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Tunneling-induced ground surface settlement is associated with many complex
influencing factors. Beyond factors related to tunnel geometry and surrounding
geological conditions, operational factors related to the shield machine are highly
significant because of the complexity of shield-soil interactions. Distinguishing the most
relevant factors can be very difficult, for all factors seem to affect tunneling-induced
settlement to some degree, with none clearly the most influential. In this research, a
machine learning method is adopted to intelligently select features related to tunneling-
induced ground settlement based on measured data and form a robust non-parametric
model with which to make a prediction. The recorded data from a real construction site
were compiled and 12 features related to the operational factors were summarized. Using
the intelligent method, two other features in addition to cover depth–pitching angle and
rolling angle–were distinguished from among the 12 feature candidates as those most
influencing the settlement trough. Another new finding is that advance rate does not
emerge in the top 10 selected models from the observational data used. The generated
non-parametric model was validated by comparing the measured data from the testing
dataset and performance on a new dataset. Sensitivity analysis was conducted to evaluate
the contribution of each factor. According to the results, engineers in general practice
should attend closely to pitching angle during tunnel excavation in soft soil conditions.
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1 INTRODUCTION

Underground tunneling is necessary for transportation in urban areas having a large population, and
the shield tunnel boring machine (TBM) approach has become popular for its construction, having
less effect on the surrounding environment, a relatively high construction rate and so forth. (Verruijt
and Booker, 1996; Zheng et al., 2017; Zhou et al., 2017; Elbaz et al., 20182018; Wu et al., 2018; Chen
et al., 2019; Lin et al., 2021; Yan et al., 2021; Elbaz et al., 2022; Shen et al., 2022). Nevertheless, ground
surface deformations may have destructive effects on adjacent buildings and facilities, raising
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concerns for engineers and researchers (Leca and New, 2007;
Marshall et al., 2010; Zhao et al., 2016; Soga et al., 2017; Zhao
et al., 2017; Zhao et al., 2019a; Lu et al., 2019; Moeinossadat and
Ahangari, 2019). Accordingly, engineers and researchers strive
for reliable estimations of ground surface settlement and have
gone to great lengths to model tunneling-induced deformation,
including through use of empirical and analytical approaches
(Loganathan and Poulos, 1998; Chou and Bobet, 2002; Wu et al.,
2018), numerical methods (Maynar and Rodríguez, 2005;
Paternesi et al., 2017; Yang et al., 2020; Lyu et al., 2022), and
artificial intelligence methods (Santos and Celestino, 2008;
Boubou et al., 2010; Zhang et al., 2019; Hajihassani et al.,
2020; Lin et al., 2021).

Conventional empirical formulas (Attewell and Hurrell,
1985) present only a limited number of parameters for
predicting ground surface settlement. For instance, Peck
(Peck, 1969) adopted an inverse Gaussian probability
distribution curve, which can be defined by a few parameters
to describe the transverse deformation profile of tunneling-
induced ground surface settlement based on field
observations. Loganathan and Poulos (1998), finding these
empirical solutions to lack sufficient influencing factors,
introduced the concept of the “undrained gap parameter”
with which to consider geometry and equivalent 3D elastic
features in their proposed analytical predictions. Because
their calculation method is valid only for homogeneous
purely elastic clay, the observed settlement in uniform clay
has mostly a narrower trough with a larger depth than in the
Loganathan and Poulos method of calculation. In these
analytical methods (Wu et al., 2015; Elbaz et al., 20182018;
Xu and Bezuijen, 2018), each input variable has its own physical
meaning and changes in tunneling-induced settlement are
interpretable. Nevertheless, some ideal assumptions are
inevitable in these analytical methods so as to obtain a closed
form solution, potentially causing deviations from practical field
measurements, as ideal assumptions could eliminate certain
features used to estimate the settlements and also neglect
plastic deformation in the soil. Considering the complexity of
tunneling-induced settlement, some researchers (Ng et al., 2013;
Ibrahim et al., 2015; Soranzo et al., 2015; Zhang et al., 2017;
Alagha and Chapman, 2019; Lin et al., 2019) have turned to
numeric simulations that integrate complicated boundary
conditions, spatial variations of stratigraphy, and elasto-
plastic soil behavior. Ng and Lee (2005) conducted a series of
three-dimensional numerical simulations to evaluate ground
deformations. Huang et al. (2015) used a simplified procedure to
analyze the longitudinal performance of shield tunnels and
investigated spatial variability using the finite element
method. The limitation of numerical methods, however, lies
in the evaluation of the input parameters involved in the
constitutive models (Ninić et al., 2017). Besides,
implementing all operational factors in numeric simulations
simultaneously is challenging (Khisamitov and Meschke, 2018;
Ren et al., 2018; Shen et al., 2019). However, these operational
factors are significant for estimation of tunneling-induced
ground surface settlement. Ren et al. (2018) (Ren et al., 2018)
evaluated the gap area between the double-O-tube (DOT) shield

machine by considering pitching, yawing, and rolling features.
Shen et al. (2019) considered pitching angle and yawing angle to
investigate shield-soil interactions and proposed a prediction
model. Owing to the complexity of shield-soil interactions, data-
driven models were triggered using artificial intelligence
methods (Cho, 2009; Ochmański et al., 2015; Chen et al.,
2016; Pooya Nejad and Jaksa, 2017; Qi and Tang, 2018).
Through the flexibility of machine learning methods, some
scholars have generated various models with which to make
predictions (Shi et al., 1998; Mahdevari et al., 2012; Chen et al.,
2016; Bouayad and Emeriault, 2017; Hajihassani et al., 2019).
Neaupane and Adhikari (2006) adopted a multi-layer
backpropagation neural network to predict tunneling-induced
ground movement. Ahangari et al. (2015) adopted Adaptive
Neuro-Fuzzy Inference System (ANFIS) and Gene Expression
Programming (GEP) methods to establish the relationship
between possible influencing factors and tunneling-induced
settlement.

In these artificial intelligence methods, the features which is to
say influencing factors used to predict ground surface settlement
have been summarized chiefly based on experience, which is
inherently subjective. Suwansawat and Einstein (2006) classified
factors affecting the surface settlement into three categories: The
first is related to tunnel geometry, such as tunnel depth and
tunnel diameter. The second concerns geological conditions, such
as geology at the tunnel crown and invert. The third comprises
shield operation factors, such as face pressure, advance rate,
pitching angle, etc. Their study provided a comprehensive
understanding of possible influencing factors, which they
integrated to form a neural network with which to make
estimations. Ahangari et al. (2015) selected the same five
features adopted in Darabi et al. (2012) to predict tunneling-
induced settlement. Santos and Celestino (2008) found that it was
not possible to establish a clear relationship between advance rate
and surface settlement. Zhang (2019) introduced global
sensitivity analysis for feature selection and evaluated the
importance of each input variable. Introducing irrelevant input
variables can distort the Euclidean distance between different
points and degrade the flexibility of prediction. However, seldom
have researchers extracted significant features and eliminated
irrelevant input candidates so as to obtain a robust
prediction model.

In recent decades, the Bayesian inference method has been
widely applied in various fields of geotechnical engineering, such
as for consolidation (Kelly and Huang, 2015), braced excavation
(Qi and Zhou, 2017), pile engineering (Park et al., 2012), and soil
nailing (Zhou et al., 2013). One merit of this approach lies in
uncertainty quantification; (Phoon and Kulhawy, 1999) an other
in model selection (Gamse et al., 2018; Tan et al., 2018; Zhou
et al., 2018; Jin et al., 2019a; Jin et al., 2019b). These merits allow
the selection of a set of suitable input parameters from designed
candidates. Yuen and Ortiz (2016) proposed a novel algorithm,
Bayesian nonparametric general regression (BNGR), with which
to filter out unrelated input parameters from among possible
candidates. This algorithm reformulated the general regression
neural network under the Bayesian framework. Except for the
ability to reduce unrelated input parameters, this method can
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preclude the effects of the prior distribution for the adopted
regression coefficients–a common challenge in Bayesian
frameworks. It provides the possibility of selecting suitable
input parameters for complex problems involving many
plausible input parameters, such as TBM tunneling projects.

In the present study, 12 possible input parameters potentially
influencing maximum tunneling-induced settlement were
selected based on engineers’ experience and concerns
(Suwansawat and Einstein, 2006; Shen et al., 2019). The
BNGR method was introduced to extract relevant features and
form a data-driven optimal model, which was validated using the
testing database. Sensitivity analysis was conducted to examine
the selected inputs. The proposed model was conducted on the
new introduced dataset and its performance was examined by
comparison with observational measured data. Influencing
factors associated with maximum ground settlement were
analyzed and discussed.

2 METHODOLOGY AND DATABASE

2.1 Bayesian Nonparametric General
Regression Framework
2.1.1 General Regression Neural Network
The GRNN method was proposed by Specht (1991) on the basis
of the probabilistic neural network. This method can establish a
non-linear relationship between inputs in multi-dimensional and
corresponding outputs. Moreover, it is a one-pass learning
algorithm without an iterative process, in contrast to the
backpropagation process seen in other artificial neural network
methods. It has been widely used in geotechnical engineering in
recent decades (Theodosiou, 2011; Doulati Ardejanii et al., 2013;
Zhao et al., 2019b), such as for spatial prediction of soil
contamination (Kanevski, 1999), soil type inference (Kurup
and Griffin, 2006), and static pile capacity prediction (Pal and
Deswal, 2008). Chen et al. (2019) evaluated different machine
learning methods for tunneling-induced settlement and indicated
that the GRNN method outperformances the back-propagation
neural network and radial basis neural network in prediction.

The GRNN method involves an input layer, pattern layer,
weighted layer, and output layer. Supposing that s represents
tunneling-induced maximum ground settlement, w is the
designed inputs, and f (w, s) is the joint probability density
function, the regression of s given w can be written as:

E(s|w) � ∫∞

−∞s · f(w, s)ds∫∞

−∞f(w, s)ds
(1)

f (w, s) is usually estimated from a sample of the measured w and s
using the kernel density approximation f̂(w, s):

f̂(w, s) � 1

N(2πσ2)(d+1)/2 ∑
N

n�1
exp[

− (w − wn)T(w − wn) + (s − sn)2
2σ2

] (2)

where N is the number of measured samples and d is the
dimension of input w. The smoothing parameter, σ, is the
only unknown to be calculated. Combining Eq. (2) and Eq.
(1), the desired conditional value of s can be written as:

ŝ(w) � Ef̂(s|w) �
∑N
n�1

sn exp[ − (wm − wn)T(wm − wn)/(2σ2)]
∑N
n�1

exp[ − (wm − wn)T(wm − wn)/(2σ2)]
(3)

To determine the appropriate value of σ2 and prevent possible
over-fitting, the data point to be estimated is removed in the
summation of Eq. 3, which can be formulated as:

ŝ(wm) �

∑N
n�1
n ≠ m

sn exp[ − (wm − wn)T(wm − wn)/(2σ2)]
∑N

n�1
n ≠ m

exp[ − (wm − wn)T(wm − wn)/(2σ2)] (4)

Through fitting the measurements, the optimal value of σ2 can
be obtained using Eq. 4.

The GRNN method bridges the designed inputs and the
corresponding outputs. Nevertheless, the adopted designed
inputs should be evaluated using experience or pre-judgment
before being implemented in the GRNN method. The prior
evaluation may bring uncertainties into the model inputs,
which play an essential role in prediction. The ability to select
models in Bayesian inferences allows selection of a suitable set of
input variables from input candidates. Yuen and Ortiz (2016)
proposed the innovative Bayesian nonparametric general
regression (BNGR) algorithm, which can extract relevant input
features for model prediction while simultaneously obtaining the
non-parametric regression model. The BNGR algorithm is briefly
introduced in the following section, but the detailed derivation
process can be found in Yuen and Ortiz (2016).

2.1.2 General Regression Under the Bayesian
Framework
Assuming that s is the tunneling-induced ground surface
settlement, C denotes the general regression model with a
specified set of inputs, and θ is the unknown parameter
related to the smoothing parameter in GRNN method, then
according to the Bayesian inference, the posterior PDF of θ
can be written as:

p(θ|s,w, C) � p(s|θ,w, C)p(θ|C)
p(s|w, C) (5)

where p (s|θ, w, C) is the likelihood function with which to reveal
fit performance based on observational data given the parameter
vector, θ. P (θ|C) is the prior PDF of the unknown parameter, θ. p
(s|w, C) indicates the normalizing constant.

The chain rule of probability is used to develop the likelihood
function and the product of conditional PDFs is:
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p(s|θ,w, C) � ∏N
m�1

p(sm|s1,/, sm−2, sm−1, θ,w, C) (6)

where

p(sm|s1,/, sm−2, sm−1, θ,w, C) � (2πσ22,m)−1/2 exp[
− (sm − ŝm|m−1(wm))2

2σ2
2,m

] (7)

where ŝm|m−1(wm) is the estimation of s based on the first m-1
observational data and can be expressed as:

ŝm|m−1(sm) �
∑m−1

n�1
sn exp[ − ((wm − wn)T(wm − wn))/2σ2

1,m]
∑m−1

n�1
exp[ − ((wm − wn)T(wm − wn))/2σ21,m]

(8)

Yuen and Ortiz (2016) introduced the smoothing scale
parameter, v1, and the prediction error scale parameter, v2, to
integrate the smoothing parameters σ21,m,m = 1, 2, . . . ,N, and the
prediction-error variances σ22,m, m = 1, 2, . . . , N, in these
conditional PDFs:

σ2
1,m � v1

m − 1
∑m−1

n�1
(Xm −Xn)T(Xm −Xn) (9)

σ22,m � v2

∑m−1

n�1
exp[ − 2(Xm −Xn)T(Xm −Xn)] (10)

Then θ = (v1, v2) is the generated unknown parameters in the
BNGR method. The posterior PDF of this parameter can be
derived as:

p(v1, v2|s,w, C)∝p(v1, v2)p(s|v1, v2,w, C)

∝ (v2)−(N/2) exp⎡⎣ − 1
2v2

∑N
m�1

Ωm(sm − ŝm|m−1,v1(wm))2⎤⎦
(11)

where Ωm is expressed as:

Ωm � ∑m−1

n�1
exp[ − 2(wm − wn)T(wm − wn)] (12)

The optimal value of v2 can be obtained using the following
equation:

zp(v1, v2|s,w, C)
zv2

� 0 (13)

Based on a certain value of v1,

vp2(v1) �
1
N

∑N
m�1

Ωm(sm − ŝm|m−1,v1(wm))2 (14)

The parameter vp1 can be numerically calculated by
maximizing the following function:

g(v1) � p(v1, vp2(v1)∣∣∣∣s,w, C) (15)

After v1 and v2 are calculated, a general regression model is
readily obtained. It should be noted that a regressionmodel in this
study means a non-parametric regression model with a subset of
design variables. Suppose that d variables are included in the
input domain, with different combinations of the designed
variables, there will be Nc = (2d–1) subsets of input candidates.
Bayesian model selection was applied to select the optimal model
among the Nc model candidates. According to Bayes’s theorem,
the plausibility of a model candidate can be expressed as:

P(C(k)∣∣∣∣s,w) � p(s∣∣∣∣w, C(k))P(C(k))
∑Nc

k�1
p(s|w, C(k))P(C(k))

(16)

where P (C(k)) = 1/Nc is the prior plausibility for a certain model
C(k) (k = 1, 2, . . . , Nc) and this parameter is assumed to be the
same for all models, while the evidence p(s|w, C(k)) can be
expressed as (Yuen and Ortiz, 2016):

p(s∣∣∣∣w, C(k)) ≈ 2Γ(N/2 + 1)
�������������������
2π∏N

m�1(Ωm/∣∣∣∣Zk(vp1)∣∣∣∣)√
(BU1 − BL1)(BU2 − BL2)πN/2

× ⎡⎣∑N
m�1

Ωm(sm − ŝm|m−1,v1(Xm))2⎤⎦−(N/2+1)
(17)

This is the configuration of non-parametric regression under
the Bayesian framework. Yuen and Ortiz (2016) identify two
merits of the BNGR method. First, the variation of prior
distribution in the regression coefficient, θ, has no impact on
the model selection in Eq. 16. Second, in contrast to traditional
regression approaches, the proposed method dramatically
decreases the number of model candidates, for the network is
automatically generated based on the GRNN method and
development of different function forms using the same subset
of inputs is not necessary.

2.2 Description of Case History
This study investigated tunneling-induced maximum ground
settlement in the construction section from Xueyuan Road
Station to Gucui Road Station (Xueyuan–Gucui section) as
well as from Fengtan Road Station to Gucui Road Station
(Gucui–Fengtan section) of Metro Line 2 in Hangzhou, China
(Figures 1, 2). A photo of the construction site is shown in
Figure 2A, and the adopted Earth pressure balance (EPB) shield
machine, “Shichuandao”, is presented in Figure 2B. The length of
the Xueyuan–Gucui section is 975.385 m; its cover depth varies
from 10.641 to 18.701 m. By contrast, the length of the
Gucui–Fengtan section is 503.866 m, and its cover depth varies
from 8.566 to 9.976 m. The geometries of these two sections are
shown in Figure 3. The inner diameter of the tunnel is 5.5 m, and
its outer diameter is 6.2 m. The thickness and width of a tunnel
segment are 0.35 and 1.2 m, respectively. Extensive in-situ
explorations and laboratory experiments were conducted in
this project, whose geological profile is illustrated in Figure 4.
One can observe that the tunnel mostly advanced through the
muddy silty clay layer, the muddy clay layer with silt, and the
muddy silty clay layer with silt. A photo of the soils is shown in
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Figure 2C, and the soil properties of these three layers are
presented in Supplementary Table S1 in the supplemental
data. The undrained shear strength, Su, is obtained from the
in-situ shear test, and the compression modulus is from the
laboratory test of the remolded soil.

Along the tunnel alignment, the surface settlement markers
were installed at approximately 6.0 m intervals (i.e., 5 segments)

as shown in Figure 5. What’s more, perpendicular to the
tunnel alignment, a settlement array was designed at
roughly 30.0 m intervals (i.e., 25 segments), as presented in
Figure 5. Fourteen measured points were set at each settlement
array, with “Points 5” and “Point 10” positioned just above the
left- and right-tunnel centerline, respectively. The measured
points outside the two tunnel centerlines (left and right) were

FIGURE 1 | Location of the construction site.

FIGURE 2 | (A) Construction site, (B) shield machine, and (C) soil sample at 10.0–15.0 m depth.
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2.5 m, 3.5 m, 5.0 m, and 10.0 m, respectively, from the tunnel
centerlines, as shown in Figure 5. The distances of the four
measured points between the tunnel centerlines are also

presented in Figure 5. Settlement monitoring is conducted
twice daily (8 a.m. and 3 p.m.). It should be noted that the
observed ground settlement data above the right-tunnel line

FIGURE 3 | Geometry of excavated tunnel: (A) Gucui–Xueyuan section; (B) Fengtan–Gucui section.

FIGURE 4 | Geological profile of tunneling excavation section: (A) Gucui–Xueyuan section; (B) Fengtan–Gucui section.
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(excavated first) were applied in the present study and that data
above the left-tunnel line were not introduced to prevent
previously adjacent tunneling of the right-tunnel line from
affecting ground settlement of the left-tunnel line. For each
segment, the operational parameters, such as, face pressure,
thrust, and torque, were automatically recorded. Based on the
three categories of influencing factors suggested by
Suwansawat and Einstein (2006), the following features may
be associated with tunneling-induced maximum ground
settlement:

• Advance rate (x1): calculated using the excavated distance
over the total time in every excavation cycle;

• Cover depth (x2): the distance from the ground surface to
the crown of the excavated tunnel;

• Pitching angle (x3): the discrepancy between the designed
alignment and the central axial line of the shield machine
(Figure 6);

• Rolling angle (x4): the slight rotation of the shield machine
during the excavation process, as shown in Figure 6;

• Horizontal deviation (x5): the discrepancy between the
designed tunnel alignment and the real tunnel centerline
in the horizontal direction;

• Vertical deviation (x6): the discrepancy between the
designed tunnel alignment and the real tunnel centerline
in the vertical direction;

• Face pressure (upper) (x7): the soil pressure in the upper
chamber (in this research, the face pressure was subdivided

into face pressure (upper) and face pressure (Middle), as
shown in Figure 6);

• Face pressure (middle) (x8): the average face pressure of
the left and right chambers, as presented in
Figure 6–monitored using Earth pressure cells installed
inside the chambers;

• Thrust (x9): driven by hydraulic power; used to drive the
shield ahead and control the pose of shield machine;

• Torque (x10): used to cut the soil at the front of shield
machine; will develop shear deformation in the soil;

• Soil removal rate (x11): used to measure how quickly the
excavated soil volume is transported from the shield face;

• Soil removal volume (x12): the excavated soil volume
transported from the shield face by a balanced screw
conveyor.

In the present tunneling project, a newmixture composition of
grouting fill was designed, as shown in Supplementary Table S3
in the supplemental data. The lime was introduced as an
additional component to accelerate the hardening and thus
mitigate the uplift of the tunnel tube. Grouting pressure and
filling were maintained around 0.35–0.36 MPa and 4.0–4.5 m3

per segment, respectively, and features related to grouting were
not considered in the present study due to the tiny variations
involved. Nevertheless, the present algorithm can be used to
consider the grouting pressure and filling as input candidates
when the record data are available. It should be noted that
grouting pressure and filling have been found to be important

FIGURE 5 | Configuration of settlement array and markers.
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parameters in tunnel excavation with which to control maximum
ground surface settlement.

2.3 Preparation of Database
According to the classification proposed by Suwansawat and
Einstein (2006), the features used to estimate the maximum
ground settlement were separated into three categories:
geological properties, tunnel geometry, and operation factors.
The geological properties are closely related to the friction
between shield and soil and were investigated by many
researchers (Chen et al., 2019; Bouayad and Emeriault, 2017).
The geological properties were evaluated according to the friction
angle and cohesion as presented in Supplementary Table S1 in
the supplemental data. The contact areas between the shield and

different soil layers were considered as the weights to evaluate the
geological index. Then, the geological index can be used as one
influencing factors. Supplementary Table S1 in the supplemental
data indicates that there is little variation of geological properties
in the zone where the tunnel crossed, so that geological features
can be neglected in the present study. Nevertheless, the geological
variation is important for tunnelling induced settlement. The
methodology proposed by Chen et al. (2019) is adopted to
consider the geological variation. This novel approach
associated the location and thickness of soil layers and the soil
properties and these geological properties can be quantified using
formulas. The detailed description is shown in the study of Chen
et al. (2019). Furthermore, in the whole excavation section, the
same shield tunnel boring machine was used, with uniform

FIGURE 6 | Features related to ground deformation: (A) pitching angle; (B) face pressure and rolling angle.

TABLE 1 | Model selection results.

Model Plausibility Likelihood Evidence v1 v2

Model-1: (2, 3, 4) 0.9702 1.37 × 10−36 2.68 × 10−43 5.03 × 10−4 1.2625
Model-2: (2, 3, 4, 7, 9) 0.0130 1.56 × 10−39 3.57 × 10−45 0.0080 0.5509
Model-3: (2, 3, 4, 9) 0.0097 2.36 × 10−39 2.67 × 10−45 0.0068 0.9640
Model-4: (2, 3, 4, 7) 0.0027 3.70 × 10−40 7.34 × 10−46 0.0066 0.8238
Model-5: (2, 3, 12) 0.0022 3.63 × 10−39 6.00 × 10−46 0.0018 1.7063
Model-6: (2, 3, 4, 9, 12) 0.0013 3.43 × 10−40 3.46 × 10−46 0.0043 0.7644
Model-7: (2, 3, 4, 12) 7.47 × 10−4 9.49 × 10−40 2.06 × 10−46 9.35 × 10−4 1.1320
Model-8: (2, 3, 7, 9, 12) 1.82 × 10−4 2.55 × 10−41 5.03 × 10−47 0.0062 0.4558
Model-9: (2, 3, 11) 6.45 × 10−5 1.02 × 10−40 1.78 × 10−47 0.0018 1.7382
Model-10: (2, 3, 4, 11) 1.63 × 10−5 2.10 × 10−41 4.51 × 10−48 9.59 × 10−4 1.1567
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diameter maintained. Hence the cover depth is the only
parameter in the category of tunnel geometry, with the
overburden thickness at the middle of each segment collected
to form a database of cover depth. It should be noted that the
tunnel diameter is an important factors related to the ground
maximum settlement. This can be a significant factors when the
database contains varying diameter. Advance rate is calculated by
advance distance over advance time in each segment. Average
values in each segment were calculated for the other operational
factors (Chen et al., 2019), with 12 features in total summarized in
this tunnel project. 126 datasets were compiled, including input
candidates and corresponding maximum ground surface
settlement. Supplementary Table S2 in the supplemental data
illustrates the statistic characteristics of these input candidates
and the related maximum ground surface settlement.

3 MODEL SELECTION AND VALIDATION

The 126 observational data sets were randomly divided into a
training dataset (70%), used for selecting optimal model and
identifying parameters (i.e., smoothing scale parameter, and
prediction error scale parameter), and a testing dataset (30%),
used to examine the proposed model. All designed input
candidates were normalized using the following equation:

�w � w − wm

σ
(18)

wherewm stands for the mean value of designed input candidates.

σ �
���������������
1

N−1∑N
i�1(w − wm)2

√
is the standard deviation. N is the

number of samples. According to the principle of the BNGR

A B

FIGURE 7 | (A) Performance of optimal model on training and testing datasets; (B) Predicted error on testing dataset for optimal model.

A B

FIGURE 8 | (A) Performance of model-2 on training and testing datasets; (B) Predicted error on testing dataset.
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method, 212–1 = 4,095 model candidates were generated on the
basis of the 12 design input variables. Prior distributions of the
smoothing scale factor and the prediction error scale factor were
assumed to follow the uniform distribution with the range (0, 50).
Choice of prior distribution for these two parameters had no
effect on model selection (Yuen and Ortiz, 2016). Table 1
presents the model selection results based on these model
candidates, with the first column exhibiting the included
variables for the top 10 models: 1 standing for feature x1, 2 for
feature x2 and so forth. Plausibility, maximum likelihood, and
evidence are indicated in the second, third, and fourth columns.
The fifth and sixth columns denote the updated smoothing scale

factor, v1, and the prediction error scale factor, v2. From Table 1,
the most plausible model contains the features of cover depth,
pitching angle, and rolling angle. The performance of this optimal
model on the training dataset is shown in Figure 7A with a
coefficient of determination R2 = 0.9939 and a root mean square
error (RMSE) is 0.9227. This figure also presents predicted
settlement versus measured data for the testing dataset, with
points scattering around the perfect match line (i.e., 45° line) and
a coefficient of determination R2 = 0.7602. Model performance
for the training and testing datasets for model-2 and model-3 in
Table 1 is illustrated in Figure 8A and Figure 9A, respectively.
The coefficients of determination, R2, for the top three models

A B

FIGURE 9 | (A) Performance of model-3 on training and testing datasets; (B) Predicted error on testing dataset.

A B

FIGURE 10 | (A) Performance of model with all designed variables on training and testing datasets; (B) Predicted error on testing dataset for model with all
designed variables.
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diminished with declining model ranking. Figure 10A presents
the trained model with all 12 designed input variables. The
coefficient of determination, R2, for the training dataset is
acceptable, but the predictions fail on the testing dataset and
R2 is 0.3253. Accordingly, when irrelevant features are
introduced into the input variables, Euclidean distance is
distorted and the proposed model cannot capture the
relationship between inputs and output. Figures 7B, 8B, 9B,
10 illustrate an analysis of the errors between predicted and
measured ground settlements for the testing database. The
standard deviation of the error expands with declining order
of model ranking and reaches largest for the model having all 12
designed input variables. RMSEs are presented in these figures
as well, following the trend of the standard deviation as
presented in Figures 7B, 8B, 9B, 10B. This indicates that the
selected optimal model is robust and exhibits acceptable
performance in estimating ground settlement. It should be
noted that extrapolation is not recommended when using the
BNGR method. Because the data points beyond the domain of
the training dataset are far from the sampling points in the
GRNN algorithm, inducing a relatively large error. In practice,
new datasets should be drawn outside the range of the existing
training database when making new predictions.

4 DISCUSSION

4.1 Feature Selection
Based on the model selection results in Table 1, the
overburden depth is the main feature associated with
ground settlement, as has been recognized by many
researchers. The pitching and rolling angles of the shield
machine are included in the optimal model. Pitching angle
represents the shield machine’s orientation during tunneling.
Changes in pitching angle, which are inevitable, may create a
gap between shield machine and surrounding soil, inducing
ground deformation. Rolling angle evolves from the torque of
the shield machine during excavation. To provide anti-
support for the cutter-head torque, self-rotation may
develop in the shield machine. Shear resistance between
shield machine and surrounding soil may induce ground
deformation. What’s more, as indicated by Supplementary
Table S1 in the supplemental data, soft soil conditions
surrounding the shield machine are sensitive to tunneling-
induced disturbances. Shield-soil interactions generated from
the pitching and rolling angles can significantly influence
ground surface settlement in such soil conditions. All this
may help in interpreting the selected three input variables in
the optimal model. Pitching and rolling angles as features
predicting ground settlement should be considered in future
studies, especially those conducted under soft soil conditions.
In the second-best model (model-2), in addition to the three
selected input variables in the optimal model (i.e., cover
depth, pitching angle, rolling angle), thrust and face
pressure (upper) were extracted from the input candidates.
This indicated that thrust and face pressure (upper) could

influence tunneling-induced maximum ground settlement:
thrust amplitude by influencing the movement of
surrounding soil and inducing ground deformation and
face pressure by maintaining excavation stability, with face
pressure at the upper portion closely relationship to soil
movement at the shield face.

Notably, despite being an input candidate, advance rate is
not among the top 10 optimal models–consistent with the
findings of Zhang et al.( 2019), in which advance rate ranked
last among all model inputs in sensitivity analysis. In the
present study, the advance rate is controlled to balance
Earth pressure at the front interface of the shield machine.
Undoubtedly, engineers and researchers are well aware that too
small an advance rate may result in ground loss where too large
a rate may generate high pressure at the front interface of the
shield machine and cause ground heave. However, in this case
study, advance rate is commonly carefully managed to avoid
unacceptable excessive deformation. Hence advance rate may
vary in a range that cannot be the dominant influencing factor
for a certain project. Soil removal rate and removal volume are
two factors closely related to advance rate. To maintain a
desired face pressure at the front of the shield machine, soil
removal rate and removal volume should be coordinated with
the advance rate. As a result, these two features did not emerge
in the top four models. The cutterhead torque of the shield
machine can be affected by geological conditions, the opening
ratio of the cutterhead, Earth pressure, tunnel diameter and the
like. As a result of small variations in geological conditions,
constant opening ratio, and tunnel diameter (for the same
shield machine as in the present case history), the torque
feature can have little impact on the ground surface
settlement. Accordingly, this feature was not incorporated
into the optimal model.

The relative importance of the various parameters depends
on the tunneling procedure. For example, face pressure is highly
determinant of the tunnel stability and settlement, as overly low
face pressure may lead to collapse of the tunnel face. However, if
during the period when these data sets were obtained face
pressure was always sufficient, scant influence of face
pressure will be evident in the data. As shown in Figure 11,
normalized x7 (face pressure) was mostly in the range (-1, 1).
Only when there is critically low face pressure in the data will
this be evident as an important parameter. In general, a
parameter is important in this procedure when it influences
the settlement trough and is varied during the drive in a way that
allows different outcomes of the settlement trough, such as the
normalized x2 (cover depth) and x3 (pitching angle) illustrated
in Figure 11, in which the frequencies in each interval are
roughly equal. Important parameters that did not vary into
critical ranges will not be recognized as important using this
approach.

4.2 Sensitivity Analysis of Selected Features
Sensitivity analysis of the selected features in the optimal model
was conducted to search for a dominant feature and evaluate
relationships between tunneling-induced maximum ground
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settlement and the selected features. The sensitivity percentage of
the ground settlement related to each input parameter is
calculated using the equations:

Ni � fmax(xi) − fmin(xi) (19)
Si � Ni

∑n
j�1
Nj

× 100 (20)

where xi is the ith input variable and fmax (xi) and fmin (xi) denote
the maximum and minimum predictions for ground settlement,
respectively, by varying the ith input variable in its range while
assuming other inputs to be at their mean values. Figure 12 gives
the sensitivity percentage for each input variable, showing that
cover depth had the dominant impact on ground settlement and
that pitching angle ranked second. Feature selection of cover
depth has been recognized as one important factor by many
researchers, and sensitivity analysis further illustrates the
significance of pitching angle and rolling angle.

4.3 Maximum Settlement Prediction Using
the Bayesian Nonparametric General
Regression Algorithm
An additional database (50 sets of data points in total) collected
from the Fengtan–Gucui section was used to assess prediction
performance using the BNGR algorithm on new data. This
database was manually divided into two subsets: one
containing 34 data points collected from the beginning of the

Fengtan–Gucui section, incorporated into the database of the
Gucui–Xueyuan section to form an extended training dataset, and
an other including 16 data points collected from the rest of the
Fengtan–Gucui section, used to estimate maximum ground

FIGURE 11 | Frequency of normalized input parameters.

FIGURE 12 | Sensitivity of inputs to tunneling-induced ground
settlement.
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settlement. Inclusion of new data points into the existing training
dataset was necessary to capture the specific characteristics of the
new section (Chen et al., 2019). What’s more, inclusion of a new
dataset can enlarge the ranges of the input variables essential for
the BNGR algorithm. The geological condition of the
Fengtan–Gucui section is illustrated in Figure 4B. Soil
conditions at the site where the tunnel passes through contain
mainly muddy silty clay layers, similar to those seen in the
Gucui–Xueyuan section. Their properties are quite similar and
are presented in Supplementary Table S1 in the supplemental
data, indicating that the geological conditions of the
Fengtan–Gucui section resemble those of the Gucui–Xueyuan
section. What’s more, because the same shield machine was
applied in these two sections, it is reasonable to combine the
measured data from these two sections as a single training section.
Figure 13 illustrates both measured and predicted data for the
Fengtan–Gucui section. Figure 13A presents tunneling-induced
maximum ground settlement at the beginning of this section.
This dataset is part of the training dataset, and the estimated
settlements are almost identical to the measured data except for
some scattering data points. Figure 13B shows ground settlement
in the second half of the Fengtan–Gucui section. It can be
observed that estimated ground settlement using the BNGR
method approximates the measured data points.

5 CONCLUSION

Based on the collected data from a construction site in Hangzhou,
China, a general regression neural network under the Bayesian
framework (BNGR) was used for feature selection and prediction
of tunneling-induced maximum ground settlement in soft soils.

Beyond overburden depth, two other features associated with
ground settlement were selected in the optimal model: pitching
angle and rolling angle. The optimal model was validated on the
testing dataset and sensitivity analysis was conducted to examine
the selected features. The estimation performance of the BNGR
algorithm was evaluated on the new data set, with predictions
found to be acceptable. Based on these findings, certain conclusions
can be drawn:

5.1) The pitching and rolling angles of the shield machine
directly control its orientation and significantly affect
shield–soil interactions. In the present research,
involving soft soils with lower strength and high
compression, shield–soil interactions become
particularly important and can cause relatively large
disturbances to surrounding soil, consequently
inducing ground surface settlement. Engineers should
attend closely to operational factors associated with
shield–soil interactions when tunneling in soft soils.

5.2) Thrust and face pressure (upper) emerged in the second-
best model (model-2) in addition to the three features
present in the optimal model. These two features, which
have been discussed in the literature, play a significant role
in controlling face stability during excavation process.
Feature selection shows, however, that these two
influencing factors are less evident than pitching angle
and rolling angle for the present dataset perhaps as a result
of the variation in face pressure applied within this dataset.

5.3) Advance rate is not selected in the top 10 models from the
designed input candidates. But this does not mean the
advance rate is not important and the advance rate can
induce intolerant ground surface deformation when

FIGURE 13 | Performance of new data on training and testing datasets.
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extremely large or small. In the present study, the advance
rate is carefully controlled in practice and thus varies
within a range in which it can have little effect on the
surrounding soil. Accordingly, compared with other
features, such as overburden depth, pitching angle, and
rolling angle, this operational factor might not directly
influence ground surface settlement.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

Writing: ZD, L-SZ; review and editing: W-HZ, AB.

ACKNOWLEDGMENTS

The authors wish to thank the support funded by the Chinese
National Natural Science Foundation (No. 42102308 and
51508506), the Research Funding of Shantou University for
New Faculty Member (Grant No. NTF21008-2021), the Special
Fund for Science and Technology of Guangdong Province in 2021
(STKJ2021168), the Science and Technology Development Fund,
Macau SAR (File no. SKL-IOTSC-2018-2020 and FDCT/0035/
2019/A1), the University of Macau Research Fund (MYRG 2018-
00173-FST), and the Joint Fund of Zhejiang Provincial Natural
Science Foundation (LHZ20E080001).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fbuil.2022.848158/
full#supplementary-material

REFERENCES

Ahangari, K., Moeinossadat, S. R., and Behnia, D. (2015). Estimation of
Tunnelling-Induced Settlement by Modern Intelligent Methods. Soils and
Foundations 55, 737–748. doi:10.1016/j.sandf.2015.06.006

Alagha, A. S. N., and Chapman, D. N. (2019). Numerical Modelling of Tunnel Face
Stability in Homogeneous and Layered Soft Ground. Tunnelling Underground
Space Techn. 94, 103096. doi:10.1016/j.tust.2019.103096

Attewell, P. B., and Hurrell, M. R. (1985). Settlement Development Caused by
Tunnelling in Soil. Gr Eng. 18, 17–20.

Bouayad, D., and Emeriault, F. (2017). Modeling the Relationship between Ground
Surface Settlements Induced by Shield Tunneling and the Operational and
Geological Parameters Based on the Hybrid PCA/ANFIS Method. Tunnelling
Underground Space Techn. 68, 142–152. doi:10.1016/j.tust.2017.03.011

Boubou, R., Emeriault, F., and Kastner, R. (2010). Artificial Neural Network
Application for the Prediction of Ground Surface Movements Induced by
Shield Tunnelling. Can. Geotech. J. 47, 1214–1233. doi:10.1139/T10-023

Chen, D.-F., Feng, X.-T., Xu, D.-P., Jiang, Q., Yang, C.-X., and Yao, P.-P. (2016).
Use of an Improved ANN Model to Predict Collapse Depth of Thin and
Extremely Thin Layered Rock Strata during Tunnelling. Tunnelling
Underground Space Techn. 51, 372–386. doi:10.1016/j.tust.2015.09.010

Chen, R.-P., Zhang, P., Kang, X., Zhong, Z.-Q., Liu, Y., and Wu, H.-N. (2019).
Prediction of Maximum Surface Settlement Caused by Earth Pressure Balance
(EPB) Shield Tunneling with ANN Methods. Soils and Foundations 59,
284–295. doi:10.1016/j.sandf.2018.11.005

Cho, S. E. (2009). Probabilistic Stability Analyses of Slopes Using the ANN-Based
Response Surface. Comput. Geotechnics 36, 787–797. doi:10.1016/j.compgeo.
2009.01.003

Chou, W.-I., and Bobet, A. (2002). Predictions of Ground Deformations in Shallow
Tunnels in clay. Tunnelling Underground Space Techn. 17, 3–19. doi:10.1016/
S0886-7798(01)00068-2

Darabi, A., Ahangari, K., Noorzad, A., and Arab, A. (2012). Subsidence Estimation
Utilizing Various Approaches - A Case Study: Tehran No. 3 Subway Line.
Tunnelling Underground Space Techn. 31, 117–127. doi:10.1016/j.tust.2012.
04.012

Doulati Ardejanii, F., Rooki, R., Jodieri Shokri, B., Eslam Kish, T., Aryafar, A., and
Tourani, P. (2013). Prediction of Rare Earth Elements in Neutral Alkaline Mine
Drainage from Razi Coal Mine, Golestan Province, Northeast Iran, Using
General Regression Neural Network. J. Environ. Eng. 139, 896–907. doi:10.
1061/(ASCE)EE.1943-7870.0000689

Elbaz, K., Shen, S.-L., Cheng, W.-C., and Arulrajah, A. (2018). Cutter-disc
Consumption during Earth Pressure Balance Tunnelling in Mixed Strata.

Proc. Inst. Civil Eng. - Geotechnical Eng. 171 (4), 363–376. doi:10.1680/
jgeen.17.0011710.1680/jgeen.17.00117

Elbaz, K., Yan, T., Zhou, A., and Shen, S.-L. (2022). Deep Learning Analysis for
Energy Consumption of Shield Tunneling Machine Drive System. Tunnelling
Underground Space Techn. 123, 104405. doi:10.1016/j.tust.2022.104405

Gamse, S., Zhou, W.-H., Tan, F., Yuen, K.-V., and Oberguggenberger, M.
(2018). Hydrostatic-season-time Model Updating Using Bayesian Model
Class Selection. Reliability Eng. Syst. Saf. 169, 40–50. doi:10.1016/j.ress.2017.
07.018

Hajihassani, M., Abdullah, S. S., Asteris, P. G., and Armaghani, D. J. (2019). A Gene
Expression Programming Model for Predicting Tunnel Convergence. Appl. Sci.
9, 4650. doi:10.3390/app9214650

Hajihassani, M., Kalatehjari, R., Marto, A., Mohamad, H., and Khosrotash, M.
(2020). 3D Prediction of Tunneling-Induced Ground Movements Based on a
Hybrid ANN and Empirical Methods. Eng. Comput. 36, 251–269. doi:10.1007/
s00366-018-00699-5

Huang, H., Gong, W., Khoshnevisan, S., Juang, C. H., Zhang, D., and Wang, L.
(2015). Simplified Procedure for Finite Element Analysis of the Longitudinal
Performance of Shield Tunnels Considering Spatial Soil Variability in
Longitudinal Direction. Comput. Geotechnics 64, 132–145. doi:10.1016/j.
compgeo.2014.11.010

Ibrahim, E., Soubra, A.-H., Mollon, G., Raphael, W., Dias, D., and Reda, A. (2015).
Three-dimensional Face Stability Analysis of Pressurized Tunnels Driven in a
Multilayered Purely Frictional Medium. Tunnelling Underground Space Techn.
49, 18–34. doi:10.1016/j.tust.2015.04.001

Jin, Y.-F., Yin, Z.-Y., Zhou, W.-H., Yin, J.-H., and Shao, J.-F. (2019). A Single-
Objective EPR Based Model for Creep index of Soft Clays Considering L2
Regularization. Eng. Geology. 248, 242–255. doi:10.1016/j.enggeo.2018.
12.006

Jin, Y. F., Yin, Z. Y., Zhou, W. H., and Shao, J. F. (2019). Bayesian Model Selection
for Sand with Generalization Ability Evaluation. Int. J. Numer. Anal. Methods
Geomech 43, 2305–2327. doi:10.1002/nag.2979

Kanevski, M. F. (1999). The General Regression Neural Network—Rediscovered.
Int. J. Syst. Res. Inf. Syst. 8Z, 241–256. doi:10.1016/S0893-6080(09)80013-0

Kelly, R., and Huang, J. (2015). Bayesian Updating for One-Dimensional
Consolidation Measurements. Can. Geotech. J. 52, 1318–1330. doi:10.1139/
cgj-2014-0338

Khisamitov, I., andMeschke, G. (2018). Variational Approach to Interface Element
Modeling of Brittle Fracture Propagation. Comput. Methods Appl. Mech. Eng.
328, 452–476. doi:10.1016/j.cma.2017.08.031

Kurup, P. U., and Griffin, E. P. (2006). Prediction of Soil Composition from CPT
Data Using General Regression Neural Network. J. Comput. Civ. Eng. 20,
281–289. doi:10.1061/(asce)0887-3801(2006)20:4(281)

Frontiers in Built Environment | www.frontiersin.org April 2022 | Volume 8 | Article 84815814

Ding et al. Multi-Factor-Oriented Ground Settlement

https://www.frontiersin.org/articles/10.3389/fbuil.2022.848158/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbuil.2022.848158/full#supplementary-material
https://doi.org/10.1016/j.sandf.2015.06.006
https://doi.org/10.1016/j.tust.2019.103096
https://doi.org/10.1016/j.tust.2017.03.011
https://doi.org/10.1139/T10-023
https://doi.org/10.1016/j.tust.2015.09.010
https://doi.org/10.1016/j.sandf.2018.11.005
https://doi.org/10.1016/j.compgeo.2009.01.003
https://doi.org/10.1016/j.compgeo.2009.01.003
https://doi.org/10.1016/S0886-7798(01)00068-2
https://doi.org/10.1016/S0886-7798(01)00068-2
https://doi.org/10.1016/j.tust.2012.04.012
https://doi.org/10.1016/j.tust.2012.04.012
https://doi.org/10.1061/(ASCE)EE.1943-7870.0000689
https://doi.org/10.1061/(ASCE)EE.1943-7870.0000689
https://doi.org/10.1680/jgeen.17.0011710.1680/jgeen.17.00117
https://doi.org/10.1680/jgeen.17.0011710.1680/jgeen.17.00117
https://doi.org/10.1016/j.tust.2022.104405
https://doi.org/10.1016/j.ress.2017.07.018
https://doi.org/10.1016/j.ress.2017.07.018
https://doi.org/10.3390/app9214650
https://doi.org/10.1007/s00366-018-00699-5
https://doi.org/10.1007/s00366-018-00699-5
https://doi.org/10.1016/j.compgeo.2014.11.010
https://doi.org/10.1016/j.compgeo.2014.11.010
https://doi.org/10.1016/j.tust.2015.04.001
https://doi.org/10.1016/j.enggeo.2018.12.006
https://doi.org/10.1016/j.enggeo.2018.12.006
https://doi.org/10.1002/nag.2979
https://doi.org/10.1016/S0893-6080(09)80013-0
https://doi.org/10.1139/cgj-2014-0338
https://doi.org/10.1139/cgj-2014-0338
https://doi.org/10.1016/j.cma.2017.08.031
https://doi.org/10.1061/(asce)0887-3801(2006)20:4(281)
https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Leca, E., and New, B. (2007). Settlements Induced by Tunneling in Soft Ground.
Tunnelling Underground Space Techn. 22, 119–149. doi:10.1016/j.tust.2006.
11.001

Lin, S.-S., Shen, S.-L., Zhang, N., and Zhou, A. (2021). Modelling the Performance
of EPB Shield Tunnelling Using Machine and Deep Learning Algorithms.
Geosci. Front. 12 (5), 101177. doi:10.1016/j.gsf.2021.101177

Lin, X.-T., Chen, R.-P., Wu, H.-N., and Cheng, H.-Z. (2019). Three-dimensional
Stress-Transfer Mechanism and Soil Arching Evolution Induced by Shield
Tunneling in sandy Ground. Tunnelling Underground Space Techn. 93, 103104.
doi:10.1016/j.tust.2019.103104

Loganathan, N., and Poulos, H. G. (1998). Analytical Prediction for Tunneling-
Induced Ground Movements in Clays. J. Geotechnical Geoenvironmental Eng.
124, 846–856. doi:10.1061/(asce)1090-0241(1998)124:9(846)

Lu, H., Shi, J., Wang, Y., and Wang, R. (2019). Centrifuge Modeling of Tunneling-
Induced Ground Surface Settlement in Sand. Underground Space 4, 302–309.
doi:10.1016/j.undsp.2019.03.007

Lyu, H.-M., Shen, S.-L., Zhou, A., and Yin, Z.-Y. (2022). Assessment of Safety
Status of Shield Tunnelling Using Operational Parameters with Enhanced SPA.
Tunnelling Underground Space Techn. 123, 104428. doi:10.1016/j.tust.2022.
104428

Mahdevari, S., Torabi, S. R., and Monjezi, M. (2012). Application of Artificial
Intelligence Algorithms in Predicting Tunnel Convergence to Avoid TBM
Jamming Phenomenon. Int. J. Rock Mech. Mining Sci. 55, 33–44. doi:10.1016/j.
ijrmms.2012.06.005

Marshall, A. M., Klar, A., and Mair, R. J. (2010). Tunneling beneath Buried Pipes:
View of Soil Strain and its Effect on Pipeline Behavior. J. Geotech. Geoenviron.
Eng. 136, 1664–1672. doi:10.1061/(ASCE)GT.1943-5606.0000390

Maynar, M. J., and Rodríguez, L. E. (2005). Discrete Numerical Model for Analysis
of Earth Pressure Balance Tunnel Excavation. J. Geotech. Geoenviron. Eng. 131,
1234–1242. doi:10.1061/(asce)1090-0241(2005)131:10(1234)

Moeinossadat, S. R., and Ahangari, K. (2019). Estimating Maximum Surface
Settlement Due to EPBM Tunneling by Numerical-Intelligent Approach - A
Case Study: Tehran Subway Line 7. Transportation Geotechnics 18, 92–102.
doi:10.1016/j.trgeo.2018.11.009

Neaupane, K. M., and Adhikari, N. R. (2006). Prediction of Tunneling-Induced
Ground Movement with the Multi-Layer Perceptron. Tunnelling Underground
Space Techn. 21, 151–159. doi:10.1016/j.tust.2005.07.001

Ng, C. W., and Lee, G. T. (2005). Three-dimensional Ground Settlements and
Stress-Transfer Mechanisms Due to Open-Face Tunnelling. Can. Geotech. J. 42,
1015–1029. doi:10.1139/t05-025

Ng, C. W.W., Boonyarak, T., and Mašín, D. (2013). Three-dimensional Centrifuge
and Numerical Modeling of the Interaction between Perpendicularly Crossing
Tunnels. Can. Geotech. J. 50, 935–946. doi:10.1139/cgj-2012-0445

Ninić, J., Freitag, S., and Meschke, G. (2017). A Hybrid Finite Element and
Surrogate Modelling Approach for Simulation and Monitoring Supported
TBM Steering. Tunnelling Underground Space Techn. 63, 12–28. doi:10.
1016/j.tust.2016.12.004

Ochmański, M., Modoni, G., and Bzówka, J. (2015). Prediction of the Diameter of
Jet Grouting Columns with Artificial Neural Networks. Soils and Foundations
55, 425–436. doi:10.1016/j.sandf.2015.02.016

Pal, M., and Deswal, S. (2008). Modeling Pile Capacity Using Support Vector
Machines and Generalized Regression Neural Network. J. Geotech. Geoenviron.
Eng. 134, 1021–1024. doi:10.1061/(asce)1090-0241(2008)134:7(1021)

Park, J. H., Kim, D., and Chung, C. K. (2012). Implementation of Bayesian Theory
on LRFD of Axially Loaded Driven Piles. Comput. Geotechnics 42, 73–80.
doi:10.1016/j.compgeo.2012.01.002

Paternesi, A., Schweiger, H. F., and Scarpelli, G. (2017). Numerical Analyses of
Stability and Deformation Behavior of Reinforced and Unreinforced Tunnel
Faces. Comput. Geotechnics 88, 256–266. doi:10.1016/j.compgeo.2017.04.002

Peck, R. B. (1969). Deep Excavations and Tunneling in Soft Ground. 7th Int. Conf.
Soil Mech. Found. Eng. Mexico City: The Sociedad Mexicana de Meca´nica de
Suelos, 225–290.

Phoon, K.-K., and Kulhawy, F. H. (1999). Evaluation of Geotechnical Property
Variability. Can. Geotech. J. 36, 625–639. doi:10.1139/t99-039

Pooya Nejad, F., and Jaksa, M. B. (2017). Load-settlement Behavior Modeling of
Single Piles Using Artificial Neural Networks and CPT Data. Comput.
Geotechnics 89, 9–21. doi:10.1016/j.compgeo.2017.04.003

Qi, C., and Tang, X. (2018). Slope Stability Prediction Using Integrated
Metaheuristic and Machine Learning Approaches: A Comparative Study.
Comput. Ind. Eng. 118, 112–122. doi:10.1016/j.cie.2018.02.028

Qi, X.-H., and Zhou, W.-H. (2017). An Efficient Probabilistic Back-Analysis
Method for Braced Excavations Using wall Deflection Data at Multiple
Points. Comput. Geotechnics 85, 186–198. doi:10.1016/j.compgeo.2016.
12.032

Ren, D.-J., Shen, S.-L., Arulrajah, A., and Wu, H.-N. (2018). Evaluation of Ground
Loss Ratio with Moving Trajectories Induced in Double-O-Tube (DOT)
Tunnelling. Can. Geotech. J. 55, 894–902. doi:10.1139/cgj-2017-0355

Santos, O. J., and Celestino, T. B. (2008). Artificial Neural Networks Analysis of São
Paulo Subway Tunnel Settlement Data. Tunnelling Underground Space Techn.
23, 481–491. doi:10.1016/j.tust.2007.07.002

Shen, S.-L., Elbaz, K., Shaban, W. M., and Zhou, A. (2022). Real-time Prediction of
Shield Moving Trajectory during Tunnelling. Acta Geotech. doi:10.1007/
s11440-022-01461-4

Shen, X., Yuan, D.-J., and Jin, D.-L. (2019). Influence of Shield Attitude Change on
Shield-Soil Interaction. Appl. Sci. 9, 1812. doi:10.3390/app9091812

Shi, J., Ortigao, J. A. R., and Bai, J. (1998). Modular Neural Networks for Predicting
Settlements during Tunneling. J. Geotechnical Geoenvironmental Eng. 124,
389–395. doi:10.1061/(asce)1090-0241(1998)124:5(389)

Soga, K., Laver, R. G., and Li, Z. (2017). Long-term Tunnel Behaviour and Ground
Movements after Tunnelling in Clayey Soils. Underground Space 2, 149–167.
doi:10.1016/j.undsp.2017.08.001

Soranzo, E., Tamagnini, R., and Wu, W. (2015). Face Stability of Shallow Tunnels
in Partially Saturated Soil: Centrifuge Testing and Numerical Analysis.
Géotechnique 65, 454–467. doi:10.1680/geot.14.P.123

Specht, D. F. (1991). A General Regression Neural Network. IEEE Trans. Neural
Netw. 2, 568–576. doi:10.1109/72.97934

Suwansawat, S., and Einstein, H. H. (2006). Artificial Neural Networks for
Predicting the Maximum Surface Settlement Caused by EPB Shield
Tunneling. Tunnelling Underground Space Techn. 21, 133–150. doi:10.1016/
j.tust.2005.06.007

Tan, F., Zhou, W.-H., and Yuen, K.-V. (2018). Effect of Loading Duration on
Uncertainty in Creep Analysis of clay. Int. J. Numer. Anal. Methods Geomech
42, 1235–1254. doi:10.1002/nag.2788

Theodosiou, M. (2011). Disaggregation & Aggregation of Time Series
Components: A Hybrid Forecasting Approach Using Generalized Regression
Neural Networks and the Theta Method. Neurocomputing 74, 896–905. doi:10.
1016/j.neucom.2010.10.013

Verruijt, A., and Booker, J. R. (1996). Surface Settlements Due to Deformation of a
Tunnel in an Elastic Half Plane. Géotechnique 46, 753–756. doi:10.1680/geot.
1996.46.4.753

Wu, H.-N., Shen, S.-L., Liao, S.-M., and Yin, Z.-Y. (2015). Longitudinal Structural
Modelling of Shield Tunnels Considering Shearing Dislocation between
Segmental Rings. Tunnelling Underground Space Techn. 50, 317–323. doi:10.
1016/j.tust.2015.08.001

Wu, H.-N., Shen, S.-L., Yang, J., and Zhou, A. (2018). Soil-tunnel Interaction
Modelling for Shield Tunnels Considering Shearing Dislocation in Longitudinal
Joints. Tunnelling Underground Space Techn. 78, 168–177. doi:10.1016/j.tust.
2018.04.009

Xu, T., and Bezuijen, A. (2018). Analytical Methods in Predicting Excess Pore
Water Pressure in Front of Slurry Shield in Saturated sandy Ground. Tunnelling
Underground Space Techn. 73, 203–211. doi:10.1016/j.tust.2017.12.011

Yan, T., Shen, S.-L., Zhou, A., and Lyu, H.-M. (2021). Construction Efficiency of
Shield Tunnelling through Soft deposit in Tianjin, China. Tunnelling
Underground Space Techn. 112, 103917. doi:10.1016/j.tust.2021.103917

Yang, J., Yin, Z.-Y., Liu, X.-F., and Gao, F.-P. (2020). Numerical Analysis for the
Role of Soil Properties to the Load Transfer in clay Foundation Due to the
Traffic Load of the Metro Tunnel. Transportation Geotechnics 23, 100336.
doi:10.1016/j.trgeo.2020.100336

Yuen, K.-V., and Ortiz, G. A. (2016). Bayesian Nonparametric General Regression.
Int. J. Uncertaintyquantification 6, 195–213. doi:10.1615/int.j.
uncertaintyquantification.2016016055

Zhang, P. (2019). A Novel Feature Selection Method Based on Global Sensitivity
Analysis with Application in Machine Learning-Based Prediction Model. Appl.
Soft Comput. 85, 105859. doi:10.1016/j.asoc.2019.105859

Frontiers in Built Environment | www.frontiersin.org April 2022 | Volume 8 | Article 84815815

Ding et al. Multi-Factor-Oriented Ground Settlement

https://doi.org/10.1016/j.tust.2006.11.001
https://doi.org/10.1016/j.tust.2006.11.001
https://doi.org/10.1016/j.gsf.2021.101177
https://doi.org/10.1016/j.tust.2019.103104
https://doi.org/10.1061/(asce)1090-0241(1998)124:9(846)
https://doi.org/10.1016/j.undsp.2019.03.007
https://doi.org/10.1016/j.tust.2022.104428
https://doi.org/10.1016/j.tust.2022.104428
https://doi.org/10.1016/j.ijrmms.2012.06.005
https://doi.org/10.1016/j.ijrmms.2012.06.005
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000390
https://doi.org/10.1061/(asce)1090-0241(2005)131:10(1234)
https://doi.org/10.1016/j.trgeo.2018.11.009
https://doi.org/10.1016/j.tust.2005.07.001
https://doi.org/10.1139/t05-025
https://doi.org/10.1139/cgj-2012-0445
https://doi.org/10.1016/j.tust.2016.12.004
https://doi.org/10.1016/j.tust.2016.12.004
https://doi.org/10.1016/j.sandf.2015.02.016
https://doi.org/10.1061/(asce)1090-0241(2008)134:7(1021)
https://doi.org/10.1016/j.compgeo.2012.01.002
https://doi.org/10.1016/j.compgeo.2017.04.002
https://doi.org/10.1139/t99-039
https://doi.org/10.1016/j.compgeo.2017.04.003
https://doi.org/10.1016/j.cie.2018.02.028
https://doi.org/10.1016/j.compgeo.2016.12.032
https://doi.org/10.1016/j.compgeo.2016.12.032
https://doi.org/10.1139/cgj-2017-0355
https://doi.org/10.1016/j.tust.2007.07.002
https://doi.org/10.1007/s11440-022-01461-4
https://doi.org/10.1007/s11440-022-01461-4
https://doi.org/10.3390/app9091812
https://doi.org/10.1061/(asce)1090-0241(1998)124:5(389)
https://doi.org/10.1016/j.undsp.2017.08.001
https://doi.org/10.1680/geot.14.P.123
https://doi.org/10.1109/72.97934
https://doi.org/10.1016/j.tust.2005.06.007
https://doi.org/10.1016/j.tust.2005.06.007
https://doi.org/10.1002/nag.2788
https://doi.org/10.1016/j.neucom.2010.10.013
https://doi.org/10.1016/j.neucom.2010.10.013
https://doi.org/10.1680/geot.1996.46.4.753
https://doi.org/10.1680/geot.1996.46.4.753
https://doi.org/10.1016/j.tust.2015.08.001
https://doi.org/10.1016/j.tust.2015.08.001
https://doi.org/10.1016/j.tust.2018.04.009
https://doi.org/10.1016/j.tust.2018.04.009
https://doi.org/10.1016/j.tust.2017.12.011
https://doi.org/10.1016/j.tust.2021.103917
https://doi.org/10.1016/j.trgeo.2020.100336
https://doi.org/10.1615/int.j.uncertaintyquantification.2016016055
https://doi.org/10.1615/int.j.uncertaintyquantification.2016016055
https://doi.org/10.1016/j.asoc.2019.105859
https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Zhang, P., Chen, R.-P., and Wu, H.-N. (2019). Real-time Analysis and Regulation
of EPB Shield Steering Using Random Forest. Automation in Construction 106,
102860. doi:10.1016/j.autcon.2019.102860

Zhang, Z. X., Liu, C., and Huang, X. (2017). Numerical Analysis of Volume Loss
Caused by Tunnel Face Instability in Soft Soils. Environ. Earth Sci. 76, 1–19.
doi:10.1007/s12665-017-6893-1

Zhao, L.-S., Zhou, W.-H., Geng, X., Yuen, K.-V., and Fatahi, B. (2019). A Closed-
form Solution for Column-Supported Embankments with Geosynthetic
Reinforcement. Geotextiles and Geomembranes 47 (3), 389–401. doi:10.1016/
j.geotexmem.2019.01.006

Zhao, L.-S., Zhou, W.-H., and Yuen, K.-V. (2017). A Simplified Axisymmetric
Model for Column Supported Embankment Systems. Comput. Geotechnics 92,
96–107. doi:10.1016/j.compgeo.2017.07.027

Zhao, L. S., Zhou, W. H., Fatahi, B., Li, X. B., and Yuen, K. V. (2016). A Dual Beam
Model for Geosynthetic-Reinforced Granular Fill on an Elastic Foundation.
Appl. Math. Model. 40 (21-22), 9254–9268. doi:10.1016/j.apm.2016.06.003

Zhao, L. S., Zhou, W. H., Su, L. J., Garg, A., and Yuen, K-V. (2019). Selection of
Physical and Chemical Properties of Natural Fibers for Predicting Soil
Reinforcement. J. Mater. Civ Eng. 31. doi:10.1061/(ASCE)MT.1943-5533.
0002850

Zheng, G., Cui, T., Cheng, X., Diao, Y., Zhang, T., Sun, J., et al. (2017). Study of
the Collapse Mechanism of Shield Tunnels Due to the Failure of Segments in
sandy Ground. Eng. Fail. Anal. 79, 464–490. doi:10.1016/j.engfailanal.2017.
04.030

Zhou, J., Sh, X., Du, K., Qiu, X., Li, X., and Mitri, H. S. (2017). Feasibility of
Random-forest Approach for Prediction of Ground Settlements Induced by the

Construction of a Shield-Driven Tunnel. Int. J. Geomech 17, 1–12. doi:10.1061/
(ASCE)GM.1943-5622.0000817

Zhou, W.-H., Tan, F., and Yuen, K.-V. (2018). Model Updating and Uncertainty
Analysis for Creep Behavior of Soft Soil. Comput. Geotechnics 100, 135–143.
doi:10.1016/j.compgeo.2018.04.006

Zhou, W.-H., Yuen, K.-V., and Tan, F. (2013). Estimation of Maximum Pullout
Shear Stress of Grouted Soil Nails Using Bayesian Probabilistic Approach. Int.
J. Geomech. 13, 659–664. doi:10.1061/(ASCE)GM.1943-5622.0000259

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Ding, Zhao, Zhou and Bezuijen. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Built Environment | www.frontiersin.org April 2022 | Volume 8 | Article 84815816

Ding et al. Multi-Factor-Oriented Ground Settlement

https://doi.org/10.1016/j.autcon.2019.102860
https://doi.org/10.1007/s12665-017-6893-1
https://doi.org/10.1016/j.geotexmem.2019.01.006
https://doi.org/10.1016/j.geotexmem.2019.01.006
https://doi.org/10.1016/j.compgeo.2017.07.027
https://doi.org/10.1016/j.apm.2016.06.003
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002850
https://doi.org/10.1061/(ASCE)MT.1943-5533.0002850
https://doi.org/10.1016/j.engfailanal.2017.04.030
https://doi.org/10.1016/j.engfailanal.2017.04.030
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000817
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000817
https://doi.org/10.1016/j.compgeo.2018.04.006
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000259
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles

	Intelligent Prediction of Multi-Factor-Oriented Ground Settlement During TBM Tunneling in Soft Soil
	1 Introduction
	2 Methodology and Database
	2.1 Bayesian Nonparametric General Regression Framework
	2.1.1 General Regression Neural Network
	2.1.2 General Regression Under the Bayesian Framework

	2.2 Description of Case History
	2.3 Preparation of Database

	3 Model Selection and Validation
	4 Discussion
	4.1 Feature Selection
	4.2 Sensitivity Analysis of Selected Features
	4.3 Maximum Settlement Prediction Using the Bayesian Nonparametric General Regression Algorithm

	5 Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


