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Increasing demand for infrastructure amidst the surge in the urbanization of cities and
newly emerging commercial nerves has spurred the need to reinvent and rethink traditional
approaches for delivering infrastructure. This has been identified as evenmore critical given
the global drive and discourse on the sustainability of the construction sector and its health
and safety performance. Given the potential gains of adopting construction automation
and AI in infrastructure delivery, stakeholders’ convincing appreciation of its benefit is vital
to its widespread adoption in the AEC sector. This explored and evaluated the critical
benefits of integrating automation in construction processes in the architectural,
engineering, and construction sector and the use of artificial intelligence (AI) in driving
its systems and workflows. The study adopts an interpretive structural modeling approach
based on interviews of construction stakeholders in diverse countries to develop a
hierarchical model of the interrelationships of the benefits. Furthermore, the Matrice
d’Impacts croises-multiplication applique a classement analysis (MICMAC) was used to
categorize the benefits. Highlighted perceived benefits such as improved project quality,
simplification of construction tasks, workflow improvements, and safety performance,
amongst others, were fractionalized into levels. The study’s findings are critical in satisfying
a cost-benefit index of adopting automation and AI in the AEC sector. The results provide
recommendations on effective approaches pivotal to driving automation and AI for practice
and research. This is of further importance to construction stakeholders, policymakers,
and local authorities in building strategies and roadmaps for proper integration of these
systems and widespread adoption.
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MICMAC, AEC

1 INTRODUCTION

Challenges such as declining construction productivity (Skibniewski and Hendrickson, 1990; Cai
et al., 2020), increasing scarcity of skills, high incidence of construction hazards, and need to improve
productivity and ensure quality project delivery have spurred research and development of
technologies to give the built sector a competitive edge and improve infrastructure delivery.
Central to these emerging technologies is the design and application of automation and AI in
the built industry to improve construction tasks, workflows, and processes (Mamela et al., 2020; Lee
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et al., 2022). The difference touted by the adoption of automation
and AI is in the simplicity of construction tasks, repetitiveness
that relieves human stress and strain, improvement in
construction safety, and enhanced productivity, amongst
others (Darko et al., 2020; Abioye et al., 2021).

Despite the benefits of automation and AI, awareness and
interest in adoption are low in the industry (Shukla et al., 2019;
Cubric, 2020). Major reasons for this have been attributed to the
perception of automation and AI in the industry as hype rather
than practical usefulness, the emerging nature of the systems,
technological requirement, and underestimating their benefits
(Trujillo and Holt, 2020; Bademosi and Issa, 2021). Naghshbandi
et al. (2021) attributed this perception to inadequate awareness of
automation and AI potentials, further confounded by low
awareness of the advances and successes these innovations
have recorded in the built sector. Emaminejad et al. (2021)
argued that advancing knowledge on the benefits of design
and development of AI and automation holds immense
opportunities in attracting the interests of industry
practitioners for adoption considerations, generating more
discussion, motivating further R&D funding to advance
development in AI, and informing policy decisions. This view
is supported by Prentice et al. (2020), who noted that low
adoption has often been associated with unconvincing
dialogue on the system’s gains despite its huge potential.
Despite the diverse impactful and critical perceived benefits,
the uptake of automation and AI in construction in industry
and research is still relatively low (Pan et al., 2020; Pan and
Zhang, 2021). These studies collectively identify the critical role of
understanding the benefits of a system in its adoption,
consequently requiring a broader perspective to highlight these
benefits.

Olawumi and Chan (2019) showed that in the quest to
advance the adoption of innovative systems, benefits must be
explored to avail evidential support and justify adoptive decision-
making in construction organizations. As the danger of these
unchecked perceptions lies in its potential to create a technology
with averse disposition toward automation and AI adoption in
the industry, one of the most significant current discussions about
automation and AI is justifying its cost-use benefits. Following
the perspectives mentioned previously, these indicate a need to
contribute to the gap in knowledge by identifying and assessing
the practical benefits availed to stakeholders through a different
approach from other studies and grounding the identified
benefits on expert perspectives. To unravel and bring to the
fore the critical perceived benefits of automation and AI in
construction, it is imperative to aggregate the benefits to avail
evidential backing to support clients and policymakers in
automation and AI adoption and implementation process.
Therefore, the study bridges the gap between knowledge and
practice by highlighting critical benefits from the perspectives of
industry professionals and stakeholders. Furthermore, the study
attempts to categorize the highlighted automation and AI benefits
while also recommending strategies to advance the development
and adoption of automation and AI in construction imperative
for policy, practice, research, design, and curriculum
development.

The study’s writing is organized with Section 1 introducing
automation and AI in the built environment, while Section 2
presents a succinct overview of current trends in automation and
AI juxtaposed with the historical background and benefits
identified from diverse literature. Section 3 discusses the
methodological approach, interpretive structural modeling, and
analysis methods, while Section 4 addresses the findings and
Section 5 concludes the study.

2 THEORETICAL BACKGROUND

2.1 Automation and Artificial Intelligence in
Construction
The term “AI” came about in 1956 during a workshop held at
Dartmouth College (Salehi and Burgueño, 2018) and has
advanced to the foundation of the interaction of diverse
disciplines such as cybernetics, computer science, and
information theory. Research interests, design, and
development in construction automation and AI has
commenced since the 1960s, with Japan recording critical
actions to advance automation studies (Skibniewski and
Hendrickson, 1990; Manuel et al., 2019). Much of the
literature since the 1990s has focused on automation and
robotics for building work, mobility and navigation, expert
systems, automating concrete placement and automation in
material handling, Earth and foundation work, building
inspection, and maintenance and tunneling work
(Skibniewski and Hendrickson, 1990; Bademosi and Issa,
2021). Only in the past two decades, as literature on
automation and AI considerably began addressing sensor
data acquisition and processing (Bock and Christos, 2016;
Darko et al., 2020), engineering domains in cybernetics,
computer vision, pattern recognition, deep learning (Salehi
and Burgueño, 2018), human–robot teams (Karimidorabati
et al., 2016), automated service technologies (Fernandes and
Oliveira, 2021), automation for steel beam assembly (Jung
et al., 2013), automation for GPS guidance, automating
existing heavy equipment, automating kits, automating site
preparation (Melenbrink et al., 2020a), automating earthwork
and substructure tasks (Melenbrink et al., 2020b; Naghshbandi
et al., 2021), autonomous installation of check dams, and
automated obstruction detection and classification using
Lidar (Aghimien et al., 2019; Gargoum and Karsten, 2021)
were developed. Development in the aforementioned areas has
stimulated automation and AI’s applicability to processes and
tasks in the built environment.

However, the adoption of automation and AI in the AEC
sector relies heavily on stakeholders’ perception of their prospects
in aiding productivity and achieving safe infrastructure delivery.
Studies such as Manuel et al. (2019) categorized construction
automation as off-site prefabrication systems, on-site automated
and robotic systems, drones and autonomous vehicles, and
exoskeletons. Also, Chui and Mischke (2019) identified
construction automation technologies as machines able to
execute built environments, tasks, and processes through
robotic systems, doing them faster, repetitively, and better
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with little to no human intervention. Bock and Christos (2016)
further statedit as a new set of technologies and processes that will
fundamentally change the whole course and idea of construction.
Along this line, Ruggiero et al. (2016), Mohapatra and Kumar
(2019), and Bademosi and Issa (2021) pinpoint distinct
characteristics of automation systems. However, previous
studies have not established the collective benefits automation
and AI offer stakeholders in justifying the high investment cost
required for adoption. With the introduction of new systems into
the built sector, Salehi and Burgueño (2018) argue that clarity
must be offered on how beneficial these systems are to
stakeholders to solve engineering problems in the AEC sector.

While adoption of automation and AI in the AEC sector has
been relatively low, the emerging use of automation in the built
sector is seen in commercial bricklaying robots, building and
delivery drones, robotics for monitoring and inspection, and
automated bulldozers, amongst various others (Oesterreich
and Teuteberg, 2016). With improving developments such as
knowledge-based systems in AI directed toward machine
decision-making based on existing knowledge from domain
expert knowledge, past cases or experiences, or other relevant
sources with merits of increasing productivity. It is valuable for
clients to understand and appreciate the value automation and AI
offers to encourage adoption. Other value propositions such as
the efficiency of easy access and interactions with large requisite
domain knowledge (Abioye et al., 2021) and creating
computational models that mimic the linguistic capabilities of
human beings with AI are essential in future industrialized
construction projects. Along these lines, the application of
optimized decision-making systems driven by AI is essential in
resource and waste management, value-driven services, supply
chain management, health and safety, AI-driven construction
contract analytics, voiceuser interfaces, and AI-driven audit
systems for construction financials (Dagnaw, 2020; Abioye
et al., 2021).

Considering all these benefits and the relatively small body of
literature concerned with aggregating the benefits of this
emerging development, it is useful to help support
stakeholders’ decision-making in adopting innovative systems
to improve construction productivity. It is imperative to highlight
the benefits of these advancements. The issue has grown in
importance in light of recent debate highlighting strategic
technology proliferation in the AEC sector as being
underpinned by stakeholders understanding its critical benefits
(Chen et al., 2018). The following section highlights the benefits
of automation and AI in construction.

2.2 Benefits of Automation and Artificial
Intelligence in Construction
Despite the nascent research stage in automation and AI in
construction, studies such as Lu et al. (2012) and Bademosi
and Issa (2021) have noted significant output in these
technologies, improving construction productivity, efficiency,
and quality of infrastructure. Furthermore, their adoption is
central to reducing the high incidence of waste generated on-
site, achieving better quality in construction project delivery,

improving construction workflow and productivity, and
achieving sustainable cost in the long term (Akinradewo et al.,
2018; Chowdhury et al., 2019; Manuel et al., 2019; Dwivedi et al.,
2021). Comprehensive benefits are presented in Table 1, and
aggregated benefits are presented in Table 2.

3 METHODS

The aim of the study was to highlight the benefits of
automation and artificial intelligence through the
interpretive structural modeling approach as adopted in
previous built environment studies (Mathiyazhagan et al.,
2013; Shen et al., 2016; Wuni and Shen, 2019; Saka and
Chan, 2020; Eshun and Chan, 2021; Obi et al., 2021; Shoar
et al., 2021). To date, diverse methods have been adopted and
introduced to measure the benefits of innovative systems. The
interpretive structural modeling approach is a well-established
method given its strength in studying complex system
dynamics, such as adopting innovative systems (e.g.,
automation and AI). It was decided that the best method to
adopt for this study was the ISM approach as it is beneficial in
study areas with few experts. This is considered appropriate
given the few experts in construction automation and AI. The
survey approach was not considered as it would have required
sufficient and valid responses which would not be achievable
given few numbers of experts in the area (Shoar and Chileshe,
2021). As identified by Saka & Chan (2020), its reliance on
expert experience and quality of feedback rather than quantity
makes ISM practical and reliable, especially in emerging study
areas with low expertise. Therefore, the study adopts a
qualitative three-stage approach integrating variables
identified from extant literature and expert perspectives.
The three-stage approach is based on the system prescribed
by Saka and Chan (2020) and Eshun and Chan (2021).

3.1 ISM Research Process
The ISM research approach is conducted in three stages; stage 1
involves identifying the benefits of automation and AI in the built
industry. To accumulate comprehensive benefits from the
literature, the study reviewed published materials from Scopus,
Web of Science, and Google Scholar with considerations for all
publications published in English to adequately assess the
perceived benefits recorded by built professionals in
construction automation and AI and avoid bias (Saka and
Chan, 2020).

In stage II, the identified benefits were aggregated from the
literature and presented to three experts with over a decade of
experience to check the validity, clarity, and representativeness
of the factors, as shown in Table 2. The ISM approach is
advanced in developing interconnection matrices in structural
modeling (Warfield, 1974). The system is proposed to utilize
the experience and knowledge of experts in decomposing
complex systems into multiple subsystems (Shen et al.,
2016; Saka and Chan, 2020). Thereby quality of feedback
from surveyed experts is primary in the approach to
appropriate the structure of the relationship between the
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models. Thus, the ISM method is conducted with few
knowledgeable and experienced experts (Ravi and Shankar,
2005; Saka and Chan, 2020). As adopted in other built industry
studies such as Shoar et al. (2021) and Obi et al. (2021), they
have been used primarily for systems with little expertise and
emerging discussions to gain from the knowledge of experts in
the field. The research process is presented in Figure 1.

The ISM approach is then followed by establishing the
hierarchical levels of the factors from the reachability and
intersection values. The driving power and the dependence-
power of the highlighted factors are then used in building the
“Matrice d’Impacts croises-multiplication applique a classement
(MICMAC)” as proposed by (Duperrin and Godet, 1973) and
adopted by Shen et al. (2016), Wuni and Shen (2019), and Saka
and Chan (2020).

The MICMAC assessment is carried out based on the driving
power and dependence power of the aggregated variables and
classified into an independent category, linkage category,
autonomous category, and dependent category. To organize
the variables based on MICMAC, the sum of the horizontal

values is measured as the driving power. In contrast, the sum of
the vertical values is calculated as the dependence power.

3.2 Interpretive Structural Modeling-Based
Analysis
The literature does not agree on nor compels a certain number of
experts to participate in the ISMmethodology. It does not require
many respondents and primarily pays attention to the quality of
response (Eshun and Chan, 2021). Previous studies such as Ravi
& Shankar (2005) and Debnath & Shankar (2012) presented their
findings based on two experts, and five experts were deemed
sufficient by Shen et al. (2016) and Liu et al. (2018). Furthermore,
Ahuja et al. (2017) adopted seven respondents, and Eshun and
Chan (2021) surveyed thirteen experts using ISM to develop a
relationship between project risk dynamics in Sino-Africa public
infrastructure delivery. In contrast, Saka and Chan (2020)
interviewed 16 experts to build a model representing the
barriers to BIM adoption in SMEs. Twenty professionals with
expertise in automation and AI were invited to participate in the

TABLE 1 | Benefits of automation and artificial intelligence.

S/N Benefit Reference

1 Improvement in construction health and safety Skibniewski and Hendrickson, (1990); Haas and Kim, (2002); Nikas et al. (2007); Oesterreich and Teuteberg,
(2016); Oke et al. (2019); Mohammadpour et al. (2019); Okpala et al. (2020); Nishant et al. (2020); Chen et al. (2021);
Abioye et al. (2021); Bademosi and Issa, (2021); Abioye et al. (2021); Darlow et al. (2022)

2 Reduced health hazards Skibniewski and Hendrickson, (1990); Shubha, (2019); Nazareno and Schiff, (2021); Darlow et al. (2022)
3 Cost savings on labor due to improved

processes
Aouad et al. (2002); Maskuriy et al. (2019); Bademosi and Issa, (2021); Abioye et al. (2021); Wang et al. (2021)

4 Cost savings on resource Aouad et al. (2002); Bademosi and Issa, (2021); Abioye et al. (2021)
5 Cost savings for waste management Aouad et al. (2002); Bademosi and Issa, (2021)
6 Cost savings on time Haas and Kim, (2002); Aouad et al. (2002); Oesterreich and Teuteberg, (2016); Bademosi and Issa, (2021)
7 Cost savings on rework reduction Aouad et al. (2002); Haas and Kim, (2002); Oke et al. (2019); Bademosi and Issa, (2021); Abioye et al. (2021); Chen

et al. (2021)
8 Enhanced schedule performance Chen et al. (2018); Bademosi and Issa, (2021); Paneru et al. (2021)
9 Improved quality of works/infrastructure delivery Haas and Kim, (2002); Oesterreich and Teuteberg, (2016); Maskuriy et al. (2019); Oke et al. (2019); Naghshbandi

et al. (2021); Chen et al. (2021); Bademosi and Issa, (2021); Abioye et al. (2021); Darlow et al. (2022)
10 Mitigation of construction risk Bademosi and Issa, (2021)
11 Simplification of construction tasks Bademosi and Issa, (2021)
12 Improved construction productivity Haas and Kim, (2002); Abioye et al. (2021); Bademosi and Issa, (2021); Chen et al. (2021); Akanmu et al. (2021);

Emaminejad et al. (2021); Pan and Zhang, (2021)
13 Newer job opportunities Bademosi and Issa, (2021); Emaminejad et al. (2021)
14 Stakeholders’ engagement and satisfaction Bademosi and Issa, (2021)
15 Availability of innovation incentives Bademosi and Issa, (2021); Emaminejad et al. (2021)
16 Competitive advantage Bademosi and Issa, (2021); Chen et al. (2021); Emaminejad et al. (2021)
17 Automatic self-learning improving processes Tussyadiah, (2020)
18 On-site and off-site connectivity Tussyadiah, (2020)
19 On-time and on-budget delivery Oesterreich and Teuteberg, (2016)
20 Improved collaboration and communication Oesterreich and Teuteberg, (2016); Maskuriy et al. (2019)
21 Improved sustainability Oesterreich and Teuteberg, (2016); Chen et al. (2021); Dwivedi et al. (2021); Manzoor et al. (2021)
22 Workflow improvements Li et al. (2019); Oke et al. (2019); Chen et al. (2021); Emaminejad et al. (2021)
23 Leaner procurement methods McNamara and Sepasgozar, (2021)
24 Reduced mistakes and omissions Abioye et al. (2021); Emaminejad et al. (2021)
25 Faster inspection and monitoring Abioye et al. (2021); Emaminejad et al. (2021)
26 Better accuracy, reliability, and transparency Abioye et al. (2021); Naghshbandi et al. (2021)
27 Simplified monitoring and control Abioye et al. (2021); Emaminejad et al. (2021)
28 Optimal plan and schedules Abioye et al. (2021)
29 Time efficiency Abioye et al. (2021)
30 Improved production speed Sobotka and Pacewicz, (2017); Oke et al. (2019); Chen et al. (2021); Darlow et al. (2022)
31 Eliminates material wastage Oke et al. (2019)
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survey, but eleven responses were received. All the participants
had a minimum of ten years of experience in their fields.
Eligibility criteria that have been included in the study were
based on years of industry experience or academic experience in
construction automation knowledge areas and/or design. These
criteria are well-established in extant studies using ISM in the
built environment (Saka and Chan, 2020; Eshun and Chan, 2021;
Shoar and Chileshe, 2021; Onososen andMusonda, 2022). A total
of three groups of respondents participated in the survey; the first
group involved selected academic researchers with minimum of a
PhD degree in construction automation and AI industry experts
with consulting and contractual experience who have utilized
automated systems on-site. The third group involved respondents
with experience in automation and AI design and systems. The
respondents’ profile is presented in Table 3.

The SSIM survey was responded to by the experts based on
causality between the variables; this ensures that the deep-rooted
knowledge of experts in the domain is reflected in the model
(Sushil, 2018).

The structural self-interaction matrix (SSIM) presents the
relationships between benefits of automation and AI through a
pairwise comparator in which columns and rows are identified
using i and j, respectively.

V, A, X, and O are utilized in signifying the relationship
between the benefits of automation and AI. The aggregated

benefits from the literature were presented in a matrix and
placed on the x- and y-axis to demonstrate the interaction
between variables “i” and variables “j”. As adopted from the
literature, VAXO signifies:

V: Benefits i influence j, and j does not influence i.
A: Benefits j influence i, and i does not influence j.
X: Benefits i influence j, and j also influences i.
O: Benefits i and j have no links.

3.3 Reachability Matrix
Consequently, the surveyed expert’s response indicated by the
VAXO matrix was converted into a binary matrix (1, 0).
Conditions to satisfy the binary conversion are as follows:

If the cell (i, j) is V, then cell (i, j) entry is 1 and cell (j, i)
entry is 0.

If the cell (i, j) is A, then cell (i, j) entry is 0 and cell (j, i)
entry is 1.

If the cell (i, j) is X, then cell (i, j) entry is 1 and cell (j, i)
entry is 1.

If the cell (i, j) is O, then cell (i, j) entry is 0 and cell (j, i)
entry is 0.

The initial reachability matrix is produced from satisfying
the conditions of this rule, and the final reachability matrix is
constructed from integrating transitive relations into the
initial reachability matrix. Transitivity is checked using the

TABLE 2 | Aggregated benefits.

S/N Benefit Reference

1 Improvement in construction health and safety Skibniewski and Hendrickson, (1990); Haas and Kim, (2002); Oesterreich and Teuteberg,
(2016); Oke et al. (2019); Mohammadpour et al. (2019); Okpala et al. (2020); Nishant et al.
(2020); Chen et al. (2021); Abioye et al. (2021); Bademosi and Issa, (2021); Abioye et al. (2021);
Darlow et al. (2022)

2 Timely project delivery and cost savings Aouad et al. (2002); Oesterreich and Teuteberg, (2016); Maskuriy et al. (2019); Oke et al. (2019);
Bademosi and Issa, (2021); Abioye et al. (2021); Wang et al. (2021); Chen et al. (2021); Paneru
et al. (2021)

3 Improved project quality, operations, and productivity Oesterreich and Teuteberg, (2016); Sobotka and Pacewicz, (2017); Maskuriy et al. (2019); Oke
et al. (2019); Bademosi and Issa, (2021); Naghshbandi et al. (2021); Chen et al. (2021); Abioye
et al. (2021); Chen et al. (2021); Akanmu et al. (2021); Emaminejad et al. (2021); Pan and Zhang,
(2021); Darlow et al. (2022)

4 Mitigation of construction risk Bademosi and Issa, (2021)
5 Simplification of construction tasks Bademosi and Issa, (2021); Chen et al. (2021)
6 Newer job opportunities Bademosi and Issa, (2021); Emaminejad et al. (2021)
7 Stakeholders’ engagement and satisfaction Bademosi and Issa, (2021); Paneru et al. (2021)
8 Competitive advantage Bademosi and Issa, (2021); Chen et al. (2021); Emaminejad et al. (2021)
9 Automatic self-learning improving processes Tussyadiah, (2020); Maskuriy et al. (2019)
10 On-site and off-site connectivity Tussyadiah, (2020); Shubha, (2019)
11 Improved collaboration, data sharing, and communication Oesterreich and Teuteberg, (2016); Maskuriy et al. (2019)
12 Workflow improvements (accuracy, reliability, transparency, and

leaner procurement)
Li et al. (2019); Oke et al. (2019); Oke et al. (2019); Chen et al. (2021); Emaminejad et al. (2021);
McNamara and Sepasgozar, (2021); Abioye et al. (2021); Naghshbandi et al. (2021);
Emaminejad et al. (2021)

13 Improved socio-economic and environmental sustainability Oesterreich and Teuteberg, (2016); Chen et al. (2021); Dwivedi et al. (2021); Manzoor et al.
(2021)

14 Simplified and improved inspection, monitoring, and control Abioye et al. (2021); Emaminejad et al. (2021)
15 Optimized project planning and scheduling Abioye et al. (2021); McNamara and Sepasgozar, (2021)
16 Elimination of material wastage Oke et al. (2019); Chen et al. (2021)
17 Reduction in litigation, claims, and contract dispute
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following rule: if variable A is related to B and B is related to C,
then A is necessarily related to C (Eshun and Chan, 2021; Obi
et al., 2021; Shoar and Chileshe, 2021; Onososen and Musonda,

2022). Table 4 shows the received response from the SSIM
survey.

3.4 Final Reachability Matrix
The final reachability matrix analysed after the initial reachability
matrix as shown in Table 5 with transitivity incorporated is
presented in Table 6.

3.5 Hierarchical Structure
The hierarchy of the factors is extracted from classifying the
elements according to the reachability set, antecedent set, and
intersection set. The reachability set for a variable “i” involves
the benefit itself and other reachable benefits (benefits with 1
in its row on the final reachability matrix). The antecedent
matrix for a variable is similar to the benefit itself and other
reached benefits (benefits with a value of 1 in its column on the
final reachability matrix). The benefits common to the
reachability and antecedent set for the benefits is the
intersection set.

FIGURE 1 | ISM methodology as adapted from Mandal and Deshmukh (1994).

TABLE 3 | Respondents’ profile.

Demographic Type Percent (%)

Architect 35
Profession Engineer 30

Automation and AI system designers 25
Quantity surveyor 10

Academia 40
Type Contractors 25

Automation and AI design 20

Consultants 15
Continental spread Africa 55

Europe 35
North America 10
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To check the validity and correctness of the hierarchical
structure, Sushil (2018) stated that checking elements identified
from the literature are well represented, checking the
contextual relationship between the variables and their
interpretation showcases the model’s intent. Therefore,
emphasis is placed on not only just developing a model but
also adequately representing a quality relationship between the
variables. Also, in making sure the interpretive logic knowledge
base is unbiased, variables with both way relationships in which
“i” to “j” is “1” and “j” to “i” is “1” were cross-checked again
with the experts to confirm if the relationship goes both ways.
This is essential as Sushil (2018) states that a one-way

relationship may be stronger, and the other way may be
comparatively weak. If there is no unconvincing
relationship, the interpretation of the variables is treated as
“0” or No. Furthermore, the majority decision was adopted in
variables with conflicting relationships.

3.6 Level Partitioning
After the hierarchical structure is developed, level partitioning is
carried out to classify the variables based on dependent and
independent relationships. Benefits with similar reachability and
intersection sets are classified to levels during each iteration of
reachability, antecedent, and intersection sets. Following the ISM

TABLE 4 | SSIM for benefits of automation and artificial intelligence.

ID Benefits j
Benefits i

β17 β16 β15 β14 β13 β12 β11 β10 β9 β8 β7 β6 β5 β4 β3 β2 β1

β1 Improvement in construction health and safety V O O O X O O O O V V V O X V V X
β2 Timely project delivery and cost savings X A A A O A A O A V V O A A X X
β3 Improved project quality, operations, and productivity X X A A A X X A A V V V X X X
β4 Mitigation of construction risk V A A A O A A O A V X O O X
β5 Simplification of construction tasks O V V V V V O O X V V V X
β6 Newer job opportunities O O O O V O O O O O O X
β7 Stakeholders’ engagement and satisfaction A A A A X A X A A A X
β8 Competitive advantage A A A A A A A A A X
β9 Automatic self-learning improving processes V V V V V V V V X
β10 On-site and off-site connectivity V V V X V X A X
β11 Improved collaboration, data sharing, and communication A A X X A X X
β12 Workflow improvements (accuracy, reliability,

transparency, and leaner procurement)
X X X X X X

β13 Improved socio-economic and environmental sustainability V A O O X
β14 Simplified and improved inspection, monitoring, and control V X X X
β15 Optimized project planning and scheduling V V X
β16 Elimination of material wastage O X
β17 Reduction in litigation, claims, and contract dispute X

V: Benefits i influence j, and j does not influence i. A: Benefits j influence i, and i does not influence j. X: Benefits i influence j, and j also influences i. O: Benefits i and j have no links.

TABLE 5 | Initial reachability matrix.

ID Benefits j
Benefits i

β1 β2 B3 β4 β5 β6 β7 β8 β9 β10 β11 β12 β13 β14 β15 β16 β17

β1 Improvement in construction health and safety 1 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 1
β2 Timely project delivery and cost savings 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1
β3 Improved project quality, operations, and productivity 0 1 1 1 1 1 1 1 0 0 1 1 0 0 0 1 1
β4 Mitigation of construction risk 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1
β5 Simplification of construction tasks 0 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0
β6 Newer job opportunities 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
β7 Stakeholders’ engagement and satisfaction 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0
β8 Competitive advantage 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
β9 Automatic self-learning improving processes 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
β10 On-site and off-site connectivity 0 0 1 0 0 0 1 1 0 1 0 1 1 1 1 1 1
β11 Improved collaboration, data sharing, and communication 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 0 0
β12 Workflow improvements (accuracy, reliability,

transparency, and leaner procurement)
0 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1

β13 Improved socio-economic and environmental sustainability 1 0 1 0 0 0 1 1 0 0 1 1 1 0 0 0 1
β14 Simplified and improved inspection, monitoring, and

control
0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 1

β15 Optimized project planning and scheduling 0 1 1 1 0 0 1 1 0 0 1 1 0 1 1 1 1
β16 Elimination of material wastage 0 1 1 1 0 0 1 1 0 0 1 1 1 1 0 1 0
β17 Reduction in litigation, claims, and contract dispute 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 1
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principle, β3 (improvement in construction health and safety), β5
(simplification of construction tasks), and β9 (automatic self-learning
improving processes) have similar reachability and intersection sets
and were thus partitioned as Level I as shown in Table 7. The
partitioned Level I benefits were removed from the matrix table and
repeated until all variables were iterated and finalized at Level VI.

Benefits partitioned in Level I are β3 (improvement in
construction health and safety), β5 (simplification of

construction tasks), and β9 (automatic self-learning improving
processes), based on the similarity of the reachability set to the
intersection set.

The steps were conducted to categorize the remaining
benefits resulting in variables for Level II as shown in
Table 8. β10 (on-site and off-site connectivity), β11
(improved collaboration, data sharing, and communication),
β12 (workflow improvements; accuracy, reliability,

TABLE 6 | Final reachability matrix for benefits of automation and artificial intelligence.

ID Benefits j
Benefits i

β1 B2 B3 β4 B5 B6 B7 B8 β9 B10 B11 B12 B13 B14 B15 B16 β17 Drp

β1 Improvement in construction health and safety 1 1 1 1 1* 1 1 1 0 0 1* 1* 1 0 0 1* 1 13
β2 Timely project delivery and cost savings 0 1 1 1* 1* 1* 1 1 0 0 1* 1* 1* 0 0 1* 1 12
β3 Improved project quality, operations, and

productivity
1* 1 1 1 1 1 1 1 1* 1* 1 1 1* 1* 1* 1 1 17

β4 Mitigation of construction risk 1 1 1 1 1* 1* 1 1 0 0 1* 1* 1* 0 0 1* 1 13
β5 Simplification of construction tasks 1* 1 1 1* 1 1 1 1 1 1* 1* 1 1 1 1 1 1* 17
β6 Newer job opportunities 1* 0 1* 0 0 1 1* 1* 0 0 1* 1* 1 0 0 0 1* 9
β7 Stakeholders’ engagement and satisfaction 1* 1* 1* 1 0 0 1 1* 0 1* 1 1* 1 1* 1* 0 1* 13
β8 Competitive advantage 0 0 0 1* 0 0 1 1 0 0 1* 0 1* 0 0 0 0 5
β9 Automatic self-learning improving processes 1* 1 1 1 1 1* 1 1 1 1 1 1 1 1 1 1 1 17
β10 On-site and off-site connectivity 1* 1* 1 1* 1* 1* 1 1 0 1 1* 1 1 1 1 1 1 16
β11 Improved collaboration, data sharing, and

communication
1* 1 1 1 1* 1* 1 1 0 1 1 1 1* 1 1 1* 1* 16

β12 Workflow improvements (accuracy, reliability,
transparency, and leaner procurement)

1* 1 1 1 1* 1* 1 1 0 1 1 1 1 1 1 1 1 16

β13 Improved socio-economic and environmental
sustainability

1 1* 1 1* 1* 1* 1 1 0 1* 1 1 1 1* 1* 1* 1 16

β14 Simplified and improved inspection,
monitoring, and control

1* 1 1 1 1* 1* 1 1 0 1 1 1 1* 1 1 1 1 16

β15 Optimized project planning and scheduling 1* 1 1 1 1* 1* 1 1 0 1* 1 1 1* 1 1 1 1 16
β16 Elimination of material wastage 1* 1 1 1 1* 1* 1 1 0 1* 1 1 1 1 1* 1 1* 16
β17 Reduction in litigation, claims, and contract

dispute
0 1 1 1* 1* 1* 1 1 0 1* 1 1 1* 1* 1* 1* 1 15

Dpp 14 15 16 16 14 15 17 17 3 12 17 16 17 12 12 14 16

Notes: *Transitive values; Dpp—dependence power; Drp—driving power.

TABLE 7 | Partition Level I.

ID Reachability set Antecedent set Intersection set Level I

β1 β (1,3,4,5,6,7,9,10,11,12,13,14,15,16) β (1, 2,3,4,5,6,7,8,11,12,13, 16,17) β (1,3,4,5,6,7,11,12,13,16)
β2 β (1, 2,3,4,5,7, 9,10,11,12,13,14,15,16,17) β (2,3,4,5,6,7,8,11,12,13, 16,17 β (2,3,4,5,7,11,12,13,16,17)
β3 β (1, 2,3,4,5,6,7, 9,10,11,12,13,14,15,16,17) β (1, 2,3,4,5,6,7,8, 9,10,11,12,13,14,15,16,17) β (1, 2,3,4,5,6,7, 9,10,11,12,13,14,15,16,17) I
β4 β (1, 2,3,4,5,7, 8 9,10,11,12,13,14,15,16,17) β (1, 2,3,4,5,6,7,8, 11,12,13, 16,17 β (1, 2,3,4,5,7,8,11,12,13,16,17)
β5 β (1, 2,3,4,5, 9,10,11,12,13,14,15,16,17) β (1, 2,3,4,5,6,7,8, 9,10,11,12,13,14,15,16,17) β (1, 2,3,4,5, 9,10,11,12,13,14,15,16,17) I
β6 β (1, 2,3,4,5,6, 9,10,11,12,13,14,15,16,17) β (1, 3,6, 7,8,,11,12,13,17) β (1, 3,6, 11,12,13,17)
β7 β (1, 2,3,4,5,6,7,8, 9,10,11,12,13,14,15,16,17) β (1,2 3,4,7,8,,11,12,13,14,15,17) β (1,2 3,4,7,8,,11,12,13,14,15,17)
β8 β (1, 2,3,4,5,6,7,8, 9,10,11,12,13,14,15,16,17) β (,4, 7,8,11,13) β (,4, 7,8,11,13)
β9 β (,3,5, 9) β (1, 2,3,4,5,6,7,8, 9,10,11,12,13,14,15,16,17) β (,3,5, 9) I
β10 β (3,5,7,9,10,11,12,13,14,15,16,17) β (1, 2,3,4,5,6,7,8,10,11,12,13,14,15,16,17) β (3,5,7,10,11,12,13,14,15,16,17)
β11 β (1, 2,3,4,5,6,7,8, 9,10,11,12,13,14,15,16,17) β (1, 2,3,4,5,6,7,8,10,11,12,13,14,15,16,17) β (1, 2,3,4,5,6,7,8,10,11,12,13,14,15,16,17)
β12 β (1, 2,3,4,5,6,7, 9,10,11,12,13,14,15,16,17) β (1, 2,3,4,5,6,7,8,10,11,12,13,14,15,16,17) β (1, 2,3,4,5,6,7,10,11,12,13,14,15,16,17)
β13 β (1, 2,3,4,5,6,7,8, 9,10,11,12,13,14,15,16,17) β (1, 2,3,4,5,6,7,8,10,11,12,13,14,15,16,17) β (1, 2,3,4,5,6,7,8,10,11,12,13,14,15,16,17)
β14 β (,3,5,7,9,10,11,12,13,14,15,16,17) β (1, 2,3,4,5,6,7,8,10,11,12,13,14,15,16,17) β (,3,5,7,10,11,12,13,14,15,16,17)
β15 β (,3,5,7,9,10,11,12,13,14,15,16,17) β (1, 2,3,4,5,6,7,8,10,11,12,13,14,15,16,17) β (,3,5,7,10,11,12,13,14,15,16,17)
β16 β (1, 2,3,4,5, 9,10,11,12,13,14,15,16,17) β (1, 2,3,4,5,6,7,8,10,11,12,13,14,15,16,17) β (1, 2,3,4,5,10,11,12,13,14,15,16,17)
β17 β(1, 2,3,4,5,6, 7, 9,10,11,12,13,14,15,16,17) β (2,3,4,5,6,7,8,10,11,12,13,14,15,16,17) β (2,3,4,5,6,7,10,11,12,13,14,15,16,17)
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transparency, and leaner procurement), β13 (improved socio-
economic and environmental sustainability), β14 (simplified
and improved inspection, monitoring, and control), β15
(optimized project planning and scheduling), and β16
(elimination of material wastage).

After eliminating the identified variables from Level II, the
iteration was repeated for Level III as shown in Table 9. The
identified categories for Level III are β1 (improvement in
construction health and safety) and β4 (mitigation of
construction risk).

Similarly, benefits β2 (timely project delivery and cost savings)
and β17 (reduction in litigation, claims, and contract dispute)
were partitioned to Level IV as shown in Table 10.

Likewise, β6 (newer job opportunities) was identified for Level
V based on the similarity of reachability and intersection sets and
is presented in Table 11.

Equally, β7 (stakeholders’ engagement and satisfaction) and
β8 (competitive advantage) were partitioned based on the

similarity between the reachability and intersection sets to
yield Level VI categorization as presented in Table 12.

3.7 ISM for Benefits of Automation and
Artificial Intelligence
This study seeks to identify the perceived benefits of construction
automation and AI in improving infrastructure delivery. The ISM
model developed as shown as follows reveals the dominant
benefits, and this result is helpful for construction organization
stakeholders to make adoption easier by identifying the ranked
benefits in the model in line with their specific business objectives
and organizational goals. Organizations mostly require cost-use
benefits to justify investments in innovative or new systems. The
ranked model (Figure 2) reveals the most important and
dominant benefits that motivate stakeholders to adopt
automation and AI. The model is quite revealing in several
ways. Unlike other studies, it reveals the dominant benefits
vital for organizational needs in faster infrastructure delivery,
which amounts to cost-saving and improved the overall value
offered to clients.

Interestingly, stakeholders and competitive advantage fall in Level
VI, which signifies that achieving the benefits highlighted in the
higher-ranked models already gives the organization an edge
competitively. The enhanced infrastructure delivery process

TABLE 8 | Partition level II.

ID Reachability set Antecedent set Intersection set Level

β1 β (1,4,6,7,10,11,12,13,14,15,16) β (1, 2,4,6,7,8,11,12,13, 16,17) β (1,4,6,7,11,12,13,16)
β2 β (1, 2,4,7, 10,11,12,13,14,15,16,17) β (2,4,6,7,8,11,12,13, 16,17 β (2,4,7,11,12,13,16,17)
β4 β (1, 2,4,7, 8,10,11,12,13,14,15,16,17) β (1, 2,4,6,7,8, 11,12,13, 16,17 β (1, 2,4,7,8,11,12,13,16,17)
β6 β (1, 2,4,6, 10,11,12,13,14,15,16,17) β (1,6,7,8,,11,12,13,17) β (1,6,11,12,13,17)
β7 β (1, 2,4,6,7,8,10,11,12,13,14,15,16,17) β (1,2,4,7,8,11,12,13,14,15,17) β (1,2,4,7,8,11,12,13,14,15,17)
β8 β (1, 2,4,6,7,8, 10,11,12,13,14,15,16,17) β (4,7,8,11,13) β (4,7,8,11,13)
β10 β (7,10,11,12,13,14,15,16,17) β (1, 2,4,6,7,8,10,11,12,13,14,15,16,17) β (7,10,11,12,13,14,15,16,17) II
β11 β (1, 2,4,6,7,8,10,11,12,13,14,15,16,17) β (1, 2,4,6,7,8,10,11,12,13,14,15,16,17) β (1, 2,4,6,7,8,10,11,12,13,14,15,16,17) II
β12 β (1, 2,4,6,7,10,11,12,13,14,15,16,17) β (1, 2,4,6,7,8,10,11,12,13,14,15,16,17) β (1, 2,4,6,7,10,11,12,13,14,15,16,17) II
β13 β (1, 2,4,6,7,8,10,11,12,13,14,15,16,17) β (1, 2,4,6,7,8,10,11,12,13,14,15,16,17) β (1, 2,4,6,7,8,10,11,12,13,14,15,16,17) II
β14 β (7,10,11,12,13,14,15,16,17) β (1, 2,4,6,7,8,10,11,12,13,14,15,16,17) β (7,10,11,12,13,14,15,16,17) II
β15 β (7,10,11,12,13,14,15,16,17) β (1, 2,4,6,7,8,10,11,12,13,14,15,16,17) β (7,10,11,12,13,14,15,16,17) II
β16 β (1, 2,4,10,11,12,13,14,15,16,17) β (1, 2,4,6,7,8,10,11,12,13,14,15,16,17) β (1, 2,4,10,11,12,13,14,15,16,17) II
β17 β (1, 2,4,6, 7,10,11,12,13,14,15,16,17) β (2,4,6,7,8,10,11,12,13,14,15,16,17) β(2,4,6,7,10,11,12,13,14,15,16,17)

TABLE 9 | Partition level III.

ID Reachability set Antecedent set Intersection set Level

β1 β (1,4,6,7) β (1, 2,4,6,7,8, 17) β (1,4,6,7) III
β2 β (1,2,4,7,17) β (2,4,6,7,8) β (2,4,7,17)
β4 β (1,2,4,7,8,17) β (1, 2,4,6,7,8,17) β (1, 2,4,7,8,17) III
β6 β (1,2,4,6,17) β (1,6,7,8,17) β (1,6,17)
β7 β (1,2,4,6,7,8,17) β (1,2,4,7,8,17) β (1,2,4,7,8,17)
β8 β (1, 2,4,6,7,8,17) β (4,7,8) β (4,7,8)
β17 β (1, 2,4,6, 7,17) β (2,4,6,7,8,17) β (2,4,6,7,17)

TABLE 10 | Partition level IV.

ID Reachability set Antecedent set Intersection set Level

β2 β (2,7,17) β (2,6,7,8) β (2,7,17) IV
β6 β (2,6,17) β (6,7,8,17) β (6,17)
β7 β (2,6,7,8,17) β (2,7,8,17) β (2,7,8,17)
β8 β (2,6,7,8,17) β (7,8) β (7,8)
β17 β (2,6,7,17) β (2,6,7,8,17) β (2,6,7,17) IV

TABLE 11 | Partition level V.

ID Reachability set Antecedent set Intersection set Level

β6 β (6) β (7,8) β (6) V
β7 β (6,7,8) β (7,8) β (7,8)
β8 β (6,7,8) β (7,8) β (7,8)

TABLE 12 | Partition level VI.

ID Reachability set Antecedent set Intersection set Level

β7 β (7,8) β (7,8) β (7,8) VI
β8 β (7,8) β (7,8) β (7,8) VI
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further ensures that stakeholders are satisfied. This implies that
stakeholders are satisfied in achieving levels 1 to 4 of the ISM
hierarchy as their concerns are catered for between these levels.

Second, given the need to increase resilience and responsiveness
of infrastructure, especially with emerging shock events, the benefits
identified in levels 1 to 5 are accrued to the stakeholders and take into
cognizance the social responsiveness of the infrastructure to the
needs of users. Therefore, integrating AI aids the design and
development of infrastructure that fosters social justice. As shown
in Figure 2, the model has revealed order and direction in the
complex relationships between beneficial factors of automation and
AI in the built environment, aiding in understanding the
interrelationships of benefits and their levels of interdependence.

3.8Matrice d’Impacts Croises-Multipication
Applique a Classement Analysis
The MICMAC is adopted to classify the benefits into
autonomous, dependent, linkage, and independent categories
depending on their dependence and driving power. The
highest dependence and driving power value is 17 on the x

and y-axis, and the minimum x-axis is 3. Therefore, the axis
ranges between 3 and 17 (14 units), and the half is 7, which is used
in setting the axis value for the two-dimensional diagram
(digraph) as shown in Figure 3.

• Autonomous category: This category incorporates weak
driving and weak dependence power benefits. They are
removed from the central system and have few
connections, but this study has no autonomous values.

• Dependent category: This category incorporates weak
driving and strong dependence power. The class is
dependent on other benefits and can be achieved by
enhancing related benefits. This benefit is a “competitive
advantage.”

• Independent category: This category incorporates both
strong driving and weak dependence power. They are
adjudged as critical benefits and are “automatic self-
learning improving processes.”

• Linkage category: This category incorporates both strong
driving and dependence power benefits. They impact other
benefits and have feedback on themselves. They are

FIGURE 2 | ISM for benefits of automation and artificial intelligence.
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“improvement in construction health and safety; timely
project delivery and cost savings; improved project
quality, operations, and productivity; mitigation of
construction risk; simplification of construction tasks;
newer job opportunities; stakeholders’ engagement and
satisfaction; on-site and off-site connectivity; improved
collaboration, data sharing, and communication;
workflow improvements (accuracy, reliability,
transparency, and leaner procurement); improved socio-
economic and environmental sustainability; simplified and
improved inspection, monitoring, and control; optimized
project planning and scheduling; elimination of material
wastage; and reduction in litigation, claims, and contract
dispute.”

3.9 Discussion of Findings
Automation and AI hold immense contributions to sustainable
infrastructure delivery that is resilient, responsive, and socially
just. While interests in automation and AI are not new, with
discussions emerging in the 1960s, recent advances in technology
have only reignited the push for what is possible with automation

and AI in the built industry. While the merits are immense,
interests and willingness to adopt and implement are low
amongst industry practitioners, policymakers, and academia.
Thus, this study intends to bridge available advancement in
automation and AI with industrial needs by bringing to the
fore critical benefits, and its adoption can contribute in
significant and concrete terms to the AEC sector. Benefits
collated from extant literature were aggregated and tested with
experts knowledgeable in automation and AI, resulting in
partitioning the benefits into six levels with outputs
represented in a model and digraph using the MICMAC
technique. The absence of an autonomous variable signifies
that all the benefits are significant, and benefits as autonomous
variables do not have much influence on the system.

Level I benefits categorized are improved project quality,
operations, and productivity, simplification of construction
tasks, and automatic self-learning improving processes. As
stated by Akinosho et al. (2020), project delay and dwindling
productivity in the built sector have further driven the need to
adopt automation and AI to simplify construction tasks and
improve quality by executing processes better, faster, more

FIGURE 3 | Diagraph and MICMAC analysis of the benefits of automation and artificial intelligence.
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sustainably, and improving processes through self-learning of the
automated systems needing little to no human intervention
(Karimidorabati et al., 2016; Saidi et al., 2016; Aste et al., 2017).

The model in Figure 2 shows that Level II signifying the
second hierarchy in the adoption benefits is reportedly more
significant than the other levels. The benefits in this group are
on-site and off-site connectivity, improved collaboration, data
sharing, and communication. Also, others include workflow
improvements (accuracy, reliability, transparency, and leaner
procurement), improved socio-economic and environmental
sustainability, simplified and improved inspection,
monitoring, and control, optimized project planning and
scheduling, and elimination of material wastage. These
benefits are vital in aiding faster construction time than the
conventional construction methods. The essence of this has
not been much appreciated until the COVID-19 pandemic that
resulted in urgent infrastructure needs to support
quarantining but with the gross inability of the built
industry to meet the demand within the required time
(Alawad and Kaewunruen, 2021; El Jazzar et al., 2021).
Infrastructure not provided within the required time leads
to loss of opportunities. Therefore, the adoption of automation
and AI is imperative for the future industrialized construction
workflow and clients’ demands (Oesterreich and Teuteberg,
2016). In heavy engineering works and multiple construction
projects with little manpower for monitoring, inspection, and
quality assurance, automating the components and processes
ensures transparency in the quality of work the system can
deliver without fail (Oesterreich and Teuteberg, 2016;
Manzoor et al., 2021; Pillai and Matus, 2021). While
ensuring that quality is achieved, the system can provide
real-time feedback and update on the progress of work and
identify clash areas needing prompt attention and quick
resolution to avoid delays and compromise quality. Heavy
engineering works and the nature of infrastructure
development in the AEC sector heavily depend on the
quality of information and timeliness in sharing the
knowledge and reliability of the data. Adopting construction
automation and AI can eliminate redundancy in how
information is shared by ensuring smooth collaboration
between project participants, transparency, and availability
of required information necessary for successful
infrastructure development. Moreover, as stated by
Oesterreich and Teuteberg (2016), Darko et al. (2020), and
Dwivedi et al. (2021), big data analytics can assist construction
project managers to handle well-informed decisions based on
historical data effectively. As stated by Li et al. (2019), Bogue
(2018), and O’Grady et al. (2021), transparency of data in
automated systems helps in freely increasing collaboration and
trust between parties. Workflow improvement is achieved
through increased collaboration and transparency, resulting
in accountability and project control (Melenbrink et al.,
2020a).

Improvement in construction health and safety and mitigation
of construction risk are the third-ranked level categorization in
automation and AI benefits. The construction industry is popular
for the high incidences of hazards, which has had grave

consequences on drastically reducing the ability of the
industry to attract new entrants, thereby leading to a dearth of
vital skills; with the adoption of automation and AI in virtual
safety training, AI hazard avoidance, AI risk maps updated in
real-time and communicating impending risks to safetymanagers
with automated safety robotics clearing hazardous paths and
fixing safety issues, safety is made more central and efficient.
Other applications also see the use of smart glasses or smart
helmets and wearable technology that can predict safety risks,
douse the hazard preventively, and protect human contact
(Oesterreich and Teuteberg, 2016; Melenbrink et al., 2020b;
Hansapinyo et al., 2020). Therefore, the findings demonstrate
that the primary benefits envisioned for the adoption of
automation and AI are that construction safety is significantly
enhanced, tasks are made simpler, and processes can self-learn to
improve performance.

Level IV is partitioned into timely project delivery and cost
savings and reduction in litigation, claims, and contract disputes.
Automating equipment and materials tracking through
embedded sensors significantly reduces material costs
(Oesterreich and Teuteberg, 2016). The automation of
construction workflow processes also results in a substantial
reduction in labor which cuts costs and, more importantly,
removes the void associated with the shortage of skilled
workers in the industry (Oesterreich and Teuteberg, 2016;
Dwivedi et al., 2021). Despite the introduction of budget
delivery and cost management tools, there is still a huge
potential for the process to be improved through automation
and AI. By decreasing project quality time, reducing material
waste, and enabling a collaborative space with an easy flow of
communication, sustainable cost management is one of the
system’s benefits (Oesterreich and Teuteberg, 2016). With
automation and AI incorporating several other technologies,
the stakeholders are engaged and satisfied with the project as
reporting and monitoring are flexibly available in real-time with
cost, time, and schedule information available at their fingertips.
With augmented reality, virtual reality and mixed reality in
conjunction with mobile devices or wearable computing,
construction companies can avail project clients greater insight
into the detail and design of a building before it is built and during
delivery (Melenbrink et al., 2020a). Level V and Level VI include
newer job opportunities, stakeholders’ engagement and
satisfaction, and competitive advantage. Construction site
analytics improves productivity, integrating IoT sensors and
other digital technologies in a smart working environment. AI
can also structure a large amount of data in a short time in files,
images, and videos, aggregate them in BIM and optimize them for
site decision-making. The data are fed into the system for
proactive project control on construction sites from predictive
analytics. The prevalence of automation technologies in future
industrialized construction would create entirely new roles to
assimilate and reskill the displaced workers in the industry. The
more recent job opportunities include construction AI
researchers, trainers, and engineers, while low to medium-
skilled workers could serve as trainers and testers for those
systems replacing them (International Federation of Robotics
(IFR), 2017; Abioye et al., 2021). Activity-driven control has
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emerged with more interest with proposed algorithms to enable
the integration of AI in automated systems in construction so that
the designs are prediction-based via learning a model that learns
automatically as project and scenario increase, thereby gradually
eliminating the need to solely rely on user presence information
(Shahandashti et al., 2011; Ahmadi-Karvigh et al., 2019). This also
enables the automation to adjust itself to user preferences, thereby
helping increase stakeholders’ satisfaction and trust in the system.

Furthermore, cloud-based adoption of real-time project
monitoring will ensure transparency by allowing stakeholders
to access the performance. This is essential in resolving litigations,
contractual claims, and disputes. Automation and AI also avail
collaborative working, aiding project participants to collaborate
and participate from various locations on a project through
document sharing and virtual meetings facilities enabled by
cloud computing (Bello et al., 2021). Similarly, Abioye et al.
(2021) iterated waste reduction through proactive data-driven
approaches, i.e., waste analytics (WA), which minimizes waste
through design.

MICMAC analysis and the digraph classified the benefits into
autonomous, dependent, linkages, and independent benefits. The
dependent category incorporates “competitive advantage” and
can be achieved by enhancing related benefits. Independent
categories are adjudged as critical benefits. For this study, the
critical benefits are “automatic self-learning improving
processes,” while linkage categories impact other benefits and
have feedback on themselves. They are “improvement in
construction health and safety; timely project delivery and cost
savings; improved project quality, operations, and productivity;
mitigation of construction risk; simplification of construction
tasks; newer job opportunities; stakeholders’ engagement and
satisfaction; on-site and off-site connectivity; improved
collaboration, data sharing, and communication; workflow
improvements (accuracy, reliability, transparency, and leaner
procurement); improved socio-economic and environmental
sustainability; simplified and improved inspection, monitoring,
and control; optimized project planning and scheduling;
elimination of material wastage; and reduction in litigation,
claims, and contract dispute”.

These presented benefits are as per the study’s objectives to
present a structured contextual hierarchy of perceived benefits
of construction automation and AI. The study’s implications,
limitations, and future directions are discussed in the
following section.

3.10 Implications of Findings
To assess a realistic evaluation of the impact of innovative systems
such as construction automation and AI, particularly toward
achieving a resilient and responsive infrastructure delivery,
stakeholders must understand its cost-benefit analysis (Boktor
et al., 2014). Moreover, Olawumi and Chan (2019) also suggested
formulation of structural benefits is essential for organizations to
tap the gains derivable from innovative systems such as
construction automation and AI. The findings of this study
have several important implications for practice and research.
The theoretical implication of the ISM lies in decomposing
complex systems into specific relationships and overall

structures as portrayed in the digraph model. This helps to
impose order and direction on the complexity of relationships
among the various benefits identified.

The practical implication of these findings is that the identified
model of benefits in aiding the adoption of construction automation
and AI allows decision-makers to identify cost-effective technological
solutions that align with organizational goals and objectives. This is
further important given the increase in innovative technologies
available in the construction industry and the managerial
decisions challenge it brings to firms in deciding best-fit
approaches to improve organizational competitiveness.
Policymakers looking for critical areas vital to achieving an
industrialized construction operation that is resiliently benefited
from the structured model of benefits in affirming the importance
of the system if widely adopted in the built environment. Some of the
issues emerging from these findings motivate researchers’ keen
interest to explore and conduct further studies.

3.11 Limitations and Future Studies
Overall, this study fills a gap in the perceived benefits of construction
automation and AI by providing structured contextual relationships
between the benefits. However, this has not been without limitations
opening insights into further studies. First, other traditional
approaches for analyzing benefits use mean value, weighted score,
and relative importance index, which require eliciting data from a
large pool of surveys. Compared to ISM, these methods are weak for
studies in emerging systems with few experts with sufficient
knowledge and experience and hence were not considered fit for
the study. Second, the generalizability of these results is subjected to
certain limitations of the ISM approach, for instance, the bias of the
experts who decide the benefits in the final ISM model. Since the
contextual relationships among the variables always depend on the
users’ knowledge and familiarity with the firm, its operations, and its
industry, this was controlled by ensuring adequacy in participants’
expertise and majority agreement in selecting contextual
relationships between the benefits.

Finally, the ISM approach does not provide the level of
influence that each benefit exerts on the other, and future
studies can therefore investigate the level of influence of the
benefits by adopting social network analysis (SNA) or decision-
making trial and evaluation laboratory (DEMATEL). Despite
these limitations, it transforms the undefined system models
into well-defined models through nominal technique,
brainstorming of experts, and affinity diagraming in explaining
the contextual relationships among the variables. Future studies
could include extending themodel in case studies to show real-life
applicability. Also, the future improvement could adopt fuzzy
ISM or TISM to enhance the binary ISM and can be statistically
validated using tools such as structural equation modeling to
assign weights to the variables.

4 CONCLUSION

The primary purpose of this study was to assess the critical
benefits of automation and AI in the built industry to advance
perceptions on the gains of automation and AI from hype to the
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practical significance and consequently improve positive
disposition to its adoption. A toatl of seventeen benefits were
examined through the ISM method and MICMAC technique to
categorize them in perceived importance and contribution to the
built sector. The ISM approach is primarily championed based on
expertise, knowledge, and experience that go into participants
deciding on relationships between the variables that create the
model. The key benefit of automation and AI from the study is
represented as improved project quality, operations and
productivity, simplification of construction tasks, and
automatic self-learning improving processes. This is consistent
with previous studies that have advanced the adoption of
automation and AI on the premise of improving construction
productivity and achieving sustainable infrastructure delivery.
The next level of benefits is categorized as on-site and off-site
connectivity, improved collaboration, data sharing, and
communication, workflow improvements (accuracy, reliability,
transparency, and leaner procurement), improved socio-
economic and environmental sustainability, simplified and
improved inspection, monitoring, and control, optimized
project planning and scheduling, and elimination of material
wastage. It is thus recommended that in proposing automation
and AI adoption for industry use, important attention be
primarily focused on the key benefits highlighted (improved
project quality, operations and productivity, simplification of
construction tasks, and automatic self-learning improving
processes). While adoption might differ from region to region,
the gains are similar across project types and locations. The

classified and identified benefits motivate construction
organizations, project teams, local authorities, and other key
stakeholders toward enhancing the uptake of automation and
AI in the built sector. Therefore, collaborative efforts between
national policymakers, industry stakeholders, and local
authorities must be availed to ensure the benefits are achieved.
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