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Digital transformation of concrete technology is one of the current “hot topics” tackled by
both academia and industry. The final goal is to fully integrate the already existing advanced
concrete technologies with novel sensors, virtual reality, or Internet of things to create self-
learning and highly automated platforms controlling design, production, and long-term
usage and maintenance of concrete and concrete structures. The digital transformation
should ultimately enhance sustainability, elongate service life, and increase technological
and cost efficiencies. This review article focuses on up-to-date developments. It explores
current pathways and directions seen in research and industrial practices. It indicates
benefits, challenges, and possible opportunities related to the digital transformation of
concrete technology.
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INTRODUCTION

Digitization refers to transfer of data stored in traditional documents to binary forms, while digital
transformation is defined as a process of changing existing methods and models by utilizing latest IT
technologies to produce real-time information for fast decision making (Parusheva, 2019; Zeltser
et al., 2019; Daniotti et al., 2020; Papadonikolaki et al., 2020). For cement and concrete industries, it
facilitates the process of data acquisition, their analysis, and utilization (Walther, 2018). Production
of concrete starts with material characterization, mix design, and actual mixing followed by its
transportation to a building site (Tomek, 2017). A significant amount of data created can be
digitalized and used to control that process (Rasmussen and Beliatis, 2019). The digital
transformation is expected to produce a more efficient process, improving the working
environment and sustainability of concrete products (Phang et al., 2020). However, a number of
challenges still need to be addressed, for example, methods for reliable prediction of early-age
properties, modeling of hardening processes, and development of strength or durability (Wangler
et al., 2019).

Concrete structures can be cast directly on a building site or prefabricated in advanced in a
factory. The cast-on-site technique is preferable for monolithic, large-size structures including
foundations, beams, columns, slabs, retaining walls, tunnels, and bridges (Liu et al., 2020).
Concrete is transported from a ready-mix plant to the building site and then placed using
pumps or dumpers. In the case of precast technology, concrete elements are cast in production
halls and after achieving sufficient strength, transported to the building site. The cast-in-place
technology offers more flexibility and adaptability (Simonsson and Emborg, 2009). Weakness
includes sensitivity to weather, that is, extreme temperatures, wind, and precipitation. The current
industrialization degree of concrete technology is relatively high, but it still requires several
improvements in the quality of work, optimization of the process, and enhanced sustainability. It is
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foreseen that there is a possibility to expedite the process using
the latest digitalization techniques and technological
advancements (Wangler et al., 2016). Self-compacting
concrete (SCC) is increasingly used, especially for the cast-in-
place technique, which, due to the exclusion of vibration, offers
a faster construction process and better working conditions
(Ouchi, 2000). The main advantages include high casting rate
and passability in congested reinforcement (De Schutter et al.,
2008). The main challenge while using SCC is a need to use a
new casting technology (Ferrara et al., 2007).

The digitalization process starts by merging material
properties and construction techniques into an integrated
digital environment. It includes digitalizing of fresh concrete
properties, hardening processes, strength development, and
durability using data collected from either manual
measurements or installed sensors. The integration of
measured parameters and digital technology enables to
enhance the quality of concrete. However, it requires a
strengthened collaboration between research and industry
(Courard et al., 2014). Data collected from sensors can be
integrated into a monitoring system, building information
models, and controlling software. This process is expected to
introduce a safer and error-free process and improve the
productivity. The site supervisor has real-time access to data,
which should facilitate the decision-making process related to, for
example, the optimum casting speed, safe demolding time, or the
required curing routine.

Research has been on going in the field of digital concrete,
which refers to the digital fabrication of concrete, for example, 3D
printing and robotics in digital fabrication (Wangler et al., 2016;
Wangler et al., 2019; Van Damme, 2020). Those studies have
explored the methods of fabrication and construction. The basic
properties, mix design parameters, and their associated
information need to be addressed. Commonly, these data are
obtained in the laboratory, and the question remains open about
the possibility of transforming the information acquisition into a
digital process. This article reviews previous research dealing with
digital transformation in concrete technology, and it focuses on
latest developments with a special emphasis on disadvantages and
limitations. It also indicates areas that need further
improvements. This article is part of a project where attempts
are made to develop a system that can help integrate all the
available technologies into one smart decision-making system
that enables engineers to foresee and expect the outcome of the
mix design based on the inputs of material properties either
physically or chemically related.

MATERIAL CHARACTERIZATIONS AND
MIX DESIGN

Advanced technologies such as virtual reality, 3D printing, Internet
of things, smart sensors, and autonomous robots and vehicles have
already been used in various industries. However, the concrete
industry is clearly behind due to the lack of acceptance, related cost,
current regulations, and new required expertise. Concrete itself has
gone a tremendous development path over the past few decades.

Cement has been partially or fully replaced with several types of by-
products to enhance some properties and to increase its
sustainability. At the same time, casting technology has
remained rather unchanged (Ferrara et al., 2007).

Concrete consists of binder, coarse and fine aggregate, water,
admixtures, and various types of dry and wet additives. These
materials are characterized by chemical composition, surface area,
shape, texture, and amount of intermixed fine and coarse aggregates.
These properties affect the mix design and behavior of concrete
during mixing and casting and later determine hardened state
properties and, often, also durability (Polat, 2013). The following
sections will review currently used methods which are/or could be
used to digitalize the properties of concrete ingredients.

Aggregates
Aggregates used in concrete include gravel, crushed stone, sand,
slag, recycled concrete, and geosynthetic aggregates. They occupy
up of 70–80 vol.% of concrete mix and affect most of its physical
and mechanical properties. Aggregates should be clean, hard, and
free of chemical and biological contaminants (Babu, 2014). Their
quality and properties are quantified by several indicators,
including shape, texture, air content, particle size distribution,
water content, specific gravity, or density. Some of these
indicators have already been successfully digitalized. For
example, volume, angularity, and gradation have been
determined using analysis of images obtained from video
cameras. The obtained results have been in good agreement
with manual measurements (Rao and Tutumluer, 2000). 3D
mathematical analysis of particle shape has been successfully
combined with X-ray tomography and spherical harmonics to
determine particle shapes (Garboczi, 2002). Others used the same
technique but supplemented it with a virtual reality modeling
language. This approach enabled to obtain 3D images of
aggregate particles (Erdogan et al., 2006). The surface texture
has been determined using imaging techniques coupled with
wavelet analysis of grey images. Unfortunately, results were
strongly affected by the angularity and form of aggregates (Al-
Rousan et al., 2007). The shape index and morphological features
of coarse aggregates have been assessed by a digital processing
approach, which established a correlation between the shape of
aggregate and mechanical properties of asphalt concrete (Arasan
et al., 2011). The shape of aggregates affected the required cement
content, as well as the mechanical properties and durability of the
produced concrete. Content of air voids in aggregates can be
directly linked to the observed water demand. It has been
determined by a feed-forward neural network with the error
back-propagation algorithm using artificial neural networks
(ANNs) and multiple linear regression with specific toolkits
such as NTR2003 and WEKA (Zavrtanik et al., 2016).
Digitalization of other properties, that is, water content,
specific gravity, and density, appears to be still at a very early
stage. A summary of research related to the digitalization of
aggregate properties is shown in Table 1.

Cement
Selection of cement type and its amount must ensure achieving the
targeted fresh and hardened state properties. The decision-making
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process is usually strongly regulated and depends, for example, on
the exposure conditions or planned service life of the structure.
Potentially, it could be automated through digitalization by
utilizing research data collected over the last few decades
combined with regulations and practical observations. As it will
be shown later, most methods used in the current practice provide
digital data which could be implemented into IT platforms. For
example, Hughes et al. (1995) used Fourier-transform infrared
(FTIR) spectroscopy to determine the cement composition, while
Hamza et al. (2017) established the impact of the cement type on
the resistance of concrete to sulfate attack. Suryani et al. (2020)
determined the structural and optical properties of cement with the
aid of X-ray diffraction (XRD). It included crystal size, microstrain,
energy deformation, and stress.

The specific surface area of cement is a crucial parameter when
selecting the cement type. Larger surface enhances the hydration
process (Neville and Brooks, 1987). This parameter has been
determined by various techniques, for example, neutron
scattering, gas sorption, small-angle scattering, nuclear
magnetic resonance imaging, X-ray scattering, and mercury
intrusion porosimetry (Winslow and Diamond, 1974; Olek
et al., 1990; Thomas et al., 1998). Unfortunately, none is
digitalized and require additional manual work to transform
collected data into a usable digital format (Thomas et al.,
1999). Ferraris and Garboczi (2013) measured the particle size
and specific surface area by laser diffraction X-ray computed
microtomography, which enabled to determine particles as small

as 45 μm. Another method is laser diffraction spectrometry,
which determines the particle size by spreading the light
around the particle’s contours (Hackley, 2004). It is able to
detect particles having diameters in the range between 10 μm
and 1 mm (Bowen, 2002). Erdogan (2010) used the X-ray
microcomputed tomography technique incorporated with
spherical harmonic analysis to determine the 3D shape of
cement particles for characterizing cement, based on particle
shape and chemical composition. In that case, the used spherical
harmonic analysis enabled to determine the particle length,
width, and thickness. The average shape of cement particles
has been correlated with the volume fraction of belite and
alite. A summary of digitalization of cement properties is
given in Table 2.

Concrete Mix Design
The concrete mix design establishes the proportions and type of
its constituents, that is, binder or binders, aggregates, fillers,
water, chemical additives, admixtures, and possible fibers. The
concrete mix design along with other factors, especially including,
casting technology, curing procedure, and environmental
conditions, determines the ultimate workability, strength, or
durability of concrete. The concept of digitalizing the concrete
mix design has been used for a relatively long time already. For
example, the water-to-cement ratio has been determined using a
near-field microwave technique with an open-ended rectangular
waveguide probe radiating into OPC materials at 5 GHz

TABLE 1 | Digitalization of aggregate properties.

Targeted properties Technology/method Tool(s) References

Volume, angularity, and
gradation

Image-analysis approach Video cameras Rao and Tutumluer
(2000)

Particle shape 3D mathematical analysis of particle shape X-ray tomography and spherical
harmonics

Garboczi (2002)

Aggregate shape 3D image analysis X-ray computed tomography and
spherical harmonic analysis

Erdogan et al. (2006)

Aggregate shape and texture Imaging techniques Wavelet analysis of grey images Al-Rousan et al.
(2007)

Shape index and
morphology

Digital image processing ImageJ Java Arasan et al. (2011)

Air void content in the
aggregate mixture

Feed-forward neural networks with error back-propagation algorithm
using ANNs and multiple linear regression

NTR2003 and WEKA toolkit Zavrtanik et al.
(2016)

TABLE 2 | Digitalization of cement properties.

Targeted properties Method Tool(s) References

Cement composition A diffuse reflectance mid-infrared Fourier-transform
spectroscopy (DRIFTS)

Fourier-transform infrared (FTIR)
spectroscopy

Hughes et al. (1995)

Particle size distribution Laser diffraction and photon correlation spectroscopy (PCS) Photocentrifuge and X-ray disc centrifuge Bowen (2002)
Particle size By spreading the light around the particle’s contours Laser diffraction spectrometry Hackley (2004)
Particle shape and chemical
composition

Micrometer-scale 3D shape X-ray microcomputed tomography Erdogan (2010)

Particle size and specific surface
area

Brunauer–Emmett–Teller (BET) Laser diffraction X-ray computed
microtomography

Ferraris and Garboczi
(2013)

Structural and optical properties of
cement

Size and strain plot (SSP) methods X-ray diffraction (XRD) and (FTIR)
spectroscopy

Suryani et al. (2020)
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(G-band) and 10 GHz (X-band) (Bois et al., 1998). The same
concept has been also applied to determine the coarse aggregate-
to-cement (ca/c) ratio (Bois et al., 2000). A real-time, on-site
evaluation of the water-to-cement ratio (w/c) used microwave
non-destructive testing (Mubarak et al., 2001). A monopole
antenna probe, operating at 3 GHz with a reflectometer, has
been also used to efficiently determine the w/c ratio
(Providakis et al., 2011). The concrete mix design has been
also optimized by artificial neural networks (ANNs) using
various input data, for example, workability or compressive
strength (Ji-Zong et al., 1999; Yeh, 1999; Ji et al., 2006;
Ziolkowski and Niedostatkiewicz, 2019). The method enabled
estimation of dosage of materials, choice of the type of cement,
and effects of chemical and mineral admixtures (Ji-Zong et al.,
1999). The same concept but with different design algorithms has
been used to estimate nominal and equivalent w/c ratios, fly ash
(FA)-to-binder ratio, and aggregate size (Ji et al., 2006). Others
used a set of concrete recipes to optimize the mix design based on
maximum aggregate size, slump, fineness modulus, and
compressive strength by incorporating an adaptive neural
fuzzy inference system (Neshat, 2012). Recently, a machine
learning algorithm has been used to optimize the mix
(Ziolkowski and Niedostatkiewicz, 2019). Concrete mixes for
3D printing were designed to obtain the required extrudability,
buildability, workability, and open time (Lediga and Kruger,
2017). A summary of digitalized methods and tools used in
the concrete mix design is shown in Table 3.

CONCRETE PROPERTIES

Concrete Temperature
The temperature of fresh concrete and the ambient temperature
are very important parameters while designing concrete mix

composition, or planning, transporting, casting, and curing
(Shoukry et al., 2011). Generally, high temperature accelerates
the hydration process, which might require addition of retarders,
decreasing the amount of cement, or addition of certain
secondary cementitious materials (SCMs) (Gamil et al., 2019).
On the contrary, a lower temperature slows down the hydration
process and delays strength development (Ma et al., 2015). To
counteract these effects, accelerators can be used in combination
with, for example, rapid hardening cement and heat curing
(Alhozaimy, 2009; Fang et al., 2018). Most standards limit the
maximum concrete temperature to prevent cracking, lower
strength, and delayed ettringite formation (Hale et al., 2005).

Digitalization of concrete temperature measurement is rather
advanced (Wong et al., 2007; Norris et al., 2008; Barroca et al.,
2013; Chen andWu, 2015; Kim et al., 2015; Liu et al., 2017). State-
of-the-art technologies with embedded sensors have been used.
One common technology used to monitor the temperature is
thermal imaging using infrared thermography. This technology is
non-destructive, but it is applicable only to concrete not exposed
to sunlight (Tran et al., 2017). Other techniques include, for
example, fiber Bragg grating sensors, which are used to monitor
temperature and shrinkage at the same time (Wong et al., 2007).
Embedded nanotechnology/microelectromechanical systems
(MEMS) sensors have been used to monitor moisture and
temperature of concrete at the same time. Unfortunately,
issues with repeatability and signal processing have been faced
(Norris et al., 2008). Embedded thermal sensors have been used
for temperature monitoring, but the thermography sensors must
be in visual contact with the monitored concrete. It might be
difficult to achieve due to, for example, form covers or other
materials present on the concrete surface (Azenha et al., 2011). To
overcome this drawback, automatic wireless sensors were used,
but a 5 °C discrepancy was observed between actual and
experimental values (Barroca et al., 2013). Another example is

TABLE 3 | Digitalization of the mix design.

Targeted parameters Technology/method Tool(s) References

Water-to-cement ratio and cure state Near-field microwave techniques Open-ended rectangular waveguide probe radiating into OPC
materials at 5 GHz (G-band) and 10 GHz (X-band)

Bois et al. (1998)

High-performance concrete ANNs Non-linear programming Yeh (1999)
Dosage of materials, cement grade,
and the effect of admixtures

ANNs Knowledge-acquisition system, Visual C++ Ji-Zong et al. (1999)

Coarse aggregate-to-cement (ca/c)
ratio

Non-destructive testing
technique

Microwave near-field reflection property analysis and open-ended
rectangular waveguide probes

Bois et al. (2000)

Water-to-cement ration (w/c) Real-time and on-site evaluation Microwave non-destructive testing and monopole antenna probe Mubarak et al. (2001)
Nominal and equivalent w/c ration,
FA-to-binder ration, and aggregate
size

ANNs Design algorithm Ji et al. (2006)

Water-to-cement ratio Real-time and on-site microwave
non-destructive testing

Monopole antenna probe; the probe operates with 3 GHz with a
reflectometer to determine the w/c ratio

Providakis et al. (2011)

Optimizing mix design Adaptive neural fuzzy inference
systems and fuzzy inference
systems

Fuzzy expert system Neshat (2012)

OPC, water, and fine and coarse
aggregates

Simplex and modified regression
theories

Visual basic and computer-aided design Onwuka (2013)

Optimizing mix design 3D printing Laboratory-based optimization Lediga and Kruger (2017)
Optimizing mix design Machine learning techniques

using ANNs
Quasi-Newton training direction calculated using the
Broyden–Fletcher–Goldfarb–Shanno algorithm

Ziolkowski and
Niedostatkiewicz (2019)
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the so-called passive wireless surface acoustic wave (SAW) sensor
combined with orthogonal frequency coding (OFC). The main
constraints were related to the effect of propagation loss and
isotropic radiation loss (Kim et al., 2015). Sensors utilizing passive
radio frequency identification (RFID) and radio frequency
integrated circuit (RFIC) (Chen and Wu, 2015; Liu et al.,
2017) enabled short-range remote sensing and achieved the
detection resolution of 0.25 °C (Chen and Wu, 2015; Liu et al.,
2017). Their main shortcoming was the signal instability and a
lack of electronic protection (Chang and Hung, 2012). A
summary of methods and tool for digitalization of concrete
temperature monitoring is given in Table 4.

Workability
Workability is an essential technological property of concrete
controlling the casting process and affecting the quality of
produced concrete elements or structures. It can be
measured, for example, by slump or slump flow combined
with T50 time in the case of self-compacting concrete (Fares,
2015). A number of digitalizing solutions have been introduced,
and artificial neural networks (ANNs) is one the examples (Bai,
2003; Yeh, 2006a; Oztas, 2006; Yeh, 2009; Kim and Park, 2018).
They produce a more accurate prediction of workability than

the non-linear regression analysis (Yeh, 2006a), and it has the
ability to model the slump for any mix design (Yeh, 2009).
Another example method is based on 3D depth sensors (Kim
and Park, 2018). Rheological properties of concrete described
by the yield stress and the plastic viscosity are crucial for
designing self-compacting concrete mixes (Wallevik, 2003;
Roussel, 2011) (Ferraris et al., 2012). An effective device
called 4C-Rheometer was developed by the Danish
Technological Institute (Danish Technological Institute and
C.C, 2020). It enabled to determine rheology based on
automated measurements of slump flow and flow time. A
summary of digitalization of workability measurements is
given in Table 5.

Setting Time and Hydration Rate
Initial and final setting times of cement are used to monitor the
hardening rate. The initial setting time indicates how long
concrete mix maintains its plasticity. It indicates the
allowable time to cast the concrete. The final setting time
indicates the time after which concrete loses its plasticity,
and it is especially useful for planning surface finishing
processes. Both times are related to the hydration process,
which can be monitored using calorimetry and measuring

TABLE 4 | Digital transformation of concrete temperature monitoring.

Parameters Concrete type Technology/method Tool(s) References

Shrinkage and
temperature

Reactive powder
concrete

Sensors Fiber Bragg grating sensors Wong et al. (2007)

Temperature and
moisture monitoring

Normal concrete Sensors MEMS sensors Norris et al. (2008)

Temperature Normal concrete Thermography Embedded thermal sensors Azenha et al.
(2011)

Temperature and
humidity

Normal concrete Radio frequency integrated circuit
(RFIC) and sensor technology

A Pt-100 resistance thermometer and RFIC transmitter Chang and Hung
(2012)

Temperature and
humidity

Normal concrete Automatic wireless sensor Negative temperature coefficient (NTC) thermistor and an
IRIS mote to create IEEE 802.15.4 network

Barroca et al.
(2013)

Temperature Normal concrete Sensors Passive wireless surface acoustic wave (SAW) sensor and
orthogonal frequency coding (OFC)

Kim et al. (2015)

Temperature Normal concrete Sensors A passive RFID sensor tag Chen and Wu
(2015)

Temperature Normal concrete Sensors Embedded passive radio frequency identification (RFID)
sensor tag

Liu et al. (2017)

TABLE 5 | Digital transformation of workability measurement in concrete.

Focused parameters Concrete type Method/technology Tools References(s)

Workability SCC ANNS Linear regression Bai (2003)
Slump Fly ash and slag

concrete (FSC)
ANNS Simplex-centroid

design
Yeh (2006a)

Slump and compressive
strength

High strength
concrete

ANN MATLAB Oztas (2006)

Modeling of slump loss Normal concrete ANNS Root-mean-square
(RMS) deviation

Yeh (2009)

Slump Normal concrete 4D slump test using digital measurements and data
processing with 3D depth sensor

Kinect sensor Kim and Park (2018)

Slump flow, t50, yield stress,
and plastic viscosity

SCC Automated measurements 4C-rheometer Danish Technological Institute
and C.C (2020)
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the evolved heat (Mostafa and Brown, 2005; Xu, 2011; Gawlicki
et al., 2010). Parameters affecting the degree of cement
hydration are summarized in Figure 1 (Xu et al., 2010).

Several attempts were made to digitalize the assessment of the
setting time. For example, Rizzo et al. (2014) used a non-
destructive setup measuring strength development by sensors
detecting the propagation of highly non-linear solitary waves
(HNSWs). The waves were reflected at the sensor interface and
transmitted to the monitored concrete. The transmission time
and the reflection from the interface were measured and
compared with the hydration time. These parameters were
then correlated with initial and final setting times measured
by using the Vicat apparatus. The hydration rate has been also
monitored using the Fabry–Perot fiber optic temperature
sensor. The concrete temperature depended on the water-
to-cement ratio (Zou et al., 2012). Yet another effective
method to digitalize the hydration rate is the monitoring of
the crack formation (Yang et al., 2010). The hydration degree
was also assessed by the thermogravimetric analysis
(Deboucha et al., 2017). The method estimated the ultimate
amount of bound water, which was verified by isothermal
calorimetry combined with the assessment of compressive
strength. The differential thermal and thermogravimetric
analysis was also used to estimate the degree of hydration.
In that case, the degree of hydration was calculated using
experimental results. A good agreement between results based
on differential thermal and thermogravimetric analysis was
observed (Monteagudo et al., 2014).

The hydration process can also be measured using other
methods, including X-ray diffraction (XRD), scanning electron
microscopy (SEM), thermogravimetric analysis (TGA), or non-
contact impedance measurement (NCIM) (Tang et al., 2016). For
example, XRD was combined with calorimetry to monitor the
hydration of cement blended with fly ash for the first 44 h. It
enabled estimating the effects of fly ash (FA) (Dittrich et al.,
2014).

Concrete Maturity
Maturity is an indicator used to predict strength development
depending on the curing temperature (Chengju, 1989;
McCullough and Rasmussen, 1999; Topçu and Toprak, 2005;
Zhang et al., 2008; Yikici and Chen, 2015). The required (Ballim
and Graham, 2009; Lee and Hover, 2015) systems based on that
concept have been developed. For example, high-performance
concrete paving (HIPERPAV) software utilized temperature data
and the maturity concept to estimate the concrete strength at an
early age (Ruiz, 2001). Another system developed by Giatec
Scientific Inc.is based on wireless temperature sensors
integrated with a special smartphone application. It enables
live monitoring, but the maximum allowable distance between
the sensor and the monitored concrete surface is limited (De
Carufel, 2018).

Mechanical Properties
The compressive strength of concrete is certainly the most
commonly used indicator of mechanical properties (Damineli
et al., 2010; Yang et al., 2010; Ma et al., 2015). It is usually
determined using a cube compression test, which is a time-
consuming process. Consequently, several models have been
created to reliably predict the strength without the need of
physical testing. The ANNs method, described earlier, has
been used in several studies (Lee, 2003; Kim et al., 2004; Yeh,
2006b; Prasad et al., 2009). It could estimate the compressive
strength taking into account slump, air content, and fly ash
amount as indicators in PreConS (intelligent system of
strength). Unfortunately, the system showed a lower reliability
at variable curing temperatures (Lee, 2003). Others used the ANN
approach but based on different concrete mix proportions (Kim
et al., 2004). In that case, literature data were used to estimate the
compressive strength of SCC and high-performance concrete
(HPC) taking into account the volume of fly ash and the
water-to-cement ratio (Prasad et al., 2009). ANNs were also
combined with the image processing technique and design of

FIGURE 1 | Parameters and process used to characterize cement hydration (summarized from the work of Xu et al., 2010).
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experiments to estimate the strength (Dogan et al., 2017;Waris et al.,
2020). It enabled prediction of various mechanical properties,
including compressive strength, modulus of elasticity, and
maximum deformation, reaching 98.65% accuracy. ANNs were
also efficiently incorporated in an approach based on utilizing
data obtained from ultrasonic pulse velocity (UPV)
measurements (Kewalramani and Gupta, 2006). Similarly, a
neural expert system was used to predict the strength based on
results from testing a total of 864 concrete specimens. The applied
ANN model used a back-propagation learning algorithm, and the
results were compared to a built-in expert system, which enabled
prediction of the strength using rule-based knowledge representation
techniques (Gupta et al., 2006). Both compressive and tensile
strength of high-performance concrete were determined using a

modified firefly algorithm–artificial neural network expert system. A
good correlation between actual and predicted results was achieved
(Bui et al., 2018).

A deep learning prediction method has been applied to predict
the compressive strength of recycled aggregate concrete. The
model used the water-to-cement ratio and the recycled
aggregate replacement percentage as input parameters. Tests
were performed on 74 concrete blocks. The achieved precision
was higher than that of a traditional neural network (Deng et al.,
2018). A machine learning approach has been utilized to predict
the compressive strength at different ages for concrete with high
fly ash content. The water cycle algorithm and the genetic
algorithm showed a good correlation between the variation of
fly ash content and compressive strength (Naseri, 2020).

TABLE 6 | Digital transformation of the compressive strength of concrete.

Focused
mix design component

Method Technology Concrete type References

Varying slump, air content, and fly ash Laboratory test and computational
analysis using ANNS

ANNS Non-conventional
concrete

Lee (2003)

Different sets of concrete mix proportions Laboratory test and computational
analysis using ANNs

ANNS Conventional concrete Kim et al. (2004)

Two different concrete mixtures M20
and M30

Non-destructive testing Ultrasonic pulse velocity (UPV)
and ANNS

Conventional concrete Kewalramani and
Gupta (2006)

Fly ash replacement by 0–50% and the
effect on strength

Laboratory test and analysis using ANNS Design of experiments and
ANNS

Non-conventional
concrete

Yeh (2006b)

Mix proportions Analytical study of existing historical data Adaptive network–fuzzy
inferencing system

Conventional concrete Tesfamariam and
Najjaran (2007)

High-volume fly ash and water-to-cement
ratio

Computational analysis using ANNs and
data from the literature

ANNS SCC and high-
performance
concrete (HPC)

Prasad et al.
(2009)

Early-age concrete strength Electromechanical impedance measuring
chip and piezoelectric transducer installed
in a Teflon-based

Active wireless sensing system Normal concrete Providakis et al.
(2011)

Different concrete classes with different w/
c ratios

Laboratory analysis of samples Image processing (IP) technique Conventional concrete Basyigit et al.
(2012)

w/c ratio, curing, amount of cement,
compression, and additive

Non-destructive testing ANNS and IP Non-conventional
concrete

Dogan et al. (2017)

w/c ratio and the recycled aggregate
replacement percentage

Laboratory analysis of samples and
analytical model development

Convolutional neural network
with deep learning using softmax
regression

Non-conventional
concrete

Deng et al. (2018)

w/c ratio, water absorption, fine aggregate,
natural coarse aggregate, recycled coarse
aggregate, water-to-total material ratio

Analytical study of existing historical data ANN Environmentally friendly
concrete

Naderpour et al.
(2018)

Mix proportions Experimental data ANN with a modified firefly
algorithm (MFA)

High-performance
concrete

Bui et al. (2018)

Cement content, oven dry density, water-
to-binder ratio, and foamed volume

An experimental database and historical
data from the literature

Extreme learning machine model Lightweight foamed
concrete

Yaseen et al.
(2018)

Ultrasonic wave propagation and concrete
maturity

Non-destructive tests Smart temperature (SmartRock)
and PZT (piezoelectric) sensors

Non-conventional
concrete

Tareen et al. (2019)

Cement replacement with fly ash and silica
fume

Samples were crushed, and images were
taken by using a DSLR camera

ANNS and IP Non-conventional
concrete

Waris et al. (2020)

Early age Compressive strength Internet of Things (IoT) Temperature sensors and Wi-Fi
microcontrollers

Conventional concrete John et al. (2020)

Impact of fly ash admixture Machine learning algorithms Genetic engineering
programming and ANNs

Self-compacting
concrete

Song et al. (2021)

Mix design Machine learning Hyperparameter tuning High-performance
concrete (HPC)

Nguyen et al.
(2021)
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Real-time prediction of the compressive strength has been
carried out using data obtained using novel types of sensors
(Providakis et al., 2011; Tareen et al., 2019; John et al., 2020). The
early-age concrete strength was effectively estimated using data
obtained from the active wireless sensing system (John et al.,
2020). It used an electromechanical impedance measuring chip
and a piezoelectric transducer installed in a Teflon-based
(Providakis et al., 2011). Other approaches to predict the early
strength used smart temperature (SmartRock) and PZT
(piezoelectric) sensors with ultrasonic wave propagation
combined with the concrete maturity concept (Tareen et al.,
2019). Recently, the technology of Internet of things (IoT) was
utilized to estimate the compressive strength using temperature
sensors andWi-Fi microcontrollers. The technology enabled real-
time monitoring of strength (John et al., 2020). A summary of
digitalization methods for prediction of compressive strength is
shown in Table 6.

CRACK MONITORING

Crack monitoring remains a major concern in the concrete
industry, and it is crucial for safety and maintenance costs
(Omondi et al., 2016). Concrete cracks are caused by two
effects, that is, extrinsic and intrinsic (Li et al., 2018a). The
former is induced by the application of excessive loads. The
intrinsic effects are related to the hardening process and are
considered as non-structural. Intrinsic cracks are controlled by
the mix design, mixing method, ambient temperature, and
humidity (Bolleni, 2009). Automated crack detection and
monitoring are still in the developmental stage, and various

approaches have been considered. Digital image processing
is certainly one of the most used methods (Dare et al., 2002;
Chen et al., 2006; Nagy, 2014; Gehri et al., 2020). An automated
image processing technique with multitemporal crack
measurements detected the extrinsic cracks in concrete. The
automatic method accurately delineated cracks even when
using poor-quality images (Dare et al., 2002). The same
method was applied to study the relationship between the
crack width and its expansion with multitemporal image
processing. In that case, images were taken every 2 weeks
with a high-resolution scanner. The method enabled
automatic crack tracing and showed a good correlation
between the estimated width and the manual measurement
(Chen et al., 2006). Crack width was also measured by two
emerging technologies, that is, the image digitalizing method
and the digital image processing (DIP) method combined with
a digital microscope that enabled mapping the tortuosity of
cracks (Nagy, 2014). An example process of transforming
crack monitoring data into a digital form is shown in
Figure 2. The process starts by taking an image of the crack
followed by adjustment and cropping of the crack line. In the
next step, pixel coordinates are used to determine the crack
width (Nagy, 2014).

The same technology has been used to monitor the crack
behavior and the crack orientation by extracting images with
the digital image correlation (DIC) method (Gehri et al., 2020).
The obtained results were limited only to closely spaced cracks.
DIC has been also used to study the fracture behavior of
concrete interfaces (Shah and Chandra Kishen, 2011). The
used optical and non-contact measurement tool analyzed the
displacement of the surface using images obtained before and

FIGURE 2 | Example of crack width measurement using digital image processing (Nagy, 2014).
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after the displacement occurred. Another application of DIC
has been monitoring and measuring deformation developing
in compression (Choi and Shah, 1997). Results showed a well-
balanced image rate for both lateral and axial deformation
after the peak load.

More advanced methods were applied to determine the crack
width and length using a digital camera embedded in a calibrated
cylindrical attachment. The crack width could be estimated
reliably, but the obtained results strongly depended on the
operator (Dare et al., 2002).

Other new technologies that have been used to detect and
monitor cracking of concrete include thermography (Bolleni,
2009), combined acoustic emission and digital image
correlation techniques (Omondi et al., 2016), local binarization
algorithm (Li et al., 2018b), and ultrasound-excited
thermography (Jia et al., 2019). Thermography uses a thermal
camera based on the infrared radiation, and it does not require a
direct access to concrete layers to detect the damage (Bolleni,
2009). This method has also been combined with the ultrasound-
excited thermography and enabled detection of microcracks
having width between 0.01 and 0.09 mm (Jia et al., 2019). DIC
has been successfully combined with acoustic emission
technology to detect cracks and determine their orientation
(Omondi et al., 2016). Yet another tested approach is a
technology based on a local binarization. The color of the
image is transferred into a binary image that has two colors,
typically black and white. The image is then processed to detect
the surface and cross-sectional area of present cracks (Li et al.,

2018b). A summary of digitalization of crack formation in
concrete is shown in Table 7.

DISCUSSION

More pieces of information were involved in the production of
concrete, such as raw material characterizations, mix design, and
properties of ready concrete, which are essential parameters used to
envisage the quality of the end-product. Mostly, this information is
acquittedmanually in the laboratory. This process is time consuming,
and technical experts need time to make quick judgments about
modifying the mix design or developing the mix for specific use and
environment condition. To save time and produce favorable and
good-quality concrete, transforming information acquisition to real-
time updates using digital technologies is preferred. The possibility of
digital transformation of these essentials seems to be valid and
possible; perhaps, more integration of different technologies can
work efficiently to develop a system to obtain and communicate
concrete information. The information needed from the source of
raw materials at the quarry sites and the cement production plant by
the engineer who develops the mix is surface area, specific gravity,
shape, gradation, etc. Having this information on time will allow the
mix design developer to adjust the proportions for the specific needs.
Then, during the casting process, engineers need to monitor the
concrete temperature, workability, formwork pressure, which is not
discussed in this article, casting rate, maturity of the concrete to
decide on the formwork removal time, mechanical properties, and

TABLE 7 | Concrete crack monitoring using digital technology.

Targeted properties Type of
cracks

Technology/method Tool(s) References

Crack detection Extrinsic Automated image processing techniques using
multitemporal crack measurements

Automatic crack detection and algorithms (the
route finder and the fly fisher)

Dare et al. (2002)

The relationship between
the crack width and its
expansion

Extrinsic and
intrinsic

Multitemporal image processing where photos
are taken every 2 weeks. A high-resolution
scanner AGFA DUOSCAN T2500 was used to
scan the digital images

Automatic crack tracing using Using an analog
camera (Rolleiflex 6008 Integral) and film
(Kodak Ektachrome 64)

Chen et al. (2006)

Crack width and length Extrinsic Digital camera embedded to a calibrated
cylindrical attachment

Digitales Rissmess-System and a digital crack
monitoring system

Dare et al. (2002)

Defect detection Extrinsic and
intrinsic

Thermography Thermal imaging/infrared thermography (IRT) Bolleni (2009)

Fracture property of
concrete interfaces

Extrinsic Digital image processing Correlation technique Shah and Chandra
Kishen (2011)

Crack width Extrinsic Image digitalizing and digital image processing
(DIP) methods

Digital microscope and digital image
processing

Nagy (2014)

Crack detection and
orientation

Extrinsic and
intrinsic

Combined acoustic emission (ear) and digital
image, Correlation techniques (eye)

Digital image correlation Omondi et al. (2016)

Monitoring autogenous
crack healing

Intrinsic Non-destructive monitoring Near-field microwave reflectometry, X-ray
diffraction, and scanning electron microscopy

Mehdipour et al.
(2018)

Crack detection Extrinsic Local binarization algorithm Gray-scale images Li et al. (2018b)

Microcrack detections Intrinsic Ultrasound-excited thermography Thermal imager Jia et al. (2019)
Crack behavior and
orientation

Extrinsic and
intrinsic

Extraction using an image processing method Digital image correlation (DIC) Gehri et al. (2020)

Crack spacing prediction of
fiber-reinforced concrete

Extrinsic and
intrinsic

Machine learning models Multilayer perceptron (MLP) neural network and
an adaptive neuro-fuzzy inference system

Rezaiee-Pajand et al.
(2021)
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crack monitoring. The question comes about merging all this
information in one complete system using emerged technologies
with embedded sensors and IoT for instantaneous communication,
Figure 3. Extensive research has been carried out, as discussed in this
article, to gradually transform the data acquisition into a digital form.
Still, not all the attempts have been applied at the jobsite. There are
reasons and challenges for low acceptance, and the process involves
consideration of a multitude of stages. The first is the availability and
accessibility of technology. Then, the question comes about the
acceptance and confidence from the side of construction
stakeholders of the technology, and that incurs some cost and
expertise; these restrains need to be addressed through intensive
research and full-scale experiments. It is suggested for future
development to integrate the current technologies and applications
into one integrated system for possible information acquisitions and
instant communication.

CONCLUSION

Digitalization can be defined as converting information into a digital
format and using these data to control, for example, the production
and usage of concrete. Digital transformation enables us to save time
and cost, facilitates access to information, and increases efficiency
and readiness. In the concrete industry, the digital transformation of
concrete properties and production helps to create a more consistent
and faster construction process. Availability of real-time data enables
engineers to follow and control the entire production process more
efficiently and with higher reliability. Access to data is facilitated by,
for example, cloud storage platforms. For example, the construction
process can be accelerated and made safer by more accurate
prediction of the formwork removal timing. In the current era,
more advanced digital concrete has been introduced, and that
technology needs to be coupled with the digitalized process of
concrete data acquisition.

The real-time data assist engineers and managers in the decision-
making process. The decision can be related, for example, to
optimizing the mix design by reducing the usage of raw materials,
thus leading to enhanced sustainability. On the negative side, the
digital transformation, in the case of concrete technology, is a complex

process due to not yet fully understood basic processes controlling, for
example, hydration of Portland cement. An even worse situation is
faced in the case of new ecological binders. Only for these reasons, it is
extremely difficult to develop reliable models. Models which could be
used to design concrete mixes predict strength development, crack
formation, or deterioration due to various types of exposures. Another
set of problems is related to the acceptance of the concrete and
construction industry as well as compliance with current regulations
and standards. There is also a need to ensure that the acquired data are
communicated and stored correctly, analyzed, and interpreted by the
responsible personnel. Other challenges include proper installation of
sensors, data collection and storage devices, and data safety or data
transmission.

There is still a significant amount of work to be completed
before benefits of digitalization could be fully utilized in concrete
technology. Problems to be solved are related not only to basic
phenomena, for example, hydration of cement, but also to full-
scale real-life applications with a number of factors not being
present in laboratory settings.
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