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The rapid growth of the urban population and associated environmental concerns are
challenging city planners and developers to consider sustainable and cost-efficient
building systems. Timber-based buildings, such as sustainable systems, are
increasingly used. The timber buildings, however, being lighter and flexible, can
be vulnerable to earthquakes and wind loads. This paper gives a state-of-the-art
review on performance-based design (PBD) considerations and future direction for
timber and timber-based hybrid buildings. The PBD review covered both earthquake
and wind loads and multi-hazard design considerations. The review also provided 1)
current practice and future direction in consideration of hazard, response, and loss
assessment within the multi-hazard PBD, 2) damping and energy dissipation devices,
3) optimization under uncertainty, and 4) future of surrogate and multi-fidelity
modeling in PBD.
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INTRODUCTION

Evolution of Tall-Timber and Hybrid Buildings
The rapid growth of the urban population and associated environmental concerns challenged
city planners to consider sustainable and cost-efficient building systems (Nygaard et al., 2019;
Foster and Reynolds 2018; Smith and Frangi 2014). With the recent introduction of
manufactured mass timber elements, such as cross-laminated timber (CLT), laminated
veneer lumber, and glued laminated timber (glulam), sustainable tall-timber buildings
have become a viable option (Tesfamariam et al., 2021a, 2019, 2015; Tesfamariam and Das
2021; van de Lindt et al., 2020; Ahmed and Arocho 2020; Ramage et al., 2017; Malo et al., 2016;
Pei et al., 2015). What constitutes a “tall building” is relative to the time (Jennings 1970),
and the definition of “tallness” in a mass-timber building is evolving (Foster et al., 2016).
Figure 1 depicts the evolution of constructed, under construction, and proposed tall-timber
buildings.

Tall-timber buildings are lighter and more flexible (Foster and Reynolds 2018) and
consequently are vulnerable to wind loads due to limited overturning moment resistance
capacity and excessive vibration demand (Bezabeh et al., 2020a; Bezabeh et al., 2018a).
Limited studies are published on wind performance of timber and timber-based hybrid
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structure substantiated with wind tunnel tests (e.g., Bezabeh
et al., 2020b; Bezabeh et al., 2018a). Bezabeh et al. (2020a)
carried out high-frequency pressure integration wind tunnel
tests on tall-timber buildings (10, 15, 20, 30, and 40 stories).
The dynamic response and serviceability-performance limits
were assessed with respect to the 2015 National Building Code
of Canada (NBC) (NRC 2015). With height beyond 10 stories,
lateral drift and stiffness requirements can govern
serviceability limit state and require stringent wind design
consideration. Bezabeh et al. (2018c) experimentally and
analytically assessed the performance of a 10-story mass-
timber building under tornado-like laboratory simulations
and atmospheric boundary layer flow at Western University,
Canada. The results highlight that strong tornadoes pose
significant damage to drift-sensitive nonstructural
components.

Knowledge of damping in tall-timber buildings is limited
and uncertain (Bezabeh et al., 2018b; Edskär and Lidelöw 2019;
Reynolds et al., 2016; Kareem and Gurley 1996; Pagnini and
Solari 1988). With emerging tall-timber building construction
(e.g., Figure 1), the importance of damping was noted, and
practical solutions were provided. “Treet” (Malo et al., 2016),
for example, a 14-story timber apartment building in Norway,
is using the lateral-force resisting system that is diagonal
glulam beams. The CLT was used for the elevator shaft and
stairways, with additional concrete topped floor to improve the
wind performance. “Scotia Place” (Moore 2000) is a 12-story
steel-frame apartment building located in a high seismic zone
in New Zealand. Using the wood floor, the overall weight was
reduced with additional cost savings in material and floor
finishing. However, the lighter structure showed
vulnerability to wind and the need for supplemental
damping. Considering different levels of uncertain damping
values, Bezabeh et al. (2018a) showed the required damping
values to satisfy the NBC criteria.

Motivation
Different national and international seismic design codes, e.g.,
NBC (NRC 2015), International Building Code (ICC 2017),
follow prescriptive (deterministic) and force-based design. The
wind load design is mainly considering the first mode vibration
and serviceability limit state (e.g., cladding failure, occupant
comfort) (e.g., Ouyang and Spence 2021; Bezabeh et al., 2018a;
Bernardini et al., 2014). The seismic design principles are for
first mode deformation response and collapse prevention limit
state. This is not suitable for tall-timber buildings that have
higher mode contributions (Ramage et al., 2017; Willford et al.,
2008; Jennings 1970). In addition, under severe earthquakes,
the building can sustain irreparable damage with post-
earthquake occupancy and community recovery
implications (Takagi and Wada 2019). For the tall-timber
and hybrid buildings that are outside of the code-oriented
practice, performance-based design (PBD) is a viable approach
(Golesorkhi et al., 2017; Bezabeh et al., 2015; PEER 2017; Loss
et al., 2018; LATBSDC 2020; Alinejad et al., 2021; Tesfamariam
et al., 2021a). In wind engineering, there is a departure from
prescriptive to PBD for wind as reflected in ASCE (2019) pre-
standard.

The current building design codes use combination rules
(e.g., dead load and earthquake load) to achieve uniform
reliability (Crosti et al., 2010; Duthinh and Simiu, 2010). In
combination with other loads (dead load, live loads, snow
loads, etc.), the design is governed by earthquake or wind loads
(NBC 2015; ASCE 2017). The risk of exceeding a given
limit state is implicitly assumed to be the same in the
region where earthquake or wind is the dominant load
(Kwag et al., 2021; Duthinh and Simiu 2010). In cities, such
as Vancouver (high seismic zone) and Boston (low seismic
zone), for example, the challenge for structural designers is an
earthquake, and wind can be competing design loads (Wen and
Kang 2001a; Mahmoud and Cheng 2017; Tesfamariam et al.,

FIGURE 1 | Evolution of tall-timber design and construction (compiled from the Council on Tall Buildings and Urban Habitat database on January 1, 2022).
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2019). The earthquake and wind loads multi-hazard (MH)
design might not necessarily be governed by higher intensity
single hazard but be dominated by the lower intensity and
more frequent hazard (Wen and Kang 2001a; Wen 2001). Wen
(1990) proposed a uniform reliability design rule of
combination. With increasing building height, the need for
MH design consideration of tall building design is apparent
(e.g., Suksuwan and Spence 2018).

With increasing demand in the design and construction of tall-
timber buildings, MH PBD principles beyond the current design
guideline are needed. The PBD framework for wind, earthquake,
and MH tall-timber design is depicted in Figure 2. From the
current literature review, for PBD of tall-timber building, issues
related to modeling, consideration of site-specific soil–structure
interaction (SSI), energy dissipation devices, efficient
optimization algorithms, and damping are apparent
(Figure 2). Thus, this paper is a state-of-the-art review of the
MH design consideration and discussion on the emerging
modeling consideration for tall-timber design and future
implementation.

Objectives
In this paper, the first high-level review of the current PBD for
seismic and wind loads is provided. In addition, the review is
extended for the earthquake and wind MH framework. Within
the PBD framework, emerging challenges for tall-timber
buildings in quantifying site-specific hazard engineering
demand parameters are discussed. The problem of PBD is

faced with a plethora of information and computationally
expensive models. This entails the use of machine learning
techniques for surrogate models; emerging multi-fidelity
models are discussed in more detail. The review provided in
this paper is outlined below.

• Detailed review and evolution of PBD design for earthquake
(e.g., FEMA 2012; PEER 2017; LATBSDC 2020) and wind
(Spence and Kareem 2014; Cui and Caracoglia 2018;
Bezabeh et al., 2020b; Hou and Jafari 2020; Kareem
2020) are provided in the cited literature. Thus, the
review provided here is brief to set the context for the
MH design consideration and emerging modeling
consideration.

• With limited tall-timber buildings designed, the damping
value to use for design and analysis is an ongoing
challenge. This paper provides a review of the source of
damping and damping values obtained from in situ
measurements.

• SSI is highlighted to be important in the damping
quantification and review, and future direction is
provided.

• The lighter and tall-timber buildings are vulnerable to wind,
and this can be mitigated using damping technologies. The
different damping technologies are briefly reviewed, and
current applications are highlighted. Detailed reviews on
different damping technologies and applications to tall
buildings are discussed in the literature (e.g., Soong and

FIGURE 2 | Earthquake and wind MH design framework.
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Spencer Jr 2002; Christopoulos and Filiatrault 2006;
Takewaki 2011; Lago et al., 2018).

• Finally, with evolving computational tools, the different
optimization techniques and surrogate models are
reviewed. With the computationally intensive design and
optimization, the current application of the multi-fidelity
models is reviewed.

This paper is intended to give a highlight and opportunity for
current state-of-the-art and future research direction.

PERFORMANCE-BASED DESIGN FOR
EARTHQUAKE LOADS

In the 1990s, PBD was introduced as a new structural design
procedure to meet targeted building performance subject to
ground shaking (SEAOC 1995; FEMA 1997). Although the
first-generation PBD methods considered actual seismic
demand and nonlinear building capacity, they were
deterministic in nature. The second generation of
performance-based earthquake engineering (PBEE)
methodology was proposed to quantify the mean annual rate
of exceedance of earthquake impact λE(dv) by capturing the
uncertainty in ground shaking, building behavior, and decision
variables (Cornell and Krawinkler 2000; Porter 2003). The PBEE
framework (summarized in Table 1) was put forward by the
Pacific Earthquake Engineering Research Center (PEER) (Porter
2003).

The PEER framework has been applied in the seismic design
and evaluation of buildings (e.g., O’Reilly and Calvi 2019;
Shome et al., 2015; Jayaram et al., 2012; Zareian and
Krawinkler 2012; Liel et al., 2011; Goulet et al., 2007). The
PEER’s triple integral implicitly assumes that damage measure
(dm) conditioned-on-engineering demand parameter (edp) is
independent of intensity measure (im), and decision variable
(dv) conditioned-on-dm is independent of im and edp. The
seismic impact quantification is decomposed into subtasks that
can be carried out by a different group of experts (Der
Kiureghian 2005). This conditional independence of the

PEER framework has enabled other researchers to extend it
to PBD for fire (e.g., Lange et al., 2014), hurricane (Barbato
et al., 2013), tsunami (Attary et al., 2017; Goda et al., 2021),
and wind (e.g., Ciampoli et al., 2011; Petrini and Ciampoli,
2012).

Computing the mean annual rate of exceedance of dvs is
computationally intensive, and different approximations are
proposed. The triple integral in the PEER framework can be
computed using computationally intensive Monte Carlo
simulations (e.g., Jayaram et al., 2012; Goulet et al., 2007).
Different stochastic models, such as Poisson, Markov, semi-
Markov, renewal, or trigger type, have been considered for
earthquake modeling (Anagnos and Kiremidjian 1984). With
Poisson’s occurrence of the earthquake load assumption, Der
Kiureghian (2005) formulated a closed-form solution of the PEER
framework. The closed-form solution of the mean annual rate is
identical to the PEER framework. However, when the PEER
framework is extended beyond 1 year, it gives a conservative
result (Der Kiureghian 2005). Similarly, with Poisson’s
earthquake arrival assumption, Wen and Kang (2001a)
developed a closed-form solution for earthquake load
formulated under life cycle cost (LCC) (Table 2). The LCC
equation shown in Table 2 is a generalized equation that can
be used for earthquake, wind, and earthquake and wind MH. In
addition, it accounts for the coincidence rate of earthquake and
wind hazard in the calculation of the LCC. Takahashi et al. (2004)
considered a renewal model of earthquake occurrences in the
LCC analysis. The LCC approach has been used in buildings’
seismic design applications (e.g., Wen and Kang 2001b; Liu et al.,
2003; Mitropoulou et al., 2011; Castaldo et al., 2016). Mahsuli and
Haukaas (2013) proposed a reliability-based approach to solving
the loss assessment.

PERFORMANCE-BASED DESIGN FOR
WIND LOADS

The current wind load design follows the Davenport wind
loading chain (Davenport 1967; Isyumov 2012). In the wind
loading chain, the wind response of tall buildings is determined

TABLE 1 | PEER performance based design framework.

References Equation

Cornell and Krawinkler (2000), PEER (2017) λE(dv) � ∫
dm

∫
edp

∫
im

G(dv|dm)|dG(dm|edp)||dG(edp|im)||dλ(im)|

λE(dv) = mean annual rate of exceedance of earthquake impact; dv = decision variable corresponding to the performance
metric (for example, repair cost, downtime); dm = damage measure; edp = engineering demand parameter; im = intensity
measure for the ground motion; λ(im) = mean annual rate that a certain level of im is exceeded, G (x|y) = complementary
cumulative distribution function of x given y

Ciampoli et al. (2011) λW(dv) � ∫
dm

∫
edp

∫
ip

∫
im

G(dv|dm)|dG(dm|edp)||dG(edp|im, ip)||dG(ip|im)||dλ(im)|

λW(dv) =mean annual rate of exceedance of wind impact; dv = decision variable corresponding to the performance metric
(for example, repair cost); dm = damage measure; edp = engineering demand parameter; ip = wind–structure interaction;
im = intensity measure for the wind; dλ(im) = mean annual rate that a certain level of im is exceeded, G (x|y,z) =
complementary cumulative distribution function of x given y and z. The structural response (edp) is characterized conditional
on the wind–structure interaction (ip) in addition to the wind effects (im)
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by considering local wind climatology, local wind exposure
and topography, structural aerodynamic characteristics
(governed by building shape), and structural dynamic
properties (Kareem et al., 2019; Bezabeh et al., 2020b; Solari
2020). The framework was developed for synoptic and
stationary winds. Non-stationarity of the wind load,
however, has been identified as an important factor to
consider (Kareem and Wu 2013; Solari et al., 2015; Hong
2016). Kareem et al. (2019) generalized the Davenport wind
loading chain to account for a non-stationary
wind–force–response relationship. Unlike earthquake load,
for wind load, the building’s aerodynamic interactions are
evolving with the change in the built environment
(Davenport 1983; Elshaer et al., 2017). Thus, the design for
wind loads should account for the evolution of the built
environment.

Bezabeh et al. (2020b) have provided a state-of-the-art review
on PBD for wind loads. The PEER framework was extended for
“Performance-Based Wind Engineering” (PBWE, Table 1,
Ciampoli et al., 2011). Different researchers have used the
PBWE framework (e.g., Augusti and Ciampoli 2008; Ciampoli
et al., 2011; Ciampoli and Petrini 2012; Spence and Kareem 2014;
Chuang and Spence 2017; Suksuwan and Spence 2019; Ouyang
and Spence 2021). Similar to PBEE, the PBWE framework is
computationally intensive and requires quantifying the
probabilistic hazard to loss assessment. Wen and Kang
(2001a) proposed an LCC-based closed-form solution of the
probabilistic wind design framework (Table 2). The LCC
framework has been applied for tall building wind load design
(e.g., Le and Caracoglia 2021; Micheli et al., 2019, 2021; Cui and
Caracoglia 2018, Cui and Caracoglia 2020; Ierimonti et al., 2017;
Ierimonti et al., 2018). Bezabeh et al. (2018a, 2018b) extended the
Davenport wind loading chain to account for uncertainties and
formulated it in a reliability framework.

The wind load design was mainly undertaken for a linear
response that will consequently furnish over designed system
(Alinejad and Kang, 2020). The consideration of nonlinear
wind design is an emerging area (e.g., Alinejad et al., 2020,
2021; Bezabeh et al., 2020b; Elezaby and El Damatty 2020;
Huang and Chen 2022). To ameliorate this, the ASCE (2019)
pre-standard has put forward a PBWD of buildings for wind
load, where both linear elastic and nonlinear time history
analysis (NLTHA) can be utilized. Chuang and Spence

(2017) presented a wind PBD framework to account both
for collapse and non-collapse limit states. Bezabeh et al.
(2021a, 2021b) proposed a PBWD for a nonlinear wind
design framework. Bezabeh et al. (2020b) proposed
using self-centering systems to overcome the
progressive unidirectional accumulation of plastic
deformations.

MULTI-HAZARD DESIGN UNDER
EARTHQUAKE AND WIND LOADS

For earthquake and wind MH design framework, fragility-
based (Zheng et al., 2021; Li et al., 2021; Li et al., 2020), LCC-
based (Kleingesinds and Lavan 2021; Kleingesinds et al., 2021;
Venanzi et al., 2018; Mahmoud and Cheng 2017; Wen and
Kang 2001a; Wen and Kang 2001b), and risk-based (Crosti
et al., 2010; Duthinh and Simiu 2010; Suksuwan and Spence
2018; Wang M. et al., 2021; Kwag et al., 2021; Roy et al., 2021;
Zheng et al., 2021) framework have been proposed to meet
different performance objectives (e.g., serviceability/comfort,
life safety).

Wen and Kang (2001a) formulated a generalized LCC
framework that considers both correlated and uncorrelated
earthquake and wind loads (Table 2). The MH framework
assumed that earthquake and wind hazards follow a Poisson
model (Wen 1990). The MH PBD framework considers
uncertainties in hazard, demand, capacity, and initial
construction Co and damage costs. The earthquake and wind
loads vary over time; however, the co-occurrence of the
maximum values for earthquake and wind loads is small, and
this correlation can be ignored (Wen and Kang 2001a; Wen
2001). Suksuwan and Spence (2018) and Chulahwat and
Mahmoud (2017), for example, integrated the PEER
earthquake λE(dv) and wind λW(dv) PBD frameworks
(Table 1) for earthquake and wind MH design, λMH(DV), as:

λMH(dv) � λE(dv) + λW(dv) (1)
With an increasing body of knowledge in the MH design
framework, there is no reported study for tall-timber
buildings. The MH framework for the tall-timber building is
presented in Figure 2.

TABLE 2 | LCC performance based design framework.

Reference Equation

Wen and Kang 2001a; Wen and Kang 2001b E[C(t,X)] � Co(X) + CF(X)(1−e−λtλ ) + Cm(X)
λ (1 − e−λt)

E (·) = expected value, Co = initial cost; X = design variable; e−λt = discounted factor over time t, λ = constant discount rate
per year; Cm = operation and maintenance cost per year; and CF(X) = total expected cost due to all (k) limit states;
defined as

CF(X) � ∑k
l�1Cl[∑n

i�1υiPi
l(X) +∑n−1

i�1 ∑n
j�i+1υijP

ij
l (X) + + ∑

n−2

i
∑n−1

j�1+1 ∑
n
k�j+1υijkP

ijk
l (X) +/]

υi = mean occurrence rate of hazard i; υij = υiυj(μdi + μdj ) = coincidence rate of hazards i and j; mean occurrence rate of

hazard i;; υijk = υiυjυk(μdiμdj + μdj
μdk

+ μdiμdk ) = coincidence rate of hazards i, j and k; mean occurrence rate of hazard i; Pi
l =

probability of limit-state l given the coincidence of hazard i; Pij
l = probability of limit-state l given the coincidence of hazard i

and j; Pijk
l = probability of limit-state l given the coincidence of hazard i, j and k; μdi = mean duration of hazard i
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SITE-SPECIFIC HAZARD AND
ENGINEERING DEMAND PARAMETERS

In 1910, the Seismology Society of America identified three
emerging areas (McGuire 2004): 1) earthquake event, 2)
associated ground motions, and 3) effect on structures. The
three emerging areas are still valid today for innovative
building systems to reliably quantify the im and edps. In wind
engineering, it has gone through similar evolution with the wind
loading chain (e.g., Kareem et al., 2019; Bezabeh et al., 2020b;
Solari 2020).

The edps in the PBD framework (Table 1) are structural
responses, such as acceleration and inter-story drift ratio (e.g.,
Tesfamariam and Goda 2015; Cui and Caracoglia 2020), obtained
through NLTHA. The site-specific hazard can be undertaken
using probabilistic seismic hazard analysis (McGuire 2004;
Atkinson and Goda 2013; Bommer and Stafford 2020)
framework, considering empirical equations (Shahi and Baker
2011; Stafford 2014) or physics-based (Atkinson and Silva 2000;
Yamamoto and Baker 2013) ground motion characterization.
Finally, different ground motion selection algorithms are used to
carry out the NLTHA (e.g., Bradley et al., 2015; Goda, 2015).

Advances in computational resources have enabled
researchers to develop high-resolution coupled physics-based
ground motion sources to structural simulation models
(Kenawy et al., 2021; McCallen et al., 2021). This eliminates
the epistemic uncertainty in quantifying free field and foundation
level shaking. This model, however, requires a detailed site-
specific source model and is computationally intensive. The
computationally intensive PBD simulations can be ameliorated
with a cloud-enabled computational platform (Deierlein et al.,
2020; Kareem 2020). This might not be suitable for preliminary
design iterations and verifications; however, it can be used for
final design validation.

Once the im at the site is obtained through the hazard analysis,
the im and edp relation is established through fragility curves
(e.g., Goda and Tesfamariam 2015; De Risi et al., 2019; Cui and
Caracoglia 2020; Le and Caracoglia 2021; Silva et al., 2021). Other
important areas that warrant investigation for tall-timber
buildings are the effect of long-duration earthquakes (Jennings
1970; Tesfamariam and Goda 2017), mainshock and aftershock
earthquake sequences (Goda 2015; Tesfamariam and Goda, 2017;
Tesfamariam and Goda 2015), a dependency between edps (Goda
and Tesfamariam 2015; De Risi et al., 2019), and directionality of
wind loads (e.g., Cui and Caracoglia 2020).

LOSS ASSESSMENT

The accuracy of the loss assessment is influenced by the available
data and the choices of relevant models and parameters
(Hosseinpour et al., 2021; Cremen and Baker 2021; O’Reilly
and Calvi 2019; Baker and Cornell 2008). In North America,
the current seismic loss assessment has evolved from expert-
driven (e.g., ATC 13, ATC 1985) to detailed simulation-based
models (HAZUS, FEMA–NIBS 2003; FEMA P58, FEMA 2000).
In a case where historical data are scarce, simulation-based

methods are viable options (Yang et al., 2009; Zareian and
Krawinkler 2012). HAZUS (FEMA–NIBS 2003; Kircher et al.,
2006) quantifies the loss assessment using the maximum inter-
story drift ratio obtained through simulation. Response of tall
buildings are subject to multimodal response, and the loss
assessment is better captured using a nonuniform evaluation
of loss distribution over the height (Shome and Luco 2010; Shome
et al., 2015). FEMA P58 (FEMA 2012; ATC 2018) developed a
fragility-based loss assessment tool named performance
assessment calculation tool. The performance assessment
calculation tool contains a large database consisting of the
mean and dispersion values of different consequence functions
(repair cost, repair time, casualty, and dollar loss). Aslani and
Miranda (2005) proposed a story-based loss assessment by
considering the damage, downtime due to business
interruption, injuries, and loss of lives. Different authors have
now developed simplified story-based loss assessments (e.g.,
Papadopoulos et al., 2019; Shahnazaryan et al., 2021). Similar
trends are followed in the loss assessment under wind load (e.g.,
Le and Caracoglia 2021; Micheli et al., 2019; Micheli et al., 2021;
Cui and Caracoglia 2018, 2020; Ierimonti et al., 2017; Ierimonti
et al., 2018).

The current state-of-the-art evaluation and design are moving
from loss quantification to post-earthquake recovery, called
resiliency (Cimellaro et al., 2010; Cimellaro 2013; McAllister
2016; Almufti and Willford 2021; Furley et al., 2021). A
comprehensive resilience rating system, Resilience-Based
Earthquake Design Initiative, was developed by Arup (Almufti
and Willford 2021). Wilson et al. (2021) implemented loss
assessment for CLT building using FEMA P58. Furley et al.
(2021) implemented a stochastic model to quantify the
resiliency of a two-story self-centering CLT building.

SOIL–STRUCTURE INTERACTION

SSI is influenced by the site conditions, foundation embedment,
flexibility, and shape on foundation impedance (Stewart et al.,
1999; Sotiriadis et al., 2020). This interaction is complex, and it
can have both beneficial and detrimental effects on the response
(Mylonakis and Gazetas 2000). Low-fidelity spring models (e.g.,
Stewart et al., 1999; Sotiriadis et al., 2020) and high-fidelity finite
element models (e.g., Rahmani et al., 2014; Arboleda-Monsalve
et al., 2020; McCallen et al., 2021) have been used for SSI. Low-
fidelity, linear, and nonlinear spring models can be used at the
foundation of the building structure (e.g., Stewart et al., 1999;
Sotiriadis et al., 2020). Lesgidis et al. (2018) proposed frequency-
and intensity-dependent spring models for SSI.

The SSI is an important intrinsic source of damping for tall
buildings (e.g., Cruz and Miranda, 2017). The SSI will
consequently impact the response of tall buildings under
earthquake and wind loads. However, the SSI effect is not
considered in the current tall-timber building design literature.
Liu et al. (2008) showed that for a wind-induced response of tall
buildings incorporating tuned mass damper (TMD), neglecting
the SSI overestimated the response and underestimated the
effectiveness of the TMD. Zhou et al. (2018), for eddy current
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TMD and wind-load application on tall buildings, showed that,
with consideration of SSI, the short return period acceleration
response exceeded the human comfort limit states.

DAMPING

Damping mechanisms in tall buildings are associated with
intrinsic/inherent (or structural), aerodynamic, hysteretic, and
supplemental/additional (Smith et al., 2010; Lago et al., 2018).
Factors that contribute to the damping are as follows (Yeh et al.,
1971; Cruz and Miranda, 2016, 2017): material, friction between
members and connections, structural system and joint types,
foundation and soil types, interior partitions, exterior cladding,
other nonstructural members, and vibration amplitude.

The damping associated with different mass timber building
typologies and connections can be quantified from field
measurement (e.g., Smith et al., 2010; Kijewski-Correa and
Pirnia, 2007). With in situ ambient vibration measurements,
Edskär and Lidelöw (2019) and Reynolds et al. (2016)
reported building height and damping relationship (Figure 3).
From Figure 3, it is apparent that, as expected, with the increase
in building height, the damping values are decreasing. The
damping–height empirical equations for steel, concrete, and
steel/concrete buildings reported in Smith et al. (2010) are
plotted in Figure 3. Overall, both have a similar trend, and
some of the timber-building damping values are bounded
between the empirical equation for steel and RC damping
values. The variability in the damping values for the timber
building is high, and this warrants more investigation to
understand the causal relation of different explanatory factors.
The current analytical studies reported on mass timber building
do not consider the SSI. Thus, the response obtained through the
in situmeasurements and analytical studies can be different (e.g.,
Edskär and Lidelöw 2017, 2019). Thus, future analytical studies
should incorporate the SSI in the damping calculations. The
building height and frequency relationship is shown in Figure 4.
One of the main explanatory factors for the reduction in damping

and frequency can be intrinsic damping (e.g., Tamura and
Suganuma 1996; Smith et al., 2010).

ENERGY DISSIPATION DEVICES

Motions of a building, due to earthquake and wind loads, are
traditionally controlled through mass and stiffness
proportioning. Increasing the stiffness, however, can increase
the acceleration demand. In addition, it can reduce the overall
seismic energy dissipation capacity with consequent unintended
failure of connections and capacity-protected elements (ASCE
2019). Using supplemental energy dissipators, the exceedance of
serviceability limit state can be reduced. Figure 5 depicts the
high-level category of the different supplemental energy
dissipation devices.

The supplemental energy dissipation devices can be
categorized as passive, active, semiactive, and hybrid damping
systems and seismic isolation systems (Soong and Spencer Jr
2002; Takewaki 2011; Lago et al., 2018; De Domenico et al., 2019;
Jafari and Alipour 2021b; Takewaki and Akehashi 2021).
Traditional passive control damping, such as TMD and tuned
liquid damper, are tuned to the fundamental period of the
structure and are not suitable for earthquake response
mitigation (Willford et al., 2008; Lago et al., 2018). Under
severe earthquake loads, the structural response will undergo
yielding and consequent period elongation. On the other hand,
metallic damper used for earthquake loads will not be suitable for
wind loads, as the serviceability wind loads will not yield metallic
dampers (Willford et al., 2008). Viscoelastic dampers
(Christopoulos and Montgomery 2013) are attractive damping
technology that can be used both for earthquake and wind loads.
Under MH design consideration, finding the right damper and
location by satisfying the MH performance limit states can be cast
as an optimization problem (e.g., Suksuwan and Spence 2018; Roy
et al., 2021).

Different papers are published on the application of energy
dissipation devices for tall buildings: earthquake (e.g.,

FIGURE 3 | Variation of damping with height. FIGURE 4 | Variation of frequency with height.

Frontiers in Built Environment | www.frontiersin.org March 2022 | Volume 8 | Article 8486987

Tesfamariam MH PBD Tall Timber Buildings

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Christopoulos and Montgomery 2013; Kasagi et al., 2016;
Nakamura and Hanzawa 2017; Zhou et al., 2018; Hashizume
and Takewaki 2020; Uemura et al., 2021), wind (e.g., Liu et al.,
2008; Giaralis and Petrini 2017), and MH (earthquake and wind)
(e.g., Roy and Matsagar 2019, 2020; Wang M. et al., 2021; Li et al.,
2021) loads. Use of base isolations for tall buildings under
earthquake (e.g., Taniguchi et al., 2016; Makita et al., 2018),
wind (e.g., Chen and Ahmadi 1992; Vulcano 1998; Cheng
et al., 2002), and MH (earthquake and wind) (e.g., Roy et al.,
2021) loads are also reported in the literature. Liu et al. (2008) and

Zhou et al. (2018), respectively, considered the influence of SSI on
TMD and eddy-current TMD on tall building response under
wind loads. Façades of buildings often are considered
nonstructural elements. Recent innovative
connections, however, are paving the way for the potential
use of the façades as distributed dampers (Jafari and Alipour
2021a,c).

The application of dampers in timber building is limited
(e.g., Huang and Chang 2018; Hashemi et al., 2020). The
damping for the mass timber is mostly considered with

FIGURE 5 | General classification of supplemental energy dissipation devices.
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energy dissipating connectors (e.g., Pu et al., 2016; Fitzgerald
et al., 2020). More studies, however, in light timber structures
are reported (Bolmsvik and Brandt 2013; Jayamon et al., 2018;
Ugalde et al., 2019; Tesfamariam et al., 2021b; Nakamura and
Fujii 2021).

OPTIMIZATION

The MH design optimization problems are subject to
uncertainties both on the demand and capacity (e.g.,
Rosenblueth 1986; Wen 2001; Franchin 2004; Der Kiureghian
and Ditlevsen 2009; Spence and Kareem 2014; Kleingesinds et al.,
2021). Different optimization under uncertainty algorithms is
proposed. The design optimization, under uncertainty, can be
cast under reliability-based design optimization (RBDO) (Aoues
and Chateauneuf 2010; Valdebenito and Schuëller 2010; Song
et al., 2021) and robust design optimization (RDO) (Chatterjee
et al., 2019; Chakraborty et al., 2021; Das et al., 2021) frameworks.
Subsequently, the problem is solved using gradient (e.g., Franchin
et al., 2018; Kleingesinds and Lavan 2021) or non-gradient
(derivate-free) (e.g., Hare et al., 2013; Afshari et al., 2019;
Umeura et al., 2021) optimization algorithms. In addition, the
design requirements to satisfy both earthquake and wind MH
loads can be conflicting, and the problem can be formulated
under a multi-objective optimization framework (e.g., Afshari
et al., 2019).

Reliability-Based Design Optimization
The RBDO technique has proven its utility for optimization
under uncertainty (Song et al., 2021). In RBDO, although user-
defined performance functions are optimized, probability
failure criterion is added as a constraint. The solution for
RBDO can be classified as formulated, among others, as two-
level and decoupled methods (De et al., 2021). The two-level
optimization, which is computationally intensive, entails the
use of two nested loops, i.e., the inner loop to solve the
reliability analysis and the outer loop to carry out the
design optimization. The decoupled method, which is less
computationally intensive, entails carrying out deterministic
RBDO by replacing the inner-loop reliability analysis (Madsen
and Hansen 1992). Spence et al. (2016) proposed an efficient
algorithm for the RBDO of a large-scale uncertain system.
Chakraborty and Roy (2011) used RBDO for the optimal
design of TMD under earthquake load. Altieri et al. (2018)
investigated the optimal design of a nonlinear viscous damper
using RBDO under earthquake load. Das et al. (2020) showed
the effectiveness of the estimation of tuning parameters of
nonlinear energy sink using RBDO. Ontiveros-Perez et al.
(2019) used RBDO of passive friction damper for mitigation
of earthquake-induced vibration. To enhance the seismic
performance of the base-isolated structure, Peng et al.
(2021) proposed a reliability-based optimization technique
for an adaptive sliding base isolation system. Zou et al.
(2010) studied the reliability-based optimization of the
base-isolated concrete building considering the drift of the
superstructure as a performance criterion.

Robust Design Optimization
A system is called robust when the system is insensitive to the
effects of uncertainty. The RDO method propagates uncertainty
by minimizing the mean and standard deviators of the structural
responses. This problem is solved as a multi-objective
optimization problem. Miguel et al. (2014) showed the optimal
location and parameters of friction damper using RDO. Yu et al.
(2013) carried out a reliability-based RDO of TMD tomitigate the
earthquake-induced vibration of building structures. The
effectiveness and robustness of TMD were studied by Greco
et al. (2015) to mitigate the seismic-induced vibration for
buildings. Lagaros and Fragiadakis (2007) proposed an LCC-
based RDO for the design of steel moment-resisting frames. The
RDO, for estimating the tuning parameters of nonlinear energy
sink with negative stiffness, was investigated by Chakraborty et al.
(2021) and Das et al. (2021).

Topology Optimization
With advances in finite element modeling, optimizing the shape
and form of the tall-timber building can be undertaken under
topology optimization. The topology optimization, for a
prescribed structural domain, under a set of the objective
function and design constraints, provides a rational approach
to obtain optimal layout (Sigmund and Maute 2013). Beghini
et al. (2014) presented a review of structural topology
optimization and highlighted the means of finding the balance
between engineering and architecture. This can be of particular
interest in tall-timber buildings, as it can integrate aesthetics and
structural factors in design. Martin and Deierlein (2020)
proposed modal compliance-based topology optimization for
the tall building subjected to dynamic seismic excitation.
Suksuwan and Spence (2018) proposed a simulation-centered
performance-based MH topology optimization framework for
earthquake and wind loads. Goli et al. (2021) showed the
parametric topology optimization of the lateral bracing
systems for tall buildings subjected to wind and gravity loads
using bidirectional evolutionary structural optimization. Gomez
et al. (2020, 2021) showed the topology optimization of the
building subjected to seismic and wind stochastic excitations,
respectively. Bobby et al. (2016, 2017) proposed a data-driven and
reliability-based topology optimization of uncertain wind-excited
tall buildings, respectively. Bobby et al. (2014) proposed a
performance-based topology optimization framework for
wind-excited tall buildings.

MULTI-FIDELITY SURROGATE MODELS

High-fidelity and detailed three-dimensional building models can
be used for the NLTHA of buildings (e.g., Rinaldin and
Fragiacomo 2016; Lu et al., 2018; Wang and Wu 2020;
Tesfamariam et al., 2021a). For computationally intensive
three-dimensional models or experimental data, however, the
use of a physics-informed neural network, surrogate models, and
multi-fidelity models can be the future direction (Peherstorfer
et al., 2018; Swischuk et al., 2019; Deierlein et al., 2020;
Chakraborty 2021; Karniadakis et al., 2021).
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Surrogate Models
For computationally expensive design and optimization, a
surrogate model (e.g., artificial neural network, Lehký et al.,
2018; response surface method, Foschi et al., 2002), constructed
using few training samples, can replace the original limit state.
In the surrogate model development, adaptive sampling
techniques can be considered to enhance the reliability of the
prediction. Such sampling techniques, for example, are Kriging
(e.g., Dubourg et al., 2011; Bernardini et al., 2014; Li et al., 2016;
Zhang et al., 2017), adaptive Kriging (Das and Tesfamariam
2020; Kroetz et al., 2020; Zhang et al., 2022), adaptive Bayesian
support vector regression (Wang J. et al., 2021), polynomial
chaos-based Kriging (Das et al., 2020), spectral representation
(Zhao et al., 2021), Kriging and adaptive wavelet network
(Micheli et al., 2020a), and Bayesian deep learning (Luo and
Kareem 2020). In uncertainty propagation, assemble of
surrogate models can be used (e.g., Wang et al., 2019; Das
et al., 2021). Micheli et al. (2020b) used multiple-surrogate
models for probabilistic performance assessment of wind-
excited tall buildings.

Physics-Informed Neural Network
A physics-based (informed) neural network (Wu et al., 2018;
Beucler et al., 2021; Haghighat and Juanes 2021) is an
emerging and promising modeling technique. In a physics-
based neural network, the physics of the problem (e.g.,
structural model output) is coupled with machine learning
(e.g., neural network) to develop surrogate models. Lai et al.
(2021) presented structural identification with physics-
informed neural ordinary differential equations. Yucesan
et al. (2021) proposed a framework using a physics-
informed neural network for adjusting the outputs of
torsional vibration dampers to experimental data. De
(2021) applied a physics-based neural network model for
base-isolated buildings and wind-excited tall structures.
Wang and Wu (2020) implemented a physics-informed
neural network for wind-induced nonlinear structural
dynamic analysis.

Multi-Fidelity Models
A state-of-the-art review on multi-fidelity models is discussed in
Peherstorfer et al. (2018). The multi-fidelity approach considers
the integration of a high-fidelity (higher accuracy, higher
computational cost) model with low fidelity (lower accuracy,
lower computational cost). The integration in the multi-fidelity
approach entails adaptation (i.e., enhancing the low-fidelity
model), fusion (i.e., combining the low- and high-fidelity
results), and filtering (i.e., the high-fidelity model is invoked
after filter using the low-fidelity results) (Peherstorfer et al., 2018).

The multi-fidelity approach is now applied to earthquake
engineering problems. Zhang et al. (2022) developed adaptive
multi-fidelity Gaussian process reliability analysis to solve
reliability problems. Royset et al. (2019) presented a multi-
fidelity analysis for risk-adaptive statistical learning method to
predict structural response. Yang and Perdikaris (2019) presented
conditional deep surrogate models for probabilistic data fusion

and multi-fidelity modeling of stochastic systems. Patsialis and
Taflanidis (2021) used a multi-fidelity Monte Carlo simulation
for seismic risk assessment. Sevieri et al. (2021) presented a multi-
fidelity Bayesian framework for robust seismic fragility analysis.
Chatzidaki and Vamvatsikos (2021) used a multi-fidelity model
for probabilistic seismic demand models for fragility assessment.
Zhou and Tang (2021) used multi-fidelity data fusion for the
efficient characterization of dynamic response variation. Li and
Jia (2020) used a multi-fidelity Gaussian process model
integrating low- and high-fidelity data considering censoring.
Xu et al. (2016) proposed a computational framework for regional
seismic simulation of buildings with multiple-fidelity models.
This risk assessment is suitable for regional seismic and wind
hazards loss assessment. Dey et al. (2021) used a multi-fidelity
approach for uncertainty quantification of buried pipeline
response undergoing fault rupture displacements. Lopez-
Caballero (2021) utilized a multi-fidelity approach for
probabilistic seismic analysis of liquefiable embankment.

Similar multi-fidelity approaches can be considered for
computing the edps under wind loads. To compute the edps in
the wind loading chain, high-frequency pressure integration wind
tunnel tests (Bezabeh et al., 2021a) or computational fluid dynamics
(CFD) (Kareem 2020) can be considered. Moni et al. (2020)
implemented an aeroelastic hybrid simulation of a base-pivoting
building model in a wind tunnel. The experimental testing is not
readily available for preliminary design and iteration. Reducing our
reliance on physical testing was one of the grand challenges put
forward by Masters (2016). Kareem (2020) and Ding and Kareem
(2018) implemented amulti-fidelity CFDmodeling approach, where
the results of low-fidelity (e.g., Reynolds-averaged Navier–Stokes)
and high-fidelity (e.g., large eddy simulation) simulations can be
combined. Lamberti and Gorlé (2021) implemented a multi-fidelity
machine learning framework to predict wind loads on buildings.
Karem and Kwon (2017) proposed cyber-based data-enabled wind
load effects on civil infrastructures. Bobby et al. (2016) proposed a
data-driven simulation-based framework for the effective topology
optimization of uncertain and dynamic wind-excited tall buildings.
Bernardini et al. (2014) proposed an aerodynamic shape
optimization of civil structures using a CFD-enabled
surrogate model.

CONCLUSION AND FUTURE DIRECTION

The rapid growth of the urban population and associated
environmental concerns challenged city planners and
developers to consider sustainable and cost-efficient building
systems. Mass timbers, such as CLT panels and glulam
members, have been used as viable, sustainable tall-timber
buildings. The tall-timber buildings, however, are lighter and
more flexible, which can make those buildings vulnerable to
earthquakes and wind loads. With emerging computational
tools and analytical models, carrying out PBD with high-
fidelity models is apparent. With the current and future
research direction in consideration, in this paper, we carried
out a state-of-the-art review on PBD for earthquake, wind, and
MH loads. The state-of-the-art review has highlighted the
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challenge and future direction for tall-timber building, which is
summarized below.

• With increasing complexity in the tall-timber buildings, the
need for a high-fidelity model and validation through
experimental work is apparent. Subsequently, multi-
fidelity modeling can be developed for design and
optimization.

• Damping is a critical factor that influences the response of
the building under earthquake and wind loads. As more tall-
timber buildings are constructed, quantifying the damping
values for tall-timber buildings is vital. This will enhance the
knowledge and confidence in designing the buildings under
MH. With more data collected on tall-timber buildings,
data-driven models (e.g., Spence and Kareem 2013) are a
viable alternative in the preliminary design phase.
Frequency dependency of the intrinsic damping and
different excitation levels, ameliorating the earthquake
and windMH design implementation, are challenging tasks.

• Current studies on tall-timber design and analysis do not
take the SSI into consideration. The importance of the SSI
was highlighted, and in this direction, future concerted
efforts should be made. To reduce the computational

cost, a multi-fidelity model of SSI, e.g., finite element and
spring models, can be implemented.

• For the MH design framework, component-based fragility
curves and loss data for tall-timber buildings should be
developed and ameliorated in the FEMA P58 database.

• The design of tall-timber buildings under MH loads is
complex and subject to uncertainties. This paper has
provided a review on design optimization under
uncertainty, with consideration of RBDO, RDO, and
topology optimization.
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