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A comparative study of machine learning regression algorithms for predicting the deflection
of laminated composite beams is presented herein. The problem of the scarcity of
experimental data is solved by ample numerically prepared data, which are necessary
for the training, validation, and testing of the algorithms. To this end, the pertinent
geometric and material properties of the beam are discretized appropriately, and a
refined higher-order beam theory is employed for the accurate evaluation of the
deflection in each case. The results indicate that the Extra-Trees algorithm performs
best, demonstrating excellent predictive capabilities.
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INTRODUCTION

Beams as structural components are crucial in many structural systems. The prediction of
their deflection is essential since excessive values can lead to the structural system losing
its operational serviceability (Serviceability Limit State—SLS). On the other hand,
composite materials are increasingly used in structural engineering due to their enhanced
stiffness combined with reduced weight. Several shear deformation theories have been
developed so far to evaluate the response of thin, moderately thick, or deep beams.
They fall into three main categories: the Euler-Bernoulli beam theory (or Classical
Beam Theory—CBT), the Timoshenko beam theory (or First Order Beam
Theory—FOBT) and the Higher-Order Beam Theories (HOBTs). CBT is applicable for
thin beams with no shear effect. In the FOBT, a constant state of transverse shear strain is
assumed that does not satisfy the zero shear stress condition at the top and bottom edges
of the beam and thus requires a shear correction factor to compensate for this error (see,
e.g., Wang et al., 2000; Eisenberger, 2003; Civalek and Kiracioglu, 2010; Lin and Zhang, 2011;
Endo, 2016). In general, the HOBTs adopt a specific function (parabolic, trigonometric,
exponential, or hyperbolic) to more accurately represent the shear stress distribution along
the beam’s thickness and do not require the shear correction factor (see e.g., Reddy, 1984;
Heyliger and Reddy, 1988; Khdeir and Reddy, 1997; Murthy et al., 2005; Vo and Thai, 2012;
Pawar et al., 2015; Nguyen et al., 2017; Srinivasan et al., 2019). The literature contains a
plethora of publications on the subject, and the interested reader is referred to the excellent
review paper of Liew et al. (2019). In this investigation, a refined higher-order beam theory
is utilized for the analysis of laminated composite beams based on Reddy-Bickford’s third-
order beam theory (Wang et al., 2000) which was derived independently by Bickford (1982) and
Reddy (1984).
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Utilizing higher-order beam theories for more accurate
analyses entails a significant increase in complexity as
compared to low-order theories, as the latter are
mathematically simpler and more widely used. The main
motivation of this work is to bridge this gap and provide a
simple computational tool to allow for the fast design of beams
while keeping the best of both worlds, i.e., the more accurate
results of a refined high-order theory and the ease of
application of the low-order theories. In order to achieve
that, the geometric and material variables are discretized
within fairly wide, yet reasonable ranges. After applying the
high-order analyses, the results are collected, tabulated, and
used as input for multiple machine learning algorithms,
i.e., regression models. These models provide a fast and
easy-to-use computational tool that can be used for
preliminary design and optimization. Regression analysis
also yields important insights regarding the performance of
each model, the effect of boundary conditions, and the relative
importance of each input variable for the problem at hand.

The rest of the paper is organized as follows. A theoretical
formulation of the problem is carried out and explained in detail
next, followed by a summary of the regression methods utilized in
this work. The numerical results are presented next, along with
their discussion. Finally, the conclusions drawn based on the
findings of this work are presented.

THEORETICAL FORMULATION

Consider an elastic symmetric cross-ply laminated rectangular
beam (b × h) of length l, with x being the axial coordinate and z
being the coordinate along the thickness of the beam. The fibers
of each ply are aligned at an angle θ with respect to the x axis (see
Figure 1).

The beam is subjected to a transverse distributed loading pz,
respectively. Based on the higher-order theory for laminated
composite plates introduced by Reddy (1984), the
displacement field of an arbitrary point on the beam cross-
section is given by

u1(x, z) � z[ψ(x) − 4
3
z2

h2
(ψ(x) + zw(x)

zx
)] (1)

u2(x, z) � 0 (2)
u3(x, z) � w(x) (3)

where w(x) is the transverse displacement of the midplane
(z � 0); ψ(x) is the rotation of a normal to the midplane, and
x, z are the axial and thickness coordinates of the beam.

Splitting the transverse displacement w(x) into a bending
wb(x) and a shear ws(x) component, i.e., Vo and Thai (2012).

w(x) � wb(x) + ws(x) (4)
and introducing the transformation

zws(x)
zx

� ψ(x) + zw(x)
zx

orψ(x) � −[zw(x)
zx

− zws(x)
zx

]
� −zwb(x)

zx
(5)

Equations 1–3 can be rewritten in the following form

u1(x, z) � −z zwb(x)
zx

− f(z) zws(x)
zx

(6)
u2(x, z) � 0 (7)

u3(x, z) � wb(x) + ws(x) (8)
where f(z) � 4

3
z3

h2. The displacement field given above yields the
following nonzero components of the strain tensor

εx � −z z
2wb

zx2
− f(z) z

2ws

zx2
(9)

γxz � [1 − df(z)
dz

] zws

zx
� g(z) zws

zx
(10)

where g(z) � (1 − 4z2
h2 ), and for reasons of brevity wb � wb(x)

and ws � ws(x).
Substituting Eqs 9, 10 into the stress-strain relations for the

kth lamina in the lamina coordinate we obtain (Khdeir and
Reddy, 1997)

σ(k)
x � �Q

(k)
11 εx (11)

τ(k)xz � �Q
(k)
55 γxz (12)

with �Q
(k)
11 , �Q

(k)
55 being the well-known transformed elastic

stiffnesses

�Q
(k)
11 � Q(k)

11 cos4θk + 2(Q(k)
12 + 2Q(k)

66 )sin2θk cos
2θk + Q(k)

22 sin4θk

(13)
�Q
(k)
55 � Q(k)

44 sin2θk + Q(k)
55 cos2θk (14)

and Q(k)
11 , Q

(k)
12 , Q

(k)
22 , Q

(k)
44 , and Q(k)

55 are

Q(k)
11 � E(k)

1

1 − ](k)12 ]
(k)
21

, Q(k)
12 � E(k)

2 ](k)12

1 − ](k)12 ]
(k)
21

, Q(k)
22 � E(k)

2

1 − ](k)12 ]
(k)
21

(15)

Q(k)
44 � G(k)

23 , Q
(k)
55 � G(k)

13 , Q
(k)
66 � G(k)

12 (16)
while θk is the angle between the principal material axis and the
coordinate x axis.

Applying the Principle of Virtual Work

∫l
0

∫
A

[σ(k)
x δεx + τ(k)xz δγxz]dAdx − ∫l

0

[pzδ(wb + ws)]dx � 0 (17)

FIGURE 1 | Geometry of a cross-ply laminated composite beam.
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and substituting Eqs 9, 10 yields

∫l
0

∫
A

{σ(k)x [ − z
z2δwb

zx2 − f(z) z
2δws

zx2 ] + τ(k)xz g(z)
zδws

zx
}dAdx

−∫l
0

[pz(δwb + δws)]dx � 0

(18)
Introducing now the following stress resultants

Mb � ∫
A

zσ(k)x dA, Ms � ∫
A

f(z)σ(k)x dA, Q � ∫
A

g(z)τ(k)xz dA (19)

Eq. 18 become

∫l
0

( −Mb
z2δwb

zx2
−Ms

z2δws

zx2
+ Q

zδws

zx
)dx − ∫l

0

[pz(δwb + δws)]dx � 0

(20)
Integrating the appropriate terms in the above equation and

collecting the coefficients of δwb, and δws we obtain the following
governing equations

z2Mb

zx2
� −pz (21)

z2Ms

zx2
+ zQ

zx
� −pz (22)

together with the following associated boundary conditions of the
form: specify

wb orQb ≡
zMb

zx
(23)

ws orQs ≡
zMs

zx
+ Q (24)

zwb

zx
orMb (25)

zws

zx
orMs (26)

Substituting Eqs 11, 12 into Eq. 19 and using Eqs 9, 10 yields
the stress resultants in terms of the displacements as

Mb � −D11
z2wb

zx2
− F11

z2ws

zx2
(27)

Ms � −F11
z2wb

zx2
−H11

z2ws

zx2
, Q � A55

zws

zx
(28)

where

D11 � b ∫h/2
−h/2

�Q
(k)
11 z

2dz, F11 � b ∫h/2
−h/2

�Q
(k)
11 zf(z)dz,

H11 � b ∫h/2
−h/2

�Q
(k)
11 f

2(z)dz (29)

A55 � b ∫h/2
−h/2

�Q
(k)
55 g

2(z)dz (30)

Finally, after the substitution of the stress resultants, Eqs 27,
28 into Eqs 21, 22, we arrive at the equilibrium equations in terms
of the displacements

−D11
z4wb

zx4
− F11

z4ws

zx4
� −pz (31)

−F11
z4wb

zx4
−H11

z4ws

zx4
+ A55

z2ws

zx2
� −pz (32)

which together with the pertinent boundary conditions (23)–(26)
constitute the boundary value problem solved using the Analog
Equation Method (AEM), a robust numerical method based on
an integral equation technique (Katsikadelis and Tsiatas, 2003;
Tsiatas et al., 2018).

REGRESSION MODELS

In this work, several linear and nonlinear regression models are
comparatively examined. Linear regression is a linear model that
assumes a linear relationship between the input variables and the
output variable, and the predicted value can be calculated from a
linear combination of the input variables (Narula and
Wellington, 1982). The distance from each data point to the
predicted values is calculated and sum all these squared errors
together. This quantity is minimized by the ordinary least squares
method to estimate the optimal values for the coefficients of each
independent variable.

There are extensions of the linear model called regularization
methods. These methods seek to both minimize the sum of the
squared error of the model on the training set but also to reduce the
complexity of the model. Two popular regularization methods for
linear regression are the Lasso Regression (Zou et al., 2007) where
Ordinary Least Squares is modified to also minimize the absolute
sum of the coefficients (L1 regularization), and the Ridge Regression
(Hoerl et al., 1985) where Ordinary Least Squares is modified to also
minimize the squared absolute sum of the coefficients (L2
regularization). A Bayesian view of ridge regression is obtained
by noting that the minimizer can be considered as the posterior
mean of a model (Tipping, 2001). The elastic net (Friedman et al.,

TABLE 1 | Boundary conditions examined for the prediction of the maximum
deflection max �w.

Boundary conditions x � 0 x � l

Clamped-Clamped (CC) wb � 0, ws � 0 wb � 0, ws � 0
zwb
zx � 0, zwb

zs � 0 zwb
zx � 0, zwb

zs � 0
Simply Supported (SS) wb � 0, ws � 0 wb � 0, ws � 0

Mb � 0, Ms � 0 Mb � 0, Ms � 0
Clamped-Roller (CR) wb � 0, ws � 0 wb � 0, ws � 0

zwb
zx � 0, zwb

zs � 0 Mb � 0, Ms � 0

Clamped-Free (CF) wb � 0, ws � 0 Mb � 0, Ms � 0
zwb
zx � 0, zwb

zs � 0 Qb � 0, Qs � 0
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2010) is a regularized regression method that linearly combines the
L1 and L2 penalties of the lasso and ridgemethods. Huber’s criterion
is a hybrid of squared error for relatively small errors and absolute
error for relatively large ones. Lambert-Lacroix and Zwald (2011)
proposed Huber regressor to combine Huber’s criterion with
concomitant scale and Lasso.

An L1 penalty minimizes the size of all coefficients and allows any
coefficient to go to the value of zero, acting as a type of feature
selection method since removes input features from the model. Least
Angle Regression (Efron et al., 2004) is a forward stepwise version of
feature selection for regression that can be adapted for the Lasso not
to require a hyperparameter that controls the weighting of the penalty
in the loss function since the weighting is discovered automatically by
Least Angle Regression method via cross-validation. LassoLars is a
lasso model implemented using the Least Angle Regression
algorithm, where unlike the implementation based on coordinate
descent, this yields the exact solution, which is piecewise linear as a
function of the norm of its coefficients.

Orthogonal matching pursuit (Pati et al., 1993) tries to find the
solution for the L0-norm minimization problem, while Least
Angle Regression solves the L1-norm minimization problem.
Although these methods solve different minimization
problems, they both depend on a greedy framework. They
start from an all-zero solution, and then iteratively construct a
sparse solution based on the correlation between features of the
training set and the output variable. They converge to the final
solution when the norm approaches zero.

K Neighbors Regressor (KNN) algorithm uses feature similarity
to predict the values of new instances (Altman, 1992). The distance
between the new instance and each training instance is calculated,
the closest k instances are selected based on the preferred distance
and finally, the prediction for the new instance is the average value of
the dependent variable of these k instances.

Unlike linear regression, Classification and Regression Tree
(CART) does not create a prediction equation, but data are
partitioned into subsets at each node according to homogeneous
values of the dependent variable and a decision tree is built to be used
for making predictions about new instances (Breiman et al., 1984).
We can enlarge the tree until always gives the correct value in the
training set. However, this tree would overfit the data and not
generalize well to new data. The correct policy is to use some
combination of a minimum number of instances in a tree node
and maximum depth of tree to avoid overfitting.

TABLE 2 | Evaluation metrics for the clamped-clamped beam.

Model MAE MSE RMSE R2 RMSLE MAPE

Extra Trees Regressor 0.0251 0.0074 0.0834 0.9994 0.0132 0.0148
Random Forest Regressor 0.0381 0.0135 0.1148 0.9988 0.0157 0.0187
Decision Tree Regressor 0.0556 0.0301 0.1705 0.9975 0.0242 0.0271
Light Gradient Boosting Machine 0.0598 0.0203 0.1407 0.9983 0.0257 0.1170
Gradient Boosting Regressor 0.2771 0.3469 0.5881 0.9706 0.1271 0.8407
K Neighbors Regressor 0.3146 1.3540 1.1630 0.8856 0.1017 0.0909
AdaBoost Regressor 1.0111 2.0725 1.4199 0.8252 0.3944 3.6655
Huber Regressor 1.0685 7.6780 2.7694 0.3521 0.3831 4.0658
Elastic Net 1.3421 7.9422 2.8167 0.3297 0.4896 3.1981
Lasso Regression 1.4131 8.3905 2.8951 0.2919 0.5120 3.6771
Bayesian Ridge 1.4203 6.2225 2.4931 0.4749 0.5315 8.7274
Ridge Regression 1.4205 6.2225 2.4931 0.4749 0.5316 8.7319
Linear Regression 1.4206 6.2225 2.4931 0.4749 0.5317 8.7329
Least Angle Regression 1.4206 6.2225 2.4931 0.4749 0.5317 8.7329
Orthogonal Matching Pursuit 1.5371 8.2780 2.8759 0.3011 0.5044 4.2803
Passive Aggressive Regressor 1.9945 11.1782 3.3257 0.0605 0.7021 10.8439
Lasso Least Angle Regression 1.9986 11.8425 3.4402 0.0001 0.7724 11.0424

FIGURE 2 | (A) Feature importance plot and (B) correlation matrix
heatmap for the clamped-clamped beam.
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The basic idea of Boosting is to combine several weak learners
into a stronger one. AdaBoost (Freund and Schapire, 1997) fits a
regression tree on the training set and then retrains a new
regression tree on the same dataset but the weights of each
instance are adjusted according to the error of the previous
tree predictions. In this way, subsequent regressors focus more
on difficult instances.

Random Forests algorithm (Breiman, 2001) builds several trees
with the CART algorithm using for each tree a bootstrap replica of
the training set with a modification. At each test node, the optimal
split is derived by searching a random subset of size K of candidate
features without replacement from the full feature set.

Like Random Forests, Gradient Boosting (Friedman, 2001) is
an ensemble of trees, however, there are two main differences.
Firstly, the Random forests algorithm builds each tree
independently while Gradient Boosting builds one tree at a
time since it works in a forward stage-wise manner,
introducing a weak learner to improve the shortcomings of
existing weak learners. Secondly, Random Forests combine
results at the end (by averaging the result of each tree) while
Gradient Boosting combines results during the process.

LightGBM (Ke et al., 2017) extends the gradient boosting
algorithm by adding automatic feature selection and focusing on
instances with larger gradients to speed up training and
sometimes even improve predictive performance.

The Extra-Trees algorithm (Geurts et al., 2006) creates an
ensemble of unpruned regression trees according to the well-
known top-down procedure of the regression trees. The main
differences concerning other tree-based ensemble methods are
that the Extra-Trees algorithm splits nodes by choosing fully at
random cut-points and that uses the whole learning set (instead
of a bootstrap replica) to grow the trees.

Passive-Aggressive regressor (Crammer et al., 2006) is generally
used for large-scale learning since it is an online learning algorithm.
In online learning, the input data come sequentially, and the learning
model is updated step-by-step, as opposed to batch learning, where
the entire dataset is used at once.

NUMERICAL RESULTS AND DISCUSSION

The scope of the current study is to exploit predictive models for
the maximum deflection maxw of a symmetric cross-ply (θ°1/ θ

°
2/

θ°3) rectangular beam for various span-to-depth ratios and

TABLE 3 | Evaluation metrics for the simply supported beam.

Model MAE MSE RMSE R2 RMSLE MAPE

Extra Trees Regressor 0.0749 0.0767 0.2718 0.9994 0.0157 0.0135
Random Forest Regressor 0.1127 0.1591 0.3935 0.9987 0.0187 0.0180
Decision Tree Regressor 0.1465 0.2294 0.4735 0.9981 0.0265 0.0258
Light Gradient Boosting Machine 0.2106 0.3258 0.5617 0.9973 0.0479 0.1556
K Neighbors Regressor 0.8682 12.9351 3.5942 0.8948 0.1158 0.0934
Gradient Boosting Regressor 1.1417 6.0163 2.4496 0.9510 0.2931 1.8173
AdaBoost Regressor 3.0602 22.0956 4.6723 0.8184 0.5993 4.5067
Huber Regressor 3.5208 82.9872 9.1049 0.3260 0.6283 7.3794
Elastic Net 4.1196 77.5224 8.7998 0.3705 0.7620 5.9456
Lasso Regression 4.2209 71.8424 8.4713 0.4166 0.7876 10.1221
Bayesian Ridge 4.6000 68.3098 8.2607 0.4452 0.9092 16.0915
Ridge Regression 4.6008 68.3098 8.2607 0.4452 0.9094 16.1014
Linear Regression 4.6010 68.3098 8.2607 0.4452 0.9094 16.1033
Least Angle Regression 4.6010 68.3098 8.2607 0.4452 0.9094 16.1033
Passive Aggressive Regressor 4.6651 90.8374 9.5039 0.2608 0.8824 10.9468
Orthogonal Matching Pursuit 4.8283 83.9710 9.1597 0.3178 0.8392 9.1774
Lasso Least Angle Regression 6.4298 123.0726 11.0899 0.0002 1.2440 19.9475

FIGURE 3 | (A) Feature importance plot and (B) correlation matrix
heatmap for the simply supported beam.
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boundary conditions subjected to a uniformly distributed load pz.
All laminates are of equal thickness and made of the same
orthotropic material. The main parameters that influence the
response of the composite beams are the moduli of elasticity
E1, E2, the span-to-depth L � l/h and the ply angles θ°1/ θ

°
2/ θ

°
3.

The range of values of the parameters together with the material

properties are given as: E1, E2 � {1, 2, 3, ...15}, G12 � G13 � 0.5E2,
G23 � 0.2E2, ]12 � 0.25, L � l/h � {1, 2, 3, 4, 5},
θ1, θ2 � {0, π/8, π/4, 3π/4, π/2}, and θ1 � θ3 (due to symmetry).
For the given range of the parameters, Eqs 31, 32 are solved
numerically producing a comprehensive database for each one of
the examined boundary conditions presented in Table 1. This
dataset contains 15 × 15 × 5 × 5 × 5 � 28125 values of maxw
which are used in the regression analysis.

A plethora of regression algorithms, presented in the previous
section, were employed for building corresponding predictive
models of the maxw using pyCaret (Ali, 2020), which is an open-
source software machine learning library. A 5-fold cross-
validation resampling procedure was used for evaluating the
performance of the predictive models. The dataset was
randomly divided into five folds of equal size and each fold
was used for evaluating the performance of the model trained on
the rest folds, whereas the final measure was the average value of
the computed evaluation metrics on each test fold. Evaluation
metrics are a measure of how well a model performs. The most
popularly used evaluation metrics for regression problems are the
mean absolute error (MAE), the mean absolute percentage error
(MAPE), the mean square error (MSE), the root mean square
error (RMSE), the root mean squared log error (RMSLE) and the
coefficient of determination. The lower the value of these metrics
the better the model. The perfect value of metrics is 0, indicating
that the prediction model is perfect. To quantify the accuracy of
the examined algorithms, the following evaluation metrics are
used herein:

Mean absolute error (MAE)

MAE � 1
n
∑n

i�1

∣∣∣∣∣∣∣∣∣y′i − yi

∣∣∣∣∣∣∣∣∣ (33)

Mean absolute percentage error (MAPE)

MAPE � 1
n
∑n

i�1(∣∣∣∣y′
i − yi

∣∣∣∣)/∣∣∣∣y′
i

∣∣∣∣ (34)

TABLE 4 | Evaluation metrics for the clamped-roller beam.

Model MAE MSE RMSE R2 RMSLE MAPE

Extra Trees Regressor 0.0397 0.0210 0.1403 0.9993 0.0142 0.0142
Random Forest Regressor 0.0601 0.0376 0.1918 0.9987 0.0172 0.0186
Decision Tree Regressor 0.0852 0.0721 0.2638 0.9976 0.0254 0.0268
Light Gradient Boosting Machine 0.0993 0.0666 0.2549 0.9978 0.0332 0.1292
K Neighbors Regressor 0.4656 3.2736 1.8083 0.8909 0.1071 0.0919
Gradient Boosting Regressor 0.5088 1.1518 1.0700 0.9615 0.1890 1.2013
Huber Regressor 1.7188 19.7571 4.4425 0.3424 0.4678 5.1283
AdaBoost Regressor 1.9549 6.6004 2.5493 0.7802 0.5716 4.7368
Lasso Regression 2.0176 18.5644 4.3062 0.3821 0.5470 4.0458
Elastic Net 2.0676 19.4144 4.4038 0.3538 0.5769 3.7886
Bayesian Ridge 2.2615 16.1679 4.0188 0.4618 0.6690 11.0123
Ridge Regression 2.2619 16.1679 4.0188 0.4618 0.6691 11.0184
Linear Regression 2.2620 16.1679 4.0188 0.4618 0.6691 11.0197
Least Angle Regression 2.2620 16.1679 4.0188 0.4618 0.6691 11.0197
Passive Aggressive Regressor 2.3236 22.4124 4.7312 0.2528 0.6799 8.8763
Orthogonal Matching Pursuit 2.4143 20.6503 4.5424 0.3123 0.6195 5.8559
Lasso Least Angle Regression 3.1842 30.0259 5.4778 0.0001 0.9493 13.8389

FIGURE 4 | (A) Feature importance plot and (B) correlation matrix
heatmap for the clamped-roller beam.
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Mean square error (MSE)

MSE � 1
n
∑n

i�1(y′
i − yi)2 (35)

Root mean square error (RMSE)

RMSE �
��������������
1
n
∑n

i�1(y′
i − yi)2√

(36)

Root mean squared log error (RMSLE)

RMSLE �
����������������������������
1
n
∑n

i�1(log(y′
i + 1) − log(yi + 1))2√

(37)

Coefficient of determination (R2)

R2 � SSreg
SStot

� ∑j(y′
i − �y)2∑i(yi − �y)2 , (38)

where y′i refers to predicted values, and yi refers to true values.
SSreg is the regression sum of squares (i.e., explained sum of
squares), and SStot is the total sum of squares, which is
proportional to the variance of the data. The coefficient of
determination (R2) is the square of the correlation between
the actual and predicted variable and ranges from 0 to 1. A
zero value indicates that the model cannot explain any of the
predicted variables. A value of 1 indicates that the regression
model explains perfectly the predicted variable.

Apart from the evaluation metrics of the machine learning
algorithms, two other useful tools are presented for the predictive
analysis of the maxw. First, the feature importance is a technique
for assigning scores to input features that indicate the relative
importance of each feature for the prediction. The scores can
highlight which features are most relevant to the target and the
opposite, i.e., which features are the least relevant. Most
importance scores are calculated using the most accurate
predictive model that has been fit on our data (Louppe et al.,
2013). Second, the correlation matrix heatmap illustrates the
correlation dependence between the variables of the database.
That is, each square of the matrix represents the correlation
between the attributes paired on the two axes. A value of +1 (or
−1) indicates a perfect correlation between two variables, with +1
indicating a positive correlation and −1 a negative (inverse)

TABLE 5 | Evaluation metrics for the clamped-free beam.

Model MAE MSE RMSE R2 RMSLE MAPE

Extra Trees Regressor 0.5528 4.8885 2.1609 0.9995 0.0207 0.0122
Random Forest Regressor 0.8671 11.6799 3.3623 0.9987 0.0230 0.0165
Decision Tree Regressor 1.0436 17.3124 4.0909 0.9982 0.0314 0.0228
Light Gradient Boosting Machine 1.8359 25.0335 4.9130 0.9973 0.1280 0.2147
K Neighbors Regressor 7.1088 960.7922 30.9752 0.8967 0.1458 0.0958
Gradient Boosting Regressor 10.4671 513.5992 22.6138 0.9448 0.7340 3.1057
AdaBoost Regressor 27.1617 1772.9870 41.8579 0.8069 1.1216 6.1978
Huber Regressor 30.9933 6409.2110 80.0145 0.3120 1.2242 11.7426
Passive Aggressive Regressor 32.4646 6467.0355 80.3816 0.3054 1.3298 14.5124
Elastic Net 36.0246 5755.0187 75.8199 0.3823 1.4109 11.3018
Lasso Regression 39.6877 5288.4303 72.6848 0.4323 1.6179 24.8280
Bayesian Ridge 40.2698 5283.6727 72.6527 0.4328 1.6414 26.0519
Ridge Regression 40.2777 5283.6730 72.6527 0.4328 1.6417 26.0694
Linear Regression 40.2791 5283.6732 72.6527 0.4328 1.6418 26.0725
Least Angle Regression 40.2791 5283.6734 72.6527 0.4328 1.6418 26.0725
Orthogonal Matching Pursuit 41.8498 6342.4469 79.6055 0.3189 1.5624 15.6819
Lasso Least Angle Regression 55.7829 9312.0379 96.4636 0.0002 2.0693 32.0586

FIGURE 5 | (A) Feature importance plot and (B) correlation matrix
heatmap for the clamped-free beam.
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correlation; a value in the range from 0.6 to 1 (or from −0.6 to −1)
indicates a strong correlation; a value between 0.4 and 0.6 (or
between −0.4 and −0.6) indicates a moderate correlation; a value
in the range from 0 to 0.4 (or from 0 to −0.4) indicates a weak
correlation.

Clamped-Clamped Beam
First, a clamped-clamped beam is analyzed. The evaluation
metrics of the employed regression algorithms are tabulated in
Table 2. The Extra-Trees Regressor algorithm is the most
effective algorithm reaching a R2 value of 0.9994, followed by
the Random Forest Regressor and the Decision Tree Regressor.
By examination of the evaluation metrics, it is obvious that there
are significant differences in the effectiveness between algorithms.
Nevertheless, the algorithms that perform best do so consistently
for all problems, as will be demonstrated.

From the feature importance plot (see Figure 2A), it is
observed that the most important parameters for predicting
the target attribute maxw is the modulus of elasticity E2 and
the span-to-depth ratio L(� l/h). Next comes the ply angle
th1(� θ°1) which is more important than E1, and th2(� θ°2).
Moreover, the correlation matrix heatmap has been evaluated
for this problem; in this figure, the blue color indicates a negative
correlation between the two parameters, while the red one
indicates a positive correlation. Moreover, the intensity of the
color implies how strongly these attributes are correlated,
meaning that the deeper color corresponds to a stronger
correlation. The correlation matrix heatmap of Figure 2B
reveals that the maximum deflection is positively correlated
with the parameters L, θ°1, θ

°
2 and negatively correlated with

E1 and E2. This means that increase of the span-to-depth ratio or
increase of the angles of the plies leads to an increase of the
maximum deflection. Conversely, an increase of either elastic
moduli leads to a decrease in the maximum deflection.
Nevertheless, E2 is more strongly correlated with maxw than
E1. Finally, the ply angle θ°1 seems to be more important than the
angle θ°2 in making the beam stiffer, yet the difference is small.

Simply Supported Beam
In this second example, a simply supported beam is analyzed. The
Extra-Trees Regressor algorithm outperforms the other
regression algorithms once again (see Table 3). The feature
importance plot (see Figure 3A) shows an importance
sequence different from that of the previous example. That is,
the span-to-depth ratio L(� l/h) is more important than the
modulus of elasticity E2, while the ply angle th1(� θ°1) is more
important than E1 and th2(� θ°2). Furthermore, the correlation
matrix heatmap shown in Figure 3B reveals that, again, the
maximum deflection is positively correlated with the parameters
L, θ°1, θ

°
2 and negatively correlated with E1 and E2. As previously,

the correlation of E2 is significantly stronger than that of E1. The
ply angles exhibit weak positive correlations with the maximum
deflection, with th1(� θ°1) being the prevailing one.

Clamped-Roller Beam
In this example, a clamped-roller beam is analyzed. InTable 4 it is
shown that the Extra-Trees Regressor algorithm is again the most
effective, as compared to the other regression algorithms. The
feature importance plot (see Figure 4A) shows once more a
similar to the clamped-clamped beam importance sequence. That
is, the most important parameter is the modulus of elasticity E2,
followed closely by the span-to-depth ratio L(� l/h). The ply
angle th1(� θ°1) is more important than E1, and th2(� θ°2).
Furthermore, the correlation matrix heatmap shown in
Figure 4B reveals that, again, the maximum deflection is
positively correlated with the parameters L, θ°1, θ°2 and
negatively correlated with E1 and E2. The elastic modulus E2

exhibits a stronger correlation with the maximum deflection than
E1. As in the case of the clamped-clamped beam, the ply angle θ°1
is more important than the angle θ°2.

Clamped-free Beam
In the case of a clamped-free beam (cantilever), while the
evaluation metrics designates once more the Extra-Trees
Regressor algorithm superiority (see Table 5), the feature

TABLE 6 | Friedman ranking.

Model Rank (w.r.t.
MAE)

Model Rank (w.r.t.
MAPE)

Model Rank (w.r.t.
R2)

Extra-Trees Regressor 1 Extra-Trees Regressor 1 Extra-Trees Regressor 1
Random Forest Regressor 2 Random Forest Regressor 2 Random Forest Regressor 2
Decision Tree Regressor 3 Decision Tree Regressor 3 Light Gradient Boosting Machine 3.5
Light Gradient Boosting Machine 4 K Neighbors Regressor 4 Decision Tree Regressor 3.5
K Neighbors Regressor 5.25 Light Gradient Boosting Machine 5 Gradient Boosting Regressor 5
Gradient Boosting Regressor 5.75 Gradient Boosting Regressor 6 K Neighbors Regressor 6
AdaBoost Regressor 7.25 Elastic Net 7.5 AdaBoost Regressor 7
Huber Regressor 7.75 AdaBoost Regressor 7.75 Ridge Regression 9.5
Elastic Net 9.5 Huber Regressor 9.5 Linear Regression 9.5
Lasso Regression 10 Lasso Regression 10 Bayesian Ridge 9.5
Bayesian Ridge 11.25 Orthogonal Matching Pursuit 10.75 Least Angle Regression 9.5
Ridge Regression 12.25 Passive Aggressive Regressor 12.5 Lasso Regression 12.75
Passive Aggressive Regressor 13.75 Bayesian Ridge 12.75 Elastic Net 13
Linear Regression 13.75 Ridge Regression 13.75 Huber Regressor 13.75
Least Angle Regression 13.75 Linear Regression 15.25 Orthogonal Matching Pursuit 14.5
Orthogonal Matching Pursuit 15.75 Least Angle Regression 15.25 Passive Aggressive Regressor 16
Lasso Least Angle Regression 17 Lasso Least Angle Regression 17 Lasso Least Angle Regression 17
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importance plot (see Figure 5A) presents a similar to the simply
supported beam importance sequence. That is, the most
important parameter is the span-to-depth ratio L(� l/h)
followed the modulus of elasticity E2. The ply angle th1(� θ°1)
is more important than E1, and th2(� θ°2).

The correlation matrix heatmap (see Figure 5B) again shows
that the maxw is positively correlated with the parameters L, θ°1,
θ°2 and negatively correlated with E1 and E2. In this case, the ply
angle θ°1 is significantly more strongly correlated with the
maximum deflection than the angle θ°2.

Friedman Ranking
Finally, to better assess the results obtained from each algorithm,
the Friedman test methodology proposed by Demšar (2006) was
employed for the comparison of several algorithms over multiple
datasets (Table 6). As was expected, the Extra-Trees Regressor
algorithm is the most accurate in our case. A simple
computational tool, written in JAVA programming language
using Weka API (Hall et al., 2009) along with the relevant
data, is provided to the interested reader as Supplementary
Data to this article.

CONCLUSION

In this paper, several machine learning regression models were
employed for the prediction of the deflection of symmetric
laminated composite beams subjected to a uniformly distributed
load. Training, validation, and testing of the models require large
amounts of data that cannot be provided by the scarce experiments.
Instead, ample amounts of data are generated numerically using a
refined higher-order beam theory for various span-to-depth ratios
and boundary conditions, by appropriate discretization of all
pertinent geometric and material properties.

Themain conclusion that can be drawn from this investigation
are as follows:

• Regarding the regression models, the Extra-Trees algorithm
is, without doubt, the best performer for all cases of
boundary conditions, followed by the Random Forest
Regressor, the Decision Tree Regressor, the Light
Gradient Boosting Machine, and the K Neighbors
Regressor.

• The prediction errors of the best-performing models are
adequately small for engineering purposes. This allows for

the rapid design of the composite beams without resolving
to a mathematical implementation of higher-order beam
theories. Moreover, these models can be integrated into
modern metaheuristic optimization algorithms which use
only payoff data (i.e., no derivative data) to allow for the fast
and reliable optimization of such beams.

• Regarding the relative importance of the design variables for
the evaluation of the deflection, the span-to-depth ratio and
the modulus of elasticity E2 are unambiguously the most
important features. The next level of importance includes
the angle ply θ1 and the modulus of elasticity E1.
Surprisingly, the angle θ2 is the least important variable.

• The span-to-depth ratioL has the strongest positive correlation
to the target attribute maxw for all cases of boundary
conditions, as evidenced by the correlation matrices. In all
cases, the maximum deflection is positively correlated with the
parameters L, θ1, θ2 and negatively correlated with E1 and E2.

• An easy-to-use computational tool has been implemented
which is provided as Supplementary Material to the
present article.
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