuet .,
(2019)

Ientification of social
media-based
requests for urgent
help during
hurricanes Devaraj

et al., (2020)

ML model

Training
scheme

ANN (2
models)

Backpropagation

ANNwitha -
genetic
algorithm

KE-DRL Gradient descent

DRL Adam

NB (2 -
classifiers)

SLDA LR, -
KNN,NB, DT

RF,SVM,NB

SVM, KNN,
GNB, MNB,
BNB,

DT, SGD

VGG-16
ONN, ANN

Adam

ANN,SVM, -
NB, LR

ONN,
SVM, LR

RMSprop

DT, SWM, -
ANN, LR,

NB,

AdaBoost,

RR

Input
data

ANN182: 20 inputs-
absolute wind-
induced
accdleration of 3
selected floors at
the current and
previous 4-time
steps, and the active
tuned mass damper
control forces at the
current and
previous 4-time
steps

Geometric variables
of the cross section
and the wind angle
of attacks

State: extemal

shape of the
structure

States: drag and it
coeffcients

NBI1: tweets

NB2: informative
tweets

Tweets

Tweets

Images

Tweeter-based
images

Tweets

Tweets

Tweets

Output
data

ANN: 4-time steps.
ahead the absolute.
acceleration of three
floors (i, 50th, 60th
and 70th)

ANN: future control
force at the next time
step of the active
tuned mass damper

Objective function
the mean drag
coeffcient or the
standard deviation of
thelift coefficient

Action: design
adjustment of the
cross section to
maximize the
aerodynamic
mitigation (by
minimizing the drag
ofahigh-rise buiiding)

Action: ratio of the
rotation rate for each
rotating cyinder and
the maximum
rotation rate to
minimize the drag in
both simuiations and
experiments

NB1: classification of
tweets as personal,
direct informative,
indirect informative
direct-indirect
informative and other
following the tormado
event in Joplin,
Missouri (2011)

NB2: classification of
informative tweets as
caution, donation,
advice, or information
source

Classifcation of
tweets to identify
those that reported
human casualties or
structural damage
(requiring
intervention)

9 classes (e.g.,
injured or dead
peaple, infrastructure.
and utilties damage,
displaced people and
evacuations, caution
and advice)

Image classes in
terms of human roles:
rescuees or rescuers

VGG-16 CNN:
informative features.
(pre-storm, landfall
and the period after
landfal)

ANN: urgency level
(highly urgent,
moderately urgent,
somewhat urgent,

not urgent, and
unrelated to the

huricane event)

2 classes: crisis-
related tweets and
non-crisis-related
tweets

5 classes:
Information Sources,
Gaution and Advice,
Infrastructure and
Resources,
Casualties and

Damage, and
Donation and Aid

Tweets from people
requiing or not
urgent rescue by first
responders

Data Performance
source metric

Numerically generated  RMS and defined

using a SIMULINK dimensionless.

model with a total o performance

50 of data and a indexes

sampling time of0.001s
for atall buiding with
76-stoery (data
generated with and
without random white
noise controlforce of up
105 Hz frequency)

LES simuiations of a R
two-dimensional flow
cormesponding to

different geometric:
properties of the cross
section

RANS and LES -
simulation of a 2-D
cross section example

Entropy-viscosity- -
based large eddy
simulation (LES) (for the
numerical simuiation)

and an experimental

setup

206,764 tweets
collected during the
Joplin tomado of 2011
in Jopin, Missouri

F1 score

17 milion tweets
collected during 12
different natural
disasters in the U.S
since 2006 (e.g.,
tomado and hurricane)

Vel

52 milion tweets for
events related to 19
natural hazards and
crisis (e.g., typhoon,
floods and earthauake)
occurring between
2013 and 2015 in
different parts of the
world was used

The images were
collected from August
17thto 3 September
2017 based on private
social mediia platforms
(eg., twitte) during
Hurricane Harvey
(017)

Atotal of 17,483
images were extracted
from Tuitter between
17th August and 17
September 2017 from
Huricane Harvey
(017)

Area under ROC
curve

Average
precision

Accuracy

6 crisis related datasets
were used (€.,
hurricane Harvey 2017
and the 2011 Jopin
Tomado) with
approximately 10,000
tweets for each event
3 manually labeled
datasets were used
corresponding to
hurricane Sandy (2012),
Irma (2017) and Harvey
(2017), respectively
with approximaively
2000-3000 tweets per
each event

2,072,715 tweets
related to Hurricane
Harvey (2017) event

Accuracy

Accuracy

Fi-score

Remarks

The coupled ANN
modes were able to
reduce substantially
the peak
displacement and the
absolute acceleration
response of the
buiiding storeys

- Good simuiation
results

- Significant
optimization of the
mean drag coefficient
and standard
deviation of the It
coefficient

- Both specific direct-
domain and cross-
domain knowledge
areleveraged through
transfer-learning and
meta-leaming

- The deep
deterministic poicy
gradient algorithm
(DDPG) was used for
the RL aigorithm

- RL-based shape
optimizer
outperformed the
basic gradient
descent, particle
‘swarm optimization
(PSO) and typical RL
without knowledge
“The Twin Delayed
Deep Deterministic
polcy gradient
algorithm was
selected as the RL-
algorithm to update
the agent

- The RL-agent was
capable to efficiently
leam a control
strategy, for both
experiment and
simulation, that wil
allow the
reattachment of flow
behind the cylinder
and reduce the drag
coefficient
Acceptable
performance

The LR was the best
dlassifier

- Good results were
obtained for all

dlasses (for the three
dlassifiers) except for
the “missing trapped

or found people’” -
poor classification-

SVM-based model
gave the best
prediction accuracy

Acceptable
simulation results

ANN classifier
outperformed al
other classifiers

NN outperformed
other classifiers

ONN, SVM and ANN
achieve the best
simulation results
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) Structural
dynamics

i) Damage
assessment

Application

Modeling
hysteretic
nonlinear
behavior of bridge
aerodynarmics
Wu and Kareem
(011)

Analysis of tall
buiiding for
across wind
response
Vyavahare et al.
(2012)

Identification of
the dynamic
properties high-
rise buildings
subjected to wind
Oh et al. (2017)
Identification of
the dynamic
properties high-
rise buildings
subjected to wind
Nikose and
Sonparote
(2019a); (20190),
(2020)
Wind-induced
response
estimation for tall
buidings Oh et al.
(2019)

Wind-induced
nonlinear
structural
dynamic analysis
Wang and Wu
(2020)

Prediction of
structural
response of wind-
excited tall
buidings Micheli
etal. (2020)

Constructing and
validating
geographically
refined HAZUS-
MH4 hurricane
wind risk models
Subramanian
etal. (2013)

Probabilistic
damage
estimation for
asphalt shingle
roofing Huang
etal. (2015)

Estimatin of the
fatigue damage of
coastal bridges
under coupled
loads Zhu and
Zhang (2018)

Performance
assessment of a
vertical structure
subjected to non-
stationary,
tormadic wind
loads Le and
Caracoglia (2020)
Object detection
in aerial imagery
for disaster
response and
recovery after the
occurrence of
hurricanes Pietal.
(2020)

ML model Training
scheme

ANN Gradient descent

ANN Backpropagation

ERBFN Genetic
algorithm

ANN Backpropagation

ONN Backpropagation

KELSTM  AdaMax

AWN Backpropagation

Ensemble

models

composed

of 50

bagged DT

ANN Backpropagation

SVR (with -

Gaussian

kemel)

ANN Levenberg-
Marquadt

Series of  Backpropagation

CNN trained

using

transfer

leaming

Input
data

12 inputs: mean
wind velocity in
the current and
next time steps,
fluctuating
components in
the longitudinal
and vertical
direction in the
current and next
time steps, and
the vertical and
torsional
displacement
with their first
and second
derivatives in the
current time step

Building shape
(height, breadith
and depth), the
terrain category
and incoming
wind speed

Wind speed and
direction

Building
geometry
(height, breadith
and depth),
incoming wind
velocity and
terrain category

Top-level (top
floor of a tal
building) wind
induced
displacement in
both time and
frequency
domain and
measured wind
speed in the
frequency
domain
Wavelet
coeficients of
the normalized
wind excitation
(external wind
force)

Wind load and
high-
performance
control systems
(HPCS)
characteristics

10 prediotors
were identiied
(e.g., number of
floors, terrain
roughness, wind
speed and
direction)

8 predictors:
wind speed,
angle of attack,
shingle
resistance,
building length,
building width,
building height,
roof slope and
surface
roughness
Gross vehicle
weight; 10-min
wind speed;
significant wave
height; and peak
wave period

Maximum mean
tangential
velocity of the
tomado and its
radial length
scale

Digital images
and videos

Output
data

Vettical (torsional)
acceleration of
the bridge deck
section in the next
time step

Shear force and
bending
moments of tall
buildings

Column stress of
atall buiding
subjected to wind
loads

Dynamic
response in the
along-wind and
across-wind in
terms of base
shear and base
bending morment

Maximum and
minimum strains
of the building
columns

Normalized
structural

displacement at
different nodes

Maximum
absolute
acceleration of
the structure

Classification:
Structures that
were correctly or
not well predicted
by HAZUS-MH4
(in terms of
hurricane induced
wind damage) in
1-km square
blocks

Mean damage
ratio of an asphalt
shingle roof

Dally equivalent
fatigue damage
accumulation

Fragilty values
associated with
each intensity
measures
combination

Bounding boxes
of the ground
objects of interest
(ie., flooded area,
building roofs
damage, debris,
vegetation and
cars) and their
corresponding
class labels (€.,
damaged or
undamaged)

Data
source

Tongii-1 wind
tunnel at State Key
Lab in Tongj
University

Data generated
from numerical
examples

Wind tunnel tests

Dataset were
generated based
onthe Indian Wind
Code (W) for
various building
configurations

Wind tunnel tests

Numericaly for the
case of SDOF and
MDOF

Dataset generated
numerically
corresponding to
a 39-stoery steel-
frame system
building subjected
to wind load and
equipped with
several equipment
(eg., damping
devices, sensors
and global
controlier)

The data contains
the damage states
and corresponds
to approximately
700,000
residences in the
Harris Gounty
folowing hurricane
ke (2008)

Boundary-layer
wind tunne! tests

from the University
of Western Ontario

Traffic data from a
cable-stayed
bridge located in
southern China
coastal regions &
the wind/wave
data from
Meteorological
Observatory near
the bridge location
from 1980102012
Numerically
generated in
which the Monte
Carlo simulation
was employed

~The models were
pretrained on the
‘common objects
in contextivisual
object classes
(COCONOC)
databases
Everingham et al.
(2010); Lin et al.
(2017)

- Then they were
retrained on new
aerial video
dataset Volan
2018
(corresponding to
hurricanes that
occurred in
2017-2018)
obtained using
web mining
algorithms.

Performance
metric

No error metrics

No error metrics

RMSE,
maximum error
between the
measured and
estimated values

RMSE

RMSE

MAE

RMSE

Accuracy (%)
and customized
error metric

Accuracy (%)

RMSE, MAE,
MAPE

Absolute
differences

Mean average
precision

Remarks

- Cellular
automata-
based system
was employed
to optimize the
ANN
configuration

- The visual
inspection of the
results indicated
the good
agreement
between the
simulated and
measured

- ANN model
showed good
promise in
simulating the
hysteretic
nonlinear
behavior of the
bridge deck
which interacts
with the
incoming
fluctuating wind
From visual
inspection, it
can be
concluded that
a good
agreement
between the
simulated and
numerical
results has been
obtained

Good simulation
results were
obtained

Good simulation
results were
obtained

Good simulation
results were
obtained

- The governing
equation of
motion was
embedded
within the loss
function

- Excellent
simulation
results

- AWN
parameters
were updated
sequentially
each time data
arrives (oniine
training)

- Good
simulation
results

- The results of
this study
suggest that
HAZUS-MH4
fragiity curves
for certain home
types, need to
be refined to
improve the
prediction
resuts

Good
performance

Good simulation
results were
obtained

Various
architectures
were tested and
the best ANN
model has one
hidden layer
with 4 neurons

Acceptable
results
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Thunderstom

9 Downburst

# Tomado,

Application

Precicton of severe
thunderstorms MeCann
(1992)

Procicton of the surfaco.
esk qust wind speed
curng tderstorm
events Chauchuri and
Mdey (2011)

Precicton of
thunderstorms
ocourrences Lita et o
@012)

Precicton of severe
thunderstoms
occurtences Chakrabaty
etal 013

Procicton f thunderstom
occurrence Yasen et al.
017

Precicton f tunderstom
occurrence Ukkonen et al
o)

Forecasting
thunderstoms

occurrence Kamangiet al
(2020)

Forecastig the
occurrence of
thunderstorms everts
(Chen and Lombardo
2020)

Procicton of damagng
wind! from tormacic and
staightine events
incuding downbursts)
(Marzoan and Stumgt
1908)

assifcaton of damaging
Gounbusst winds (Smith
etal. 2004)

Precicton of the
probabity of occurence
of damaging stright-ine:
winds (nducing
‘Gounbussts) rom storm
oels Lagerquist e a.
o)

Donnburst wind speed
forecastng Liand i 2018)

ontfcaton of the
Gownburst ocourrence
Medina ot al. (2019)

Precicton of the tormado's
ocourences Marzban and
Stumpl (1996): Marzban
o al. (1997) Marzban
(2000)

Detecton of e tormado's
occurtances Lakshmanan
et al. 2005)

Preccton of the tomado,
ocourence Santosa

200n)

Procicton of the tomado,
ocourrenos Adanto et d.

(2009)

Precicton of the tonado,
occurrence Trafals et 4,
@01y

Precicton of the
probabity of occumence
of atomado Lagerquist
ot al 013, 2020)

Predicting propery
‘Gamage from tormadoss.
Daz and Joseph (2019)

Precicton of the
ocourrence of tomadc:
events Coffe o 8. (2020)

ML model

ANFIS, ANN,
REFNN, MR

ANN, Bayes Network.
4.5 decison
Tres, KNN

SDAE

LR, LA vith an dastic
petwerk, ANN, RF, GBTE

LSSVM (ooupled with
varational mode
‘Gecomposion and
partice swarm) - with
several kemmel (inear,
oo, Mexican Hat,
actal basis uncton, and.
Mort vavet)

R

S, LoA, BNN

SVMwith 3 kemes inear,

polnomia and AR,
ANN, LDA

SVM racsa basis frction
Kemel, LR, RF, rtaton
orest

awe

RE,ONN

Training

Backpropagation

Gradiont descent and
the east souares.
estimate

Lovenberg Marquardt,
Momentum, Coriugate
Gradint, Dotia Bar
Deta, Quick Propagaton
and Step.

Gradiont descent

Avtiia Boe Colony
(ABO), gradient descent

Scaed corugate
gradent

Stochaste gradent
descent

Backpropagation

Corugate gradent

Gradiont desosnt

Conugate Gradient

Resient

backpropagation

Backpropagaion

Backpropagation

Adam

Stochaste gradent
descent

Input

Lited index and sutace.
mosiure convergence

Lit index, Covecive
Inhibtion Energy,
Canvectve Avalable

Potental Energy and bulk
Fichardson rumber

Wad speed. humidity and
mean soa love pressure

2 procictors t 5
‘geopotental heigs: oy,
acsabaic lapse rate and
mostue diference a total
of 10/nputs)

31 thermodynamic and
‘dynanmic predictors

15 inpus (e, most
unsiatie Med indox and
relative humicity near
700 1Pa) identiod based
on skl scores

38 oatures (0., toal
predictabe water and
‘comecive preciptation)

91-min tmo seres of wind
speed and drecion

20 radar-deried prediciors
characterzng the
crcuations (0., depth of
rcuation, maximum
rotational velocty and low
atiue shea)

26 refectty and racial
velocity-based atrbutes.
69, cel volume, max
refictvty and height o the
max reflectivt)

431 predicors. They can
e dvided info 4 main
categores, namely racar
sttistos, stom shape.
parameters, storm motin
and sounding inccos.

Time series of downburst
wind (4910 16005)

8 dualpolarzaton racr
Signatues (e, maximum
vertical integrated i
and temperatse colder
then 00)

20 input varibles ..
maimum shear, ow- and
mid-atuce convergence)

13 fatures (o9, rolaional
velosiy

34 input feaures (e,
meso core depth and meso
low-evel shear)

53 input features (o
‘azimuthal sheer low el
average, gracent direction
masdmum and reflctiy
ot average)

22 attibutes (o9, wind
shear and humidity)

Storm-centered rackr
image and a proximity
soundng

Stom, land cover,
socoeconomic and
demographic feaures.

222 nput fatures at
various geopotential
heighis were iy
seloted (o, temperature,
pressuse) ~Exact final
parameters ot mentioned-

Output
data

Value batvicen 0 and 1
representing the keinood

Sutace peak gust wind
Specd in Kokata, i
wihalead tme wp 1012 h

Houry temperature dusing
thundorstorm, proxy for
thunderstorm occurence,
over the northeastem
fegion of India
Lkeihoodof occurenceol
‘sovare thunderstomis wih
alead tme batween 10
and 14 h over the
Portheastor fogion of
nda

Trunderstorm occurence

Trunderstom occurence
nthe next 6 period

Trunderstorm occurence
ough couc-o-ground
ighining parameler for a
maxmumicad imaof 15 h
and within 400 k¥ of 2
selected ste i South
Texas.

Event ype (understom
or nonthunderstom
event)

Probabsity of damaging
wind (with a damaging
wind excessng 25 mis)
with alead tme of 20-min

Severty of downbuest
winds (soveo or non-

severe evens) wih a
maximum foad tme of
15 min

Probabity of occurence
of damaging vinds with a
lead tme wp 10 90 mn

Timo seres of downburst
wind from 1600 s trough
18005

Donnburst reated ovets
o rul avents around the
Cape Canaveral A Force
Station and Kermedy.
‘Space Center

ocourencainon-
ocourtence oftormados for
 gven mesoscale:
cicuaton in the next
20min

Tomado oocurence from
gven crouations n the
Pext 20 min

Tomado accurence i the
pext 20 mn

Tomado occurence i the
Pext 30 min

Tomado oocurence from
mesocyciones event's (10
leacing tme indicatec)

Probabity of occurence.
of  tomado i the nox-
pour

ANNI: ocourence o pon-
ocourrenca of amage e
0.2 tomado svent

ANN2: lvel of damage
when it occurs

Tomadic and non-tormadic
events

Data

Cenrazed Stom
Informaton System of the
Natonal Severe Storms.
Forecast Centar (NSSFC)
from Apri to August 1990
over the castorn twohicis
of the United States
Radosonde and
ravinsonde from the
Department of
‘Atmospheric Scinces,
Uniersty of Wyoming for
e locaton of Kotata
India from 1997 t1 2009
Indian meteorocgioal
‘department fom 2007 to
2000 rousy data)

Indian Meteorocgioal
Depatment flom 1969 to
2008

METeorologial Aerocrome
Reports and Surface
Synoptic cbservaton fom
December 2015 to
Norember 2016 al ke
‘Chartes arportn Lovisana
ERA-intorm database from
2002 10 2015 over Finand

North American Mescscaie
Forecast System and the
Natonal ighining Data
Network rom the
2004-2012

Automated Surtace
‘Obsening System (S0S)
(1-min averaged data) fom
2000102018 withaotal of
76,480 tim serios of

91 minof wind speed and
drection

National Severe Storms.
Laboratory NSSY
Masocycone Datection
Agortten (MDA

WSR-88D racars (n soveal
locatons witin the US)
from the Natonal Cimatic
Data Certer's Stomn. It
contans 91 events hat
produced severe
‘Gowbursts and 1247
ovents that S ot procuce
severe downbursts
Near-surace vind
obsenations (fom the
Metsoroogical Assimiation
Data ngest System, the
‘Oktahoma Mesonet, and
tho Natonal Weather
‘Sonica),radar scans (fom
the Mutyear Reandysisof
Remotaly Sensod Storms)
‘and soundings (from the
Rapid Update Cyce and
e North American
Regional Reanalyss fom
2001 02011

Teno seres of downburst
i from two
measurements data
‘consising of 450 sample
points ith a samping
requency of 025 Hz for a
fotal of 1800 s the cata
sousce was not menioned)
Weather observaton
towers around the Cape
‘Canaverai A Foros Sation
‘andKennedy Space Center
rom 201510 2016

Natonel Severe Storms.
Laboratory's (NSSU)
Mesocycione Detection
Agoritm MDA vitha tota
of 5258 ciculaton everts
Natonal Severe Storms.
Laboratory based on the
Mesocycione Detection
Agorthm (MOA) and the
noar-stom envionment
NSE) with 110 storm days
Weather Survelance Radar
1998 Doppler

Radar measurements fom
the Natonal Cimat Data
onter wih a total of 33
stom days samped at
0mn

MDA and NSE databases.
Wit 111 stomn days

Mutyear Reanalysis of
Remotey Sensed Storms
(MARSS) inthe perodfiom
200010201 1] and Gridded
NEXAD WS 58D Radar
(GNWR) [perod from 2011
t02018)

NOA's tomado database.
the Natonal Land Cover
‘atabase and the American
Cammunity Suvey

Rapid Update Cycle
‘sounding data rom the
Natonal Gimatc Data
‘Center from 2003 0 2017

Performance.

crcal suocess.
index

RMSE, MAE

RMSE, MAE,
coniation
coficent

coaticient

Acouracy, AU, and
Fmeasure

Heidke skl score

Pace sl score

Fi scor and
average success
ate

Fracton Correct
and Hodke's Sk
Score

medan Heidke skl

A

MAE, AMSE, 2-
nome rlaive arcr
and Pearson
conation
cosficent

Mean Docrease
Acouracy (MDA and
Mean Decrease

Gini (MDG)
Griical Sucosss

Index

Heidke Skl Score

Hoidke Skt Score

Hoidke Skt Soore

Hoidke Skl Soore

Aroa unde the
recsier-cperaiing-
charactosic cunve
(AU score.

AUC, MSE, B

Overal accuracy
score (n %)

Romarks

Acceptable resuls

ANFIS model outperfomed the
other mactine leaming models

Best resuls vith
Levenberg-Marquarct leaming

KON modistwas the best clssifer

ANN model optmized wih ABC
aigorinm outpertormed the other
clssifers i detecing
thunderstorms

Acceptable resuls

The SD-AE model cutperiormed
an AN mode develope by
(Colins and Tissot 2015, 2016 fox
the same regon and wih smiar
ead time

Relable ciassier for
thunderstorms oocurences

Acoeptable resuls

‘Acceptabl resuls for the
precicton of sovere downiurst
overts

- The smuatin resuls inccated
hat storm motion and sounding
ndices are he dominant
preciciors

Both random forest and
radient-boosted ree ansombies
gave e best simulaton resuts

The combined Morket waveletn
actal bass kemel fncions (REF)
gave 1o best simuaton resuts

Although the modd provided
good simulation esuls, stong
events were batter assiied

‘compared to weaker ones.

The ANN modd outperormed
other statsical models such as
the discriminant anayss bus st
e performance is low

‘Simulation resuls acceptable

near programming support
vector machin was used for
eature selection

BNN modl gave the best
pertomance i detecting
tomados from given Grcuiatons
“Tho bes clssifer was tho SVM
mode wih the RBF kemel

.SVM model outpertomed the
other agorhms

-Featuro saoction was parformed
using the SVM-Recursie Feature
‘Biminaton aigritm with araca
bass funcion kemel

‘SVM v trveshoid acjusiment
outperormed a other cassiters
Excellnt simulation results

-Only the nta tomado,
coordnates are accounted for
ather than e tormado paih
~Acceptable resus

AThe input feature selecton vas.
carmiod out usng RF which
ndicated that the pressuse terms
are not as importan as the ofher
emvirormenta paramelers e
vwind component

. RF outperformed CNN.
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Application

Prediction of the
number of TCs in
the northwest of

Australia Richman
and Lesiie (2012)

Prediction of TG
genesis in the
South Pagiic
Ocean and
Australian region
Winands et a.
(2014)

Prediction of TGs
genesis in the
westem North
Pacific region
Znang et al. (2015)

Variabe selection
and prediction of
TC genesis
Winands et al.
(016)

Development a TG
genesis detection
model over the
westem North
Paciic Park et al.
(2016)

Prediction of the
number of seasonal
TCsin the North
Atantic region
Richman et al.
(2017)

Prediction of TG
formation from
mesoscale
convective system
Zhang et . (2019)

Detection of TC
genesis over the
westen North
Pacific Kim M et al.
(2019)

Prediction of
cyclone track over
the indian Ocean Al
et al.(2007)
Prediction of TCs
rack of over the
westem North
Pacific basi Wang
et al. (2011)
Trajectory
Prediction of
Allantic Huricanes
Moradi
Kordmanalen et al
(2016)

Cyclone track
prediction over the
South Indian ocean
Znang et al. (2018)
Prediction of
hurricane
rajectories over the
Allantc basin
Alemany et al.
(2019

Prediction of a
typhoon trackinthe
Korean Peninsula
Riitigers ot o
(2019)

Prediction of the
spatiak-temporal
hurricane trajectory
Kim S et al. (2019)
Tropical cyclone
track forecasting
Giftard-Roisin et al.
(2020)

Prediction of
typhoon intensity
changes in the
westem North
Pacific basi Bak
and Paek (2000)

Preiction of the
yclone intensity
over the Arabian
Sea and Bay of
Bengal Chaudhuri
etdl. (2013)

Prediction of the
cyclone intensity
levels Chen et al,
(2018)

Prediction of time
series of typhoon
intensity Pan et al.
(019

Cyclone intensify
forecasting over the
Western Pacifc,
Eastern Pacific and
North Atlantic
basins Chen et al.
(019)

G intensity
prediction over the
Paciic Northwest
and Atlantic Ocean
Wei Tian et al.
(2020)

Hurricane intensity
prediction Maskey
et al. (2020)

Estimation of
surface wind field
based on satelite
data Sties et al.
(2014)

Forecasting surface
wind speeds during
tropical cyclones
Wei (2015)

Estimation of TCs
inner-core surface
wind structure
based on infrared
satelite images
Zhang et dl. (2017)
Simuiation of TC
boundary-layer
winds Snaiki and
Wu (2019)

Surface wind
simulation in near
real time Wei (2019)

ML model Training
scheme

SR withradial -
basis function
coupled with
sequential

minimal

optimization
algorithm, MLR

SV with -
polynorrial

kenel, LDA

DT (C45 -
algorithm)

Rand Peter- -
Glark algorithm

DT (5.0 -
aigorithm)

SVR (with 2 -
kerels:

polynomial and

radial basis

function)

LR, N8, DT, -
KNN, ANN, GDA,
SVM (witharadial
basis function
kemel),

AdaBoosIRF.

DT, RF, SWM
(with trree
different kernels:
tnear,
polynomial, and
radil basis
functions), LDA

ANN Pseudo invert
learning

ANN Levenberg
Marquardit

RNN Genetic algorithm

MNN, RNN, Backpropagation
LSTM, GRU

Grid-based RNN,  Backpropagation
sparse NN

AN Backpropagation
ConuLSTM AdaGrad

CNN Adam

ANN, MLR Backpropagation
ANN, RBF, Backpropagation
MLR, OLR

ANN, MLR, SVM  Backpropagation

RNN Backpropagation

Hybrid CNN- Gradient descent
LSTMmodel2D- ~ and Adam
CNN, 3D-CNN

and LSTM)
CNN Adam
CNN Adam

ANN (a total of 3 Levenberg-

were used) Marquardt

SVM with 4 -

kemels: finear,

polynomial, radial

basis function

and Pearson Vil

LSSVM, RBFNN, -

linear regression

KEDL LBFGS-8

DNN Back-
propagation
aigorithm

Input
data

Nine predictors (e.g., El
Nifio Southern
Oscillation)

£ Nifo—Southern
Oscilltion indices,
Multivariate ENSO
Index, EI Nifio Modoki
Index, Dipole Mode
Indexand the Southern
Osailation Index

Sea surface
temperature, rainfall
intensity, divergence
averaged between
1000- and 500-hPa
levels, maximum 800-
hPa relative vorticity
and the 300-hPa air
temperature anomaly
Selected variables:
relative vorticity

(925 hPa), potential
vorticity (600 hPa) and
vertical wind shear
(200-700 hPa)

8 WindSat-derived
indices tested and 2
were selected as the
most dominant
predictors: circulation
symmetry and intensity

SST and EI Nifio 3.4
were the best
atiributes

Several
thermodynamic and
dynamic predictors
were employed in this.
study (e.g., genesis
potential index, 850-
hPa vorticity and
vertical wind shear)

8 dynamic and
hydrological predictors
(e.g., ran rate, circular
variance of wind

speed)

12 hof past track
observations (i terms.
of atitude and
longitude)

2 previous 6-
positions and the
current one (in terms of
latitude and longitude)

Past huricane track
locations which are.
selected by the RNN
model (6-hourly
hurricane center's
latitude and longtude)
Past hurricane.
trajectories
-automatically selected
by the algorithm-

Past hurricane.
locations (6-hourly
distributed)

Satelite images

Last § consecutive
hurricane density-
maps

Atmospheric fields
(mage-iike data)
corresponding to the
current and past data
(with a 6+h time step)
including the latitude,
longitude and
geospatial height fields
at three pressure
levels: 700, 500, and
225 hPa (e.g., wind
speed components)

11 predictors (e
inital storm intensity,
inital storm latituce,
vertical wind shear and
850-mb horizontal
moisture flux)

5 predictors: sea
surface temperature,
central pressure,
pressure drop,
maximum sustained
surface wind speed
andtotalozone column
Multispectral Imagery

3 previous time steps
along with the current
time of typhoon

location and intensity

3-D atmospheric
variables (wind
components,
temperature, reltive
humidity and
geopotentia height)
and 2-D sea surface
variables (sea surface
temperature)

Satelite images of TCs
in real ime

Satelite images of TCs.
in real time

ANN 1: SealWinds.
scatterometer
measurements.
ANN 2: Outputs of
ANN1

ANN 3: 6 predictors
(outputs of the first two
ANNs, QuikSCAT
radiometer rain rate.
and rain impact
quantity, maximum
likeiihood estimation
direction interval wind
speed and cross-track
distance)

13 features are
considered (g,
central pressure,
latitude, longitude, sea
surface pressure)
based on stepwise
regression method

TC age, center atitude
and maximum surface
wind speed

Storm parameters
(eg., spatial
coordinates, storm size
and intensity)

16inputs for Taipeiand
14 for Keelung
corresponding to the
typhoon
characteristics (e.g.,
central pressure) and
surface meteorologica
data (e.g., relative
Tamiicity)

Output
data

Number of TCs in
the northwest of
Australia

TC genesis
(number of TCs) in
the South Pacific
Ocean and
Australian region

TCs genesis in the
western North
Pacific region

TCs genesis in
region between
30N and 30'S

TC genesis

Number of
seasonal TCs in the.
North Atiantic
region

Genesis prediction
at diferent lead
times (6. 6 h)

Genesis detection
for a lead time up
030h

24 h of oyclone
track over the
Indian Oceanat 6 h
intervals

24 h of oyclone
track over the
western North
Paific basin at 6
hourly intervals.
hurricane track for
wpto 12 hin
advance

1-step of 6-hahead
TC trajectory (in
terms of latitude
and longitude)
Hurricane tracks
over the Atlantic
basin up to 120 h

‘Typhoon tracks in
the Korean
Peninsula at 6 h
lead time

Spatiak-temporal
hurricane trajectory
(up to 15-h) with a
3-h time steps

TC trajectory (in
terms of latitude
and longitude) for
Up to 24+h leading
time

Typhoon intensity
changes in the
western North
Pacific basin from
12+h and up to 72
h (1 output)

Cyclone intensity
over the Arabian
Sea and Bay of
Bengal for
approximately 72 h
lead time (1 outpu)

Gyclone intensity
level (class labels)

Time series
prediction of

intensity up to 48 h
with a6 htime step

Intensity (24-h lead
time) with a 6 h
time step

TG intensity in near
real time

TC intensity in near
real time

ANN 1: wind speed
from 0 to 20 m/s

ANN 2: corrected
wind speed over
20 s (retrieved
from HWind)
ANN 3: final
optimized wind
speed with a

125 km resolution

Surface wind
speed (1-h
‘average) for up to
6h over two
offshore isiands
near Taiwan

Gritical wind radi of
34- and 50-kt
winds in real time.

Hurricane.
boundary-layer
winds

Hourly surface wind
field with 1-dlegree
by 1-degree
resolution in 2
locations in Taiwan
(Taipei and
Keelung)

Data
source

Australian
Govemment, Bureau
of Meteorology
websie

Bureau of
Meteorology's
National Cimate
Center - Australia

Navy Operational
Global Atmospheric
Prediction System
and the Tropical
Rainfall Measuring
Mission (TRMM)
Microwave Imager
(T from 2004 to
2013

IBTACS, tropical
cloud cluster (TCC)
and ERAInterim
(1979-2014)

WindSat satelite data
(wind and rainfal)
were used to extract
the training/testing
data from 2005 to
2009 over the
western North Pacific
Huricane databasein
the North Atiantic
basin and Hadley
Centre Sea lce and
Sea Surface
Temperature dataset

Mesoscale convective:
system (MCS)
dataset, IBTrACS,
and ERA-Interim
(1985-2008)

WindSat satelite
measurements from
2005102009 over the
western North Paciic
basin

Joint Typhoon
Waming Center
UTWC) from 1971 to
2002

20 years of historical
tack data from the
Jwe

National Oceanic and
Atmospheric
Administration

(NOAR) from 1900 to
2013

JTWC between 1985
and 2013 inthe South
Indian ocean

NOAA database

Korean
Meteorological
Administration and
the ERA-interim
databases with a total
of76 typhoons that it
the Korean peninsuia
from 1993 til 2017
Community
Atmospheric Model
V5 from 199510 2015

TCs data in both
hemispheres from
NOAA, IBTrACS and
ERA-Interim since
1979 (more than
3,000 storms with 6-h
time steps)

National Genters for
Environmental
Prediction/National
Center for
Atmospheric
Research (NCEP/
NCAR) reanalysis
from 1983 to 1996
Indian Meteorological
Department from
2005 0 2010

Tropical cyclone
Nelgae data from 04/
08/2017 il 06/08/
2017 retrieved from
No. 4 meteorological
satelite (FY-4) of
China

Western North Pacific
typhoon database
from the Chinese
Meteorological
Administration and
the Shanghai
Typhoon Institute.
from 1949 tl 2016
International Best
Track Archive for
Cimate Stewardship
(IBTrACS) and ERA-
Interim reanalysis

Satelite outputs from
2003l 2016 from the
Meteorological
Satelite Research
Cooperation Institute
and JWTG

USS. Naval research
laboratory and the
NOAA Geostationary
Operational
Environmental
Satelite from 2000
through 2019

QuSCAT mission
and H'Wind between
1999 and 2009 for all
basins (giobally)

Central Weather
Bureau of Taiwan
from 2000 tl 2012
(84 typhoon events)

National Satelite
Meteorological Centre
of China and the
‘Shanghai Typhoon
Institute from 2005 to
2008

HWind snapshots

Central Weather
Bureau of Taiwan and
Weather Research
and Forecasting (47
typhoons from 2000
1l 2017)

Performance
metric

RMSE, MAE, R

MAE

Prediction
accuracy =
(correctly classified
‘samples/number
of samples in the
whole dataset)

pvalue and area
under the receiver

operating
characteristic
(ROC) curve

Prediction
accuracy =
(correctly classified
samples/number
of samples in the
whole dataset)

RMSE.

F1-score accuracy

Fi-score accuracy
and PSS score

MAE

Correlation
coefficient

MAE

RMSE

MSE, RMSE

Average absolute
error

RMSE.

RMSE, MAE

Average error

RMSE, MAE

Kappa coefficient
and overall
accuracy (%)

Average forecast
error

MAE

RMSE.

RMSE

MAE

RMSE

MAE

RMSE

RMSE

Remarks

SVR outperformed
the MLR model - The
prediction accuracy
was further improved
by coupling the SVR
model with Quasi-
Biennial Oscilation
SVM outperformed
LDA model. Overal
prediction
performance for both
models is low

Satisfactory results
were oblained based
on the G4.5 algorithm

Top ranked varizbles
include the relative
vorticity (925 hPa),
potential vorticity
(600 hPa) and vertical
wind shear
(200-700 hPa)

Good simulation
results were obtained

The SVR model gave
enhanced prediction
compared to an
operational statistical
model that was
developed by
Colorado State
Universty. The
polynomial kernel
gave a siightly
improved simulation
resuits compared to
the RBF kenel
AdaBoost algorithm
was the best
dlassifier. Both the
genesis potental
index and the low-
level vortcity were the
most dominant
predictors for the
tropical cycione
genesis

Best performance
from the SVM mode
with a radial basis
function kernel

Acceptable acouracy

Good simulation
results

Acceptable acouracy

MNN-based model
outperformed the
three recurrent neural
networks

The grid-based
agorithm
outperformed the
sparse RNN

Acceptable acouracy

The error increased
with the increasing
leading time

‘The proposed model
outperformed the
statistical CLPS
model

The ANN-based
model outperformed
THE MLR model

ANN model provided
the best prediction
results

The three models
provided comparable
dlassification results

Performance
comparable to the
Japanese
Meteorological
Agency-Global
Spectral model

Good simulation
results comparable to
other operational
forecast models (e.g..
Hurricane Weather
and Research
Forecasting Model)

Good simulation
results

Acceptable
simulation results

Good simulation
results for the surface
wind speed were
obtained

~Pearson VIl SVR
model is the most
accurate technique
among al other
tested kenek-based
SVM models
~Resolution not
discussed

LssVM
outperformed all
other models

Good simulation
results were obtained

Good consistency
between the

simulated and WRF
results
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Application

Forecasting
mean hourly
wind speed
time series
Sfetsos (2000)

Forecasting
daily, weekly
and monthly
mean wind
speeds More
and Deo
(2003)
Prediction of
the next daily
mean wind
speed
Mohandes

et al. (2004)
Long-term
wind speed
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prediction of
the wind gusts
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et al. (2020)

Prediction of
mean wind
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et al. (2020)

ML model

LNN-ANN-NLN-
RBF-ANFIS-ERNN

ANN-JRNN

ANN-SVM

IIRANN, DRNN,
LAFMN

ANFIS

ANN, RBF, ALEN

SVM (radial basis
kemel)

ANN, SVM (RBF
kemnel)

ANN, GRNN

Hybrid model
(wavelet packet
decomposition
[WPD] + density-
based spatial
clustering of
applications with
noise [DBSCAN] +
ENN), WPD-
ENN, ENN

ANN, SVR, FIS,
ANFIS, GMDH

ANN, SVR (with
radial basis

function), ANFIS

ESN, ANFIS,
NESN-P with
polynomial
functions and
NESN-MP with
multivariable
polynomials
Ensermble of 3
machines models
(RF, LSTM and
GPR), RF, LSTM
and GBRT

MFQL, SVR, KNN

LSSVM optimized
with four
algorithms
Backtracking
search, genetic
algorithm, particle
swarm, and
improved feature
laatiany

Trai scheme

Gradient descent,
Levenberg Marquardt

Back-propagation,
cascade correlation

Levenberg-Marquardt

Global recursive
prediction error

least-squares estimator
and the gradient descent

Levenberg-Marquardt

Gradient descent

Missing

Bayesian Regularization,
Scaled Conjugate
Gradient, BFGS Quasi-
Newton, Levenberg
Marquardt and Reslient
backpropagation

Levenberg Marquardt,
Conjugate Gradient and
Bayesian Regularization

Adaptive momentum
estimation

Input data

Past mean hourly
data (six past
measurements)

Past dally-,
weekly- and

monthly averaged
mean wind speed

mean daily wind
speed of previous
days (ranging
between 1and 11)

3-days forecast of
wind speed and
direction provided
by meteorological
models at four
nearby sites

410 6 past mean
wind speeds and
direction with a

2.5 min time step

Past hourly mean
wind speed
observations (up
to 8 observations)

Past hourly mean
wind speed and
direction in the site
(up to 10 past
samples)

Wind direction at
past minutes

10 variables (e.g.,
latitude, longitude,
earth temperature,
atmospheric
pressure)

Past values of the
wind speeds
determined based
on the gradient
boosted
regression trees

Past values of
wind speed
(number not
mentioned)

Pressure, local
time, temperature
and relative
humidity

Past values of
wind speed and
direction at time
interval of 10 min
(the exact number
was not speciied)

Past values of
wind speed (the
number was
determined based
on the partial
autocorrelation
function)

7 intrinsic mode
functions obtained
from past wind
speed values
using empirical
model
decomposition
technique

Past values of
mean (hourly) wind
speed (50 values)

Output data

Next mean hourly
wind speed

Next daily, weekly
and monthly
averaged mean

wind speeds

Next daly mean
wind speed

Hourly mean wind
speed and power
for up to 72+

Next mean wind
speed and
direction at
25min

Next hourly mean
wind speed

Next hourly mean
wind speed and
direction for a
lead time up
to10h

Next 1-2 min
wind direction

Monthly averaged
mean wind speed

Mean wind speed
forupto 1 day
with a 10-min
time step

Mean wind speed
for approximately
361-time steps
ahead with
several time
intervals (e.g., 5-
min and 30-min)

Mean wind
speed, direction
and power (in 5-
min, 10-min, 30-
min and 1-h
intervals) for up
to24h

Mean wind speed
and direction at
10 min intervals
for up to 1 day
and 6 days,
respectively

Wind gusts for up
to72h

1-min ahead
mean wind speed

1-h mean wind
speed (next
1-481)

Data source Performance
metric

Field RMS
measurements at

the Odigitria of the

Greek island of

Grete on March

1996 (total of
744 )

Field Coefiicient of
measurements  correlation

from 1989 to 2000
in two locations in
Mumbai, India

12years of mean  MSE
daily wind speed in
Medina city, Saudi

Avabia

Atmospheric MAE-RMS
modeiing system

SKIRON and wind

turbines data from

April 1st, 2000 until

31 December

2000 in Rokas'

wind park on the

Greek isiand of

Crete

21-month time Mean absolute
series of 25min  percentage error
mean wind from

Hydro Tasmania at

Tasmarnia,

Australia

Anemometers Mean absolute
data for 1 year error and RMSE

(2002) in two sites
in North Dakota

Sidi Daoud wind RMSE and MAE
farm in Tunisia
from 2010 to 2011

34 days data from Mean absolute
the 34th America’s  error and mean
Cup in 2013, San effectiveness
Francisco index

Dataretrievedfrom  MSE and RMSE
NASA

corresponding to

various cities in

India

Data from several  MAE and RMSE
sitesin the Sichuan

Province, China

over 16 days with

an average wind

speed of 10 min

Osorio wind farm ~ RMSE, MSE
in the south of

Brazil
Wind farm in RMSE
Bushehr, Iran

Several Nevada RMSE
weather

information

stations in Reno,

Nevada

Sutong Cable- RMSE, MAE and
Stayed Bridge i the mean
Jiangsu province  absolute percent
of China (sampling ~ error (MAPE)
frequency of 1 Hz

with a total of a

total of 720 h)

National Institute of - Mean Absolute
Wind Energy and  Percentage Error
Wind Resource  (MAPE)
Assessment data

portal in ten Indian

cities)

The training data  RMSE, MAE,

were sampled mean absolute
every 1-h foma  percentie error
wind farm in (MAPE),
Jinzhou, China ~ R-square and
reliability

Remarks

NLN with logic
rule outperformed
all other models

Best performance
by AN trained
with the cascade
correlation

SVM model
outperformed the
ANN model

Similar
performance
results for the
three models

ANFIS model
outperformed a
locally developed
persistence
model

ANN
outperformed
other models

Satisfactory
results

SVM model

outperformed the
ANN model

GRNN
outperformed the
ANN model

WPD-DBSCAN-
ENN
outperformed all
other models

SVR, GMDH and
ANFIS models
preformed the
best. The
prediction
accuracy of
ANFIS was
increased when
coupled with
particle swarm
optimization
(PSO) and genetic
agorithm (GA).
The Levenberg
Marquardt
performed the
best

Levenberg
Marquardt and
Bayesian
Regularization
algorithms gave
the best
performance

for ANN.

SVR was the best
to simulate the
wind speed. Low
prediction results
were obtained by
the 3 models for
the wind direction
The best
prediction results
given by the
NESN-MP

The ensemble
model achieves
the highest
accuracy

MFQL
outperformed the
other models

LSSVM optimized
with the
backtracking
search
optimization
agorithm
outperformed all
other models
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