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Applicability of Convolutional Neural
Networks for Calibration of Nonlinear
Dynamic Models of Structures

Angela Lanning*, Arash E. Zaghi and Tao Zhang

Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT, United States

The objective of this study is to examine a machine learning (ML) framework for calibrating
the parameters of analytical models of complex nonlinear structural systems where
experimental data is significantly limited. Because of the high cost of large-scale
structural tests, analytical models are widely used to enhance the understanding of
structural performance under complex loading environments. In this study, an ML
framework is proposed and evaluated for the calibration of an analytical model
representing a shake table test performed on a composite column developed in
OpenSees software. A large number of parameters for modeling the constitutive
behavior of the concrete core, steel reinforcement, exterior composite tube, as well as
the interactions between the concrete core and the tube, base fixity, and nonlinear shear
deformations are included. A convolutional neural network (CNN) architecture was used to
calibrate these parameters by using the lateral load, displacement, and axial load time
histories as input variables. First, a synthetic dataset is generated for permutations of
different model parameters. Next, four CNNs were trained to evaluate the presentation of
input data in time-domain and time-frequency domain. Finally, the trained model was
prompted with real experimental data and the values of peak lateral force, residual
displacement, and hysteresis energy dissipation from the analytical model were
compared with those from the experiment. The results show that the proposed
framework is appropriate for calibration of complex nonlinear structural models when
experimental data is limited.

Keywords: convolutional neural network, model calibration, image representation, shake table testing, nonlinear
structural analysis

1 INTRODUCTION

This study examines the applicability of a convolutional neural network (CNN)-based machine
learning (ML) framework for calibrating the parameters of analytical models of nonlinear
mechanical/structural systems with limited experimental data. Large-scale experiments on
structural elements, such as bridge columns, are cost prohibitive. Traditionally, analytical models
are used to supplement experimental data and investigate effects of a variety of design variables.
However, complex nonlinear models contain a large number of parameters that require
approximation. This is conventionally done through basic statistical or data-fitting methods to
achieve a desired performance, such as an accurate prediction of load-displacement relationships
(Willard et al, 2020). The conventional approaches, however, may fail to capture complex
interactions of modeling parameters or lead to subjective outcomes when analytical models
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involve a large number of parameters requiring calibration. In
this work, the seismic response of a composite bridge column is
used as the case study for the evaluation of a transfer learning
framework, where an ML model is trained with a large synthetic
dataset and then used to obtain calibrated parameters for one or a
few sets of experimental data. The composite column consisted in
this study is a fiber-reinforced polymer (FRP) tube with a
reinforced concrete (RC) core. A large-scale model of this
column was previously tested at the University of Nevada,
Reno on a shake table (Zaghi et al., 2012). An analytical
model of the column capturing material plasticity, non-linear
composite action of the tube and the concrete core, base rotations,
and inelastic shear deformation was developed in the OpenSees
structural modeling platform. The large number of modeling
variables and their complex nonlinear interactions in a such
model may lead traditional calibration methods to have
subjective outcomes. Thus, ML, in particular a CNN, is used
to calibrate the parameters of the analytical model. The network is
trained using the lateral load, axial load, and displacement time
histories as the input variables and the analytical modeling
parameters as the output variables. The trained network is
then used to obtain the calibrated parameters for the
experimental data.

ML techniques have been used successfully to identify
mechanical characteristics of different types of materials
under complex loading conditions, including variable
temperatures, high-rate loads, and triaxial stresses (Tang,
2010; Gandomi et al., 2012; Rafiei et al., 2016; Huang and
Burton, 2019; Kang et al., 2021). ML techniques, such as
artificial  neural networks and gene  expression
programming, have also been used to identify strength of
reinforced concrete columns and walls using experimental
data (Ilkhani et al., 2019; Murad et al., 2020; Murad, 2021;
Naderpour et al., 2022). However, ML techniques require large
datasets for the successful training of the model, which are
expensive to obtain experimentally. Thus, these studies often
rely on previously conducted experiments, which can limit
their applicability to well-established materials with ample
experimental data, such as reinforced concrete. However,
the recent enhancements in computation power have
enabled development of large datasets using analytical
simulations. These large datasets have promoted the
application of deep learning methods for complex nonlinear
materials (Liu et al.,, 2019; Chen et al., 2021), such as the
damage progression of composites (Yan et al., 2020). However,
the applicability of ML to the calibration of nonlinear
mechanical/structural systems under complex loading has
not been fully explored, which the framework proposed in
this study aims to address. Complex structural systems often
contain different types of material and various sources of
nonlinearity in addition to the material plasticity.
Traditional ML techniques, such as shallow artificial neural
networks, often require pre-processing steps to select optimal
features from raw data. Deep neural networks, such as CNNs,
offer the advantage of extracting inherent features in high-
dimensional spaces directly from the data (Sadoughi and Hu,
2019; Kiranyaz et al., 2021). This will enable “matching” the
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entire shape of the hysteresis curve rather than a few
engineering parameters or the backbone curve. A significant
portion of the information about the nonlinear response of a
complex system is encoded in the hysteresis curves. Thus, a
deep learning model that is capable of learning complex visual
features will offer promise for the successful calibration of
difficult parameters of nonlinear analytical models, and
ultimately will enhance the accuracy of simulations.

CNNs are traditionally used for two-dimensional (2D)
signals, such as images or videos. The convolutional layers
apply kernels over regions of the input to extract complex
visual features of an image at different scales, which are
presented as feature maps. CNNs capture the spatial
relationship between features on an image. Alternatively,
one-dimensional (1D) CNNs have been used for signal
processing  applications, such as structural health
monitoring, high-power engine fault monitoring, and
structural damage detection by extracting complex features
of time-series data (i.e., signals) (Kiranyaz et al., 2015; Avci
et al., 2017; Chen and Wang, 2019; Yu et al., 2019; Kiranyaz
etal, 2021). In 1D CNNs, the kernel is applied along the time-
series in one direction, extracting features from the adjacent
timesteps. Researchers have also proposed reshaping the
signals into 2D arrays to take advantage of 2D kernels,
which use the adjacent rows and columns for feature
extraction (Hoang and Kang, 2017; Zhang et al., 2017). In
addition to reshaped time-domain signals, researchers have
proposed using time-frequency representations to take
advantage of the 2D feature extraction of CNNs. Time-
frequency transformations let us illustrate the temporal
variations of frequency features of a signal, resulting in a
2D matrix that can be processed as an image data. In
engineering applications, this is an efficient and
conventional approach for analyzing and extracting
temporal variations of the features from nonstationary
time-series data (Spanos et al., 2007; Nagarajaiah and Basu,
2009; Balli and Palaniappan, 2010; Kong et al., 2017; Kim et al.,
2017; Silik et al., 2021). The most common representations are
spectrograms and scalograms, which have recently been used
with CNNs to extract deep features of signals that typically
require manual feature extraction performed by an expert (Xu
et al,, 2018; Khan et al.,, 2019; Khare and Bajaj, 2020; Pham
et al., 2020; Zhang et al., 2020). While previous studies have
shown image representations of engineering signals are
suitable for training CNNs, the applications are typically
limited to classification tasks or damage identification.
Thus, the ability to model calibration of a system with
different materials and many sources of nonlinearity has
not been fully explored. The framework. To address this,
the applicability of the framework to multiple image-based
representations of the signals was investigated to establish the
suitability of different representation methods to parameter
calibration tasks.

This work proposes a novel deep learning framework for
calibrating the parameters of analytical models representing
complex nonlinear mechanical/structural systems when
experimental data is limited (e.g., results from one or two
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experiments.) The framework was evaluated by calibrating the
parameters of an analytical model representing the shake table
response of a composite structural column. The developed
analytical model included new modeling approaches for
aspects of the composite column that were neglected in
previous studies, such as FRP-to-concrete core bond,
nonlinear shear deformations, and bond-slip, in an effort
to improve the accuracy capturing the lateral force and
dissipated energy. The analytical model representing the
system was used to generate a large-enough synthetic
dataset given different permutations of the parameters
requiring calibration. A CNN was trained using the lateral
load, axial load, and displacement time histories as the input
variables and the model parameters as the output variables.
Using a synthetic dataset allowed deep learning techniques to
be used without sufficient experimental data and allowed the
learning to be centered on the underlying relationships and
interactions of these parameters. The synthetic dataset
(i.e., analytical results) complied with the physical
phenomena, such as constitutive relationships, equilibrium,
and energy and momentum conservation, is captured by the
analytical model. Thus, the deep learning model learns these
concepts from the analytical results rather than a large dataset
of physical experiments. Additionally, as the framework uses a
dataset of only model inputs and outputs, it can be adapted to
analytical models of various complexities with little to no
change to its structure. The applicability of the framework to
multiple image-based representations of the signals was
investigated to establish the suitability of different
representation methods to parameter calibration tasks. This
included presenting the time histories in the time-domain and
time-frequency domain when training a CNN. The time-
domain input was used to train two CNNs to compare 1D
and 2D convolution kernels. Two time-frequency domain
inputs, spectrograms and scalograms, were used. The
performance of the trained networks in capturing peak
lateral force, residual displacement, and hysteresis energy
dissipation in addition to the individual model parameters
were used for evaluation. Finally, the trained networks were
prompted with the experimental data from the shake table test
to obtain the analytical model parameters for the composite
column system.

The predicted parameters from the proposed framework
captured the experimental response with higher accuracy across
the time-series than the previously proposed analytical models for
the composite column system. This accuracy demonstrates for the
first time that image representations of engineering signals are
suitable for training CNNs for model calibration of nonlinear
structural systems. The various sources nonlinearity and damping
as well as the large number of parameters, allowed benefits of both
the time-series and time-frequency presentations to be realized. For
this application, the time-series networks had superior performance.
The results of the proposed framework also demonstrated that a
synthetic dataset can be sufficient for training a CNN that will
subsequently be used with experimental data without requiring
additional training. This indicates further potential for transfer
learning applications using the framework, where it can be
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retrained with small datasets to performance a related task, such
as calibration of a different structural system.

2 METHODS AND APPROACH

An analytical model was developed to simulate the shake table
response of a composite bridge column with an FRP tube and RC
core that was previously tested at the University of Nevada, Reno
(Zaghietal., 2012). These composite columns were developed as a
durable alternative to conventional RC columns. While they have
shown superior structural performance to RC columns, the
exterior composite tube and its interaction with the concrete
core introduce additional modeling complexities that lack
established modeling strategies. Additionally, even well-
established materials, such as steel and concrete, have
properties that vary due to strain-rate effects or parameters
characterizing their constitutive relationships that are not
easily identifiable from mechanical tests (Kulkarni and Shah,
1998; Zadeh and Saiidi, 2007; Carrefio et al., 2020). As such,
parameter calibration for the shake table testing of the composite
column provided both a relevant and challenging case study for
the evaluation of the proposed framework. A total of 25 model
parameters requiring calibration were selected from the analytical
model. These parameters included the constitutive behavior of
the concrete core, steel reinforcement, and exterior composite
tube, as well as interactions between the concrete core and the
composite tube, global and local damping coefficients, base fixity,
and nonlinear shear deformations. The measured displacement
and axial load time histories from the shake table test were used as
the input signals in the OpenSees model, which then generated
the lateral load time history. A synthetic dataset was generated by
varying the 25 model parameters. A supervised learning
framework was used to learn the relationships between the
model parameters as the target vector and displacement, axial
load, and lateral load time histories as the input data. The
experimental test, composite column system, and analytical
model are detailed in the following sections.

2.1 Experimental Test and Composite

Column System

The shake table test was performed on a 370-mm diameter by
1511-mm long concrete-filled FRP tube (CFFT) column system
(Zaghi et al., 2012). The experimental test setup is shown in
Figure 1A. The CFFT column had an FRP tube with glass fibers
oriented at £55°, an inner diameter of 355.6 mm, and a thickness
of 7 mm. The unconfined concrete had a compressive strength of
47.4 MPa on the test day. The steel reinforcement included 8-#13
longitudinal bars (Figure 1B). The FRP tube provided
confinement for the concrete core and functioned as
transverse reinforcement for shear resistance.

The input motion for the shake table test was a ground
acceleration recorded during the 1994 Northridge, CA
earthquake (Hauksson et al., 1995). The input motion was
applied in seven progressive runs, with acceleration scale
factors increasing from 0.1 to 1.9. An axial load of 222 kN was
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FIGURE 1 | (A) Experimental test setup showing CFFT column on the shake table prior to testing and (B) structural detail including components of the test setup
and internal steel reinforcement.

applied on the column using four high-strength rods and
measured by two load cells during the tests. The axial load
fluctuated between 85 and 390 kN during the tests due to the
small vertical displacement of the cap beam causing the axial load
rods to stretch. Additional details regarding the CFFT column
system, the construction of the specimen, and the experimental
setup can be found in Zaghi et al. (Zaghi et al,, 2012).

2.2 Analytical Model

The analytical modeling was performed in OpenSees, which is an
open-source, object-oriented structural analysis framework
(Mazzoni et al., 2009). The model was developed to capture
the global and local responses of the CFFT column. The
schematic view of the nonlinear analytical model is shown in
Figure 2 along with the element types, material commands, and
constitutive material models. The CFFT column was modeled
using displacement-based elements with fiber cross-sections
representing the longitudinal steel bars, FRP-confined concrete
core, and longitudinal behavior of the FRP tube. The lateral
displacement, §(t), and axial load, P(#), time histories recorded
during the experimental shake table test were used as input
signals for the analytical model. Figure 2 shows these input
functions during Runs 4 through 7. The general analytical
model details are discussed below, with a focus on the
parameters requiring calibration.

The FRP-confined concrete core behavior was defined using
the model proposed by Teng et al. (Teng et al., 2009) and assigned
to the uniaxial material “Concrete02”. The steel reinforcement

was modeled using the uniaxial material “Steel02”, defined by the
Guiffre-Menegotto-Pinto model with isotropic strain hardening
(Filippou et al., 1983). The longitudinal behavior of the FRP tube
was modeled using the uniaxial material “Hysteretic” in
combination with the uniaxial material “Maxwell” to represent
the viscoelastic response of the composite tube. The initial
envelope curve for the FRP tube was based on previous
experimental and analytical models from Shao et al. (Shao,
2003) and Zaghi et al. (Zaghi et al., 2012) for filament wound
FRP tubes with fibers at £55°. The constitutive material models
are provided in Figure 2. The reinforced concrete core and the
FRP tube were modeled using separate elements, as shown in
Figure 2, to capture any bond slippage between the FRP tube and
concrete core elements (i.e., partial composite action), which was
previously observed during the shake table test (Zaghi et al,
2012). To capture this behavior, the cantilever part of each
element was discretized into four sections and connected with
nonlinear shear and rotational springs using “ZeroLength”
elements, with the constitutive behaviors defined in Figure 2.
The preliminary break point was estimated using the strains
measured on the FRP tube and steel bars during the experiment
(Zaghi, 2009). Multi-point constraints were defined between the
nodes for the FRP tube and the concrete core in the transverse
direction (Figure 2). The lateral displacement and axial load were
applied to the top node of the concrete core element. The initial
shear stiffness of the CFFT column was defined using the
uncracked concrete section properties. The post-cracking shear
stiffness was defined by the cracked concrete section and FRP
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FIGURE 2 | Schematic view of the nonlinear analytical model of a CFFT column modeled using OpenSees. Plots of the applied axial load and displacement time
histories and constitutive material behavior are presented. The material commands are identified along with the general shape of the hysteresis curves. The parameters

included for calibration are shown in boldface.
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TABLE 1 | Details of model parameters to be calibrated by the CNN, including the modeling component, interval of input values, and OpenSees commands.

Analytical Component Model Parameter Range Unit
Longitudinal behavior of FRP tube Backbone stress 1, f; 20.5-26.5 MPa
Backbone stress 2, fo 48.0-66.5 MPa
Backbone stress 3, f3 75.5-93.0 MPa
Tensile backbone factor, B 1.0-1.4 -
Unloading stiffness degradation, frrp 0.1-0.5 -
Damping coefficient, Cy 50-2000 kN-s/mm
FRP-confined concrete Compressive strength, ¢, 40.0-70.0 MPa
Ratio of unloading slope to initial slope, A 0.2-0.8 -
Tensile strength, f; 1.4-6.2 MPa
Hoop stiffness of FRP tube, Esp, 7.0-20.0 GPa
Hoop rupture strain of FRP tube, ¢4, 0.04-0.09 mm/mm
Steel reinforcement Yield strength, f, 480-560 MPa
Strain-hardening ratio, b 0.005-0.04 -
Transition from elastic to plastic, R 17.0-19.0 -
Shear deformation Shear cracking strength, F, 0.70-1.50 KN/mm
Post-cracking stiffness, G, 3.50-12.3 KN/mm
Unloading stiffness degradation, fs 0.3-0.7 -
FRP-concrete composite action Bond breaking point, dj 0.001-0.006 -
Kinematic hardening, Hxin 0.01-350 -
Rotational stiffness, kg 2.8e7 - 6.2e8 kN-mm/rad
Construction misalignment Compressive yielding force, Fyc 275-620 MPa
Initial gap length, Lgap 0.00-7.60 mm
Hardening ratio, # 0.01-0.30 -
Mass- and stiffness-proportional damping Damping ratio, & 2.0-8.0 %
Frequency 2 at defined damping ratio, w; 9.0-18.0 Hz

OpenSees Command

uniaxialMaterial Hysteretic

uniaxialMaterial Maxwell

uniaxialMaterial Concrete02

uniaxialMaterial Steel02

uniaxialMaterial Hysteretic

uniaxialMaterial Hardening

uniaxialMaterial ElasticPP

uniaxialMaterial ElasticPPGap

rayleigh
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tube properties. The embedded portion of the CFFT column was
modeled using an embedded element to explicitly capture the
effects of base rotation. The effect of potential construction
misalignment was captured by two zero-length, compression-
only springs at the top of the column with a gap for initial surface
asymmetry. Mass- and stiffness-proportional damping were
defined using the “rayleigh” command.

2.2.1 Target Variables for the Convolutional Neural
Network

Twenty-five analytical model parameters, shown in Table 1, that
required calibration were defined as target variables when
training the CNN. These include material properties for the
individual components of the CFFT column, such as the FRP
tube, reinforced-concrete core, and steel reinforcement.
Parameters defining system-level interactions were also
included, such as the nonlinear shear behavior, FRP-to-
concrete bond behavior, and construction misalignment.
Additionally, the critical-damping ratio and frequency were
included, which define the mass- and stiffness-proportional
damping coefficients (Wilson, 2004). The parameter details are
included in Table 1. The schematic constitutive material
behaviors are presented in Figure 2 and include definitions of
the calibration parameters, which are shown in bold. The ranges
of the parameters were selected to encompass the expected values
estimated through material testing, specified material properties,
and engineering judgment (Wilson, 2004; Burguefio and Bhide,
2006; Zhu et al., 2006; Teng et al., 2009; Systems, 2012; Zaghi
et al., 2012).

3 FRAMEWORK FOR ANALYTICAL MODEL
PARAMETER CALIBRATION

The following sections discuss the training data generation, data
preparation, and network architectures for the different input
representation methods. Next, the evaluation metrics and process
for obtaining the calibrated parameters for the composite column
system are detailed. The complete workflow of the proposed
framework is shown in Figure 3. In the proposed workflow, the
analytical model representing the composite column is used to
generate a synthetic dataset for training a CNN. The input to the
analytical models includes the model parameters (Table 1) as well
as the displacement and axial load time histories measured during
the shake table test. The lateral load responses from the analytical
model are combined with the displacement and axial load and
used as the input data when training the CNN. The
corresponding model parameters are the target outputs. After
training and evaluating with the synthetic dataset, the CNN is
prompted with the experimental data for the composite column
and the calibrated model parameters are obtained.

3.1 Training Data

The analytical model previously introduced was used to generate
the synthetic dataset for training the CNNs. The model
parameters to be calibrated were defined using a quasi-random
number generator (QRNG) within the bounds shown in Table 1.
QRNGs minimize discrepancy between generated points to fill
the multi-dimensional space in a uniform manner (Skublska-
Rafajlowicz and Rafajlowicz, 2012). This results in a
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TABLE 2 | Summary of inputs and trained networks.

Id Description Input size (Width
X Height x
Channels)

TS-1D Time-series, 1D kernel 1283 x 123 x 3

TS-2D Time-series, 2D kernel

TF-SC Time-frequency, Spectrogram 152 x 243 x 3

TF-SP Time-frequency, Scalogram 150 x 250 x 3

comprehensive representation of the 25 parameters and their
effect on the analytical lateral load. The quasi-random number
dataset was generated using the Sobol sequence (Sobol’, 1967).
The first 1,000 points were omitted, and the sequence was
scrambled using Owen’s scrambling algorithm to reduce
correlations and improve uniformity (Matousek, 1998).

In addition to the target parameters, i.e., calibration
parameters, the input displacement and axial load were varied
within the synthetic dataset. This was done by adding Gaussian
white noise (GWN) to the displacement and axial load time
histories prior to running the analytical simulations, as a method
of data augmentation and regularization to mitigate overfitting
(Rochac et al., 2019). This approach also provided supplementary
information on the instantaneous stiffness of the system and
time-dependent behavior, such as Rayleigh damping and
viscoelasticity. The magnitude of the noise added to the
displacement signals varied between 0.25 and 2.5mm.
Random weighting of the two load cells measuring the axial
load was applied in addition to GWN with a signal-to-noise ratio
(SNR) of 30 dB. Varying the axial load was necessary to provide a
comprehensive representation of the asymmetric behavior of the
FRP tube and concrete core in tension and compression.

A total of 50,000 samples were generated for the synthetic
dataset, where the analytical lateral load varied based on the input
displacement, axial load, and model parameters. As one objective
of this work is to evaluate and compare the input methods, a large
dataset was used to ensure that the performance was not being
meaningfully limited by the amount of training data.

3.2 Data Preparation

CNN s were developed primarily for images, which are simply 2D
arrays where the cell value defines the pixel intensity. An RGB
image stores the red, green, and blue pixel values in separate color
channels, which can also be viewed as three different 2D arrays.
As such, after converting to 2D arrays, the lateral force,
displacement, and axial load signals can be stored in separate
channels and used as a single input image for training a CNN. A
variety of approaches for converting the signals to images have
been implemented in previous studies (Kiranyaz et al., 2021). The
main approaches typically fall into two categories 1) using the raw
signal in the time domain or 2) transforming the signal into the
time-frequency domain. In the first approach, the signal is
rescaled so that the amplitude represents the pixel intensity
(typically to an integer between 0 and 255). The signal can be
reshaped to create an m X n array, i.e., an image. The engineering
applications of this approach are for vibration and

CNNs for Nonlinear Model Calibration

electrocardiogram signals (Kolar et al., 2020; Wang et al,
2020; Wang et al., 2021; Zare and Ayati, 2021). In the second
approach, a time-frequency transformation is used to represent
the signal in the time and frequency domains simultaneously,
resulting in a 2D signal that is plotted as an image to visualize the
signal activity. The most popular representations are
spectrograms and scalograms, which are commonly used in
engineering applications to extract features from signals
(Spanos et al., 2007; Nagarajaiah and Basu, 2009; Balli and
Palaniappan, 2010; Kong et al,, 2017; Kim et al, 2017; Silik
et al., 2021). Recently, these representations have been used
with CNNs to automatically extract features that typically
require manual methods informed by expert knowledge (Xu
et al, 2018; Khan et al, 2019; Khare and Bajaj, 2020; Pham
et al., 2020; Zhang et al., 2020). This work investigated training
CNNs for parameter calibration using both the raw time-series
signals and the transformed time-frequency representations. The
time-series data was used to train two CNNs to evaluate 1D and
2D convolution kernels; these networks are referred to as TS-1D
and TS-2D, respectively. Additionally, the time-frequency
representations, spectrograms and scalograms, were used to
train two CNNs, referred to as TF-SP and TF-SC, respectively.
A summary of the input for each of the four networks is provided
in Table 2 and representative inputs are shown in Figure 4. The

Composite time-series
123x123x3

Composite spectrogram
152x243x3

Composite scalogram
150x250x3

FIGURE 4 | Sample composite input and corresponding lateral load,
displacement, and axial load components for the (A) time-series (B)
spectrogram, and (C) scalogram inputs.
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following sections discuss generating the training dataset as well
as background on the approaches.

3.2.1 Generating Time-Domain Training Dataset
Previous applications of this approach have typically been in 1D
CNNs, where the convolution kernels extract features from the
adjacent points along the time-series (Kiranyaz et al., 2021).
These applications are commonly using CNNs for real-time
monitoring or damage detection/localization and have limited
available training data, making the computationally efficient 1D
CNN advantageous. As the proposed framework uses synthetic
data, sufficiently large datasets can be generated to train a 2D
CNN. A 2D convolution kernel uses both the adjacent rows and
columns for feature extraction, which provides information
across different cycles in addition to the adjacent timesteps.
This may provide a more robust feature extraction as the
model parameters typically influence the response across
multiple cycles.

This work reshaped the signals by wrapping the 1D arrays into
2D arrays, which can be used to train a CNN with either a 1D or
2D kernel. The lateral load, displacement, and axial load signals
reshaped into a 123-by-123 matrix. The signals values were
normalized to be integers between 0 and 255. Next, the
normalized lateral load, displacement, and axial load signals
were assigned to separate color channels within an RGB image
to create a single input with dimensions of 123-by-123-by-3. A
sample RGB image and the lateral load, displacement, and axial
load components are shown in Figure 4A. Additional
information on 1D and 2D convolution kernels is provided
when presenting the CNN architectures.

3.2.2 Generating Time-Frequency Domain Training
Datasets

Representing the signals in the time-frequency domain was
investigated using spectrograms and scalograms, which are
generated by a short-time Fourier transform (STFT) and
continuous wavelet transform (CWT), respectively. Time-
frequency representations provide a visualization of the signal
activity and have been used to extract modal properties and detect
damage in structures (Nagarajaiah and Basu, 2009; Kong et al.,
2017; Silik et al., 2021). As such, these inputs may facilitate the
extraction of frequency-related parameters, such as damping and
stiffness. However, this is at the cost of temporal resolution as
there is a limit to the degree a signal can be localized both in time
and frequency, as shown by Heisenberg’s uncertainty principle
(Cohen, 1995). The wavelet transform aims to mitigate the
limitations due to the trade-off between time and frequency
resolutions by applying a variable-size wavelet. This approach
allows the time-frequency resolution to change within the
scalogram, where the STFT applies a window function with a
fixed length, resulting in a constant time-frequency resolution. As
a result, the spectrogram is less accurate in capturing time-
localized information than the scalogram, especially when the
duration of events in a signal differs significantly. CWTs are
computationally more complex than STFT (Bouchikhi et al,
2011); thus, slight improvements in accuracy may not warrant
the application of scalograms when large datasets are required.
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-1x3
kernel...

A
2\
AN

AN

\
-
A
\
\\

AN
A

A\ image =1 V
B L~ Output
A V feature map
/‘ ti-W"l
< Touul~] 3x3 ™

o
\

t;4 | kernel

NN

vl

L=
=
s>

V(\{tput
-

feature map

NANAN

FIGURE 5 | Effect of kernel size and the image width on the output
feature map for (A) 1D and (B) 2D kernels.

The spectrograms were generated using a Hanning window
with a width of 120 data points and an overlap length of 50% to
prevent information loss due to the Picket Fence effect (Cerna
and Harvey, 2000). The magnitude of the STFT was plotted as a
function of both time and frequency, shown on the y- and x-axis,
respectively. The spectrograms were generated for the lateral load,
displacement, and axial load signals and assigned to the red,
green, and blue channels of a 2D RGB image to create a single
composite image as shown in Figure 4B.

The second TF representation, scalograms, were obtained
by applying a CWT, which dilates and translates the signal
along the time axis using a defined wavelet. Analytic Morse
wavelets were used with a shape parameter of 3 and time-
bandwidth product of 60. These wavelets are symmetric in the
time domain and nearly symmetric in the frequency domain
while maintaining a high time/frequency concentration (Lilly
and Olhede, 2008; Lilly and Olhede, 2012; Lilly, 2017). The
modulus of the complex-valued wavelet coefficients obtained
from the CWT were scaled by the maximum values at each
frequency. The scaled wavelet coefficients were plotted as a
function of frequency and time, shown on the y- and x-axis,
respectively. The frequency was plotted in log-scale and the
magnitude of the wavelet coefficients was shown by the color
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TABLE 3 | Architecture details for the four trained networks.

Layer type Description TS-1d
Image input Image size 123 x 123 x 3
1st Convolution Kernel size 1x3

No. of feature maps 8

Output size 123 x 123 x 8
Max pooling Pooling size 1x2

Output size 123 x 62 x 8
2nd Convolution Kernel size 1x3

No. of feature maps 16

Output size 123 x 62 x 16
Max pooling Pooling size 1x2

Output size 123 x 31 x 16
3rd Convolution Kernel size 1x3

No. of feature maps 32

Output size 128 x 62 x 32
Max pooling Pooling size 1x2

Output size 123 x 16 x 32
Dropout Output size 123 x 16 x 32
Fully connected Output size 1x1x25

CNNs for Nonlinear Model Calibration

TS-2d TF-SP TF-SC
123 x 1283 x 3 150 x 242 x 3 150 x 250 x 3
3x3 3x3 3x3
8 8 8
123 x 123 x 8 150 x 242 x 8 150 x 250 x 8
1x2 2x2 2x2
123 x 62 x 8 75 x121x 8 75 x125%x 8
3x3 3x3 3x3
32 32 32
123 x 62 x 32 75 x 121 x 32 75 x 125 x 32
1x2 2x2 2x2
123 x 31 x 32 38 x 61 x 32 38 x 63 x 32
3x3 3x3 3x3
128 128 128
123 x 62 x 128 75 x 121 x 128 75 x 125 x 128
1x2 2x2 2x2
1283 x 16 x 128 19 x 61 x 128 19 x 32 x 128
123 x 16 x 128 19 x 61 x 128 19 x 32 x 128
1x1x25 1x1x25 1x1x25

scale. Figure 4C shows an example of the composite image
obtained using this approach.

3.3 Network Architecture

General CNN architectures contain an image input layer, hidden
layers, and an output layer. Hidden layers consist of
convolutional layers, pooling layers, and a fully connected
layer. Each convolution layer uses a kernel to extract features
from local regions of the input. The kernel is a matrix of weights
that slides across the input and is convolved with the pixels from a
small area of the input to form the output feature maps. Typically,
kernels are small and are symmetric around the center pixel,
i.e, k x k where k>1 and is odd. However, applications with
time-domain signals commonly use 1D kernels, i.e., 1 x k, which
require substantially less computational complexity than 2D
kernels. For example, using a kxk kernel to apply
convolutions to an #nxm image has a computational
complexity of O (nmk?) while a 1 x k kernel applied under the
same conditions has a computational complexity of O (nmk).
Despite higher computation costs, a 2D kernel allows the
extracted features to be informed by points from different
cycles in the time-series depending on the defined width of
the reshaped array, in addition to the adjacent points in time.
This is demonstrated in Figure 5, which compares the receptive
field of 1D and 2D kernels. The 2D kernels may be beneficial for
parameter calibration as the parameter effects are typically
present across cycles in the time-series. As such, both 1D and
2D kernels were investigated for the time-domain input.
Additionally, the time-frequency inputs were each used to
train a CNN, resulting in a total of four CNNs used to
evaluate the proposed framework.

The network architectures are discussed below with the key
components provided in Table 3. Each network had three
convolution layers. Kernel sizes of 3x3 were used, excluding
TS-1D, which used 1x3 kernels as discussed. Zero-padding
was used so that the convolution layers did not alter the
spatial dimensions of the input. Each convolution layer

included rectified linear unit (ReLU) as the activation
function, which introduced nonlinearity to system. A pooling
layer succeeded each convolution layer, which down-sampled
values in the feature maps to reduce the number of parameters
and dimensionality of the feature maps. A pooling size and stride
of 1x2 was used for the time-series networks, which down-
sampled the adjacent points in the signals without distorting
the order. A pooling size and stride of 2x2 was used for the time-
frequency networks. Dropout was introduced prior to the fully
connected layer as a regularization method to prevent overfitting
(Srivastava et al., 2014). A dropout rate of 20% was used. Finally, a
fully connected layer was used to convert the feature map into a
feature vector the size of the number of output variables. A
sample network architecture is depicted in Figure 6 for the TS-2D
network.

3.4 Training and Validation

The synthetic dataset was divided into training, validation, and
evaluation subsets using an 80/15/5 split. Adaptive moment
estimation (Adam) optimization algorithm (Kingma and Ba,
2014) was used with an initial learning rate of 0.001. The
learning rate decreased by a factor of 0.1 every 10 epochs.
During training, accuracy and loss were calculated using the
validation dataset to monitor the progress. Mean-squared-error
(MSE) was defined as the loss function. Early stopping was used
to automatically terminate training when the current validation
loss had exceeded the lowest validation loss 10 times.

3.5 Evaluation Metrics

The four trained networks were compared using the evaluation
dataset, which included 5% of the overall synthetic data and was
unseen during training. As the individual model parameters do
not contribute equally to the global response and different
combinations can produce similar force-displacement
responses, a set of engineering metrics was defined to provide
a more meaningful performance criterion. The defined metrics
include the peak lateral force (Fy), residual displacement (3,), and
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Input Convolution Max Convolution Max Convolution Max Fully Output
Layer Layer 1 Pooling 1 Layer 2 Pooling 2 Layer 3 Pooling 3 Connected Layer
123x123x3 123x123x8 123x61x8 123x61x32 123x30x32  123x30x128 123x15x128 1x25 25
i rJ \
Convolution Pooliﬁg i = B
Kernel 3x3 Kernel 1x2
FIGURE 6 | Sample architecture for the TS-2D network using the time-series input and 2D kernel.
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FIGURE 7 | Definition of engineering metrics for a sample force-
displacement hysteresis loop.

cumulative dissipated energy (E). These were selected as they are
commonly used to evaluate the seismic design or performance of
a bridge column. Additionally, the engineering performance
metrics can be used to evaluate the predicted parameters for
the experimental data. The engineering metrics are defined in
Figure 7 for a representative force-displacement hysteresis curve.
For future applications, relevant performance metrics should be
selected for evaluation.

The trained networks were prompted with input data from
the evaluate set and the predicted parameters were fed back to
the analytical model to generate new simulations. The
engineering metrics were calculated from the new analytical
responses and compared to the actual values for the original
dataset. The mean absolute percentage error (MAPE) was used
to calculate the error for the engineering metrics as it is a scale-
independent accuracy measure, allowing comparison between
the metrics with different units. The MAPE is defined as:

where y,, is the predicted value, y, is the actual value, and n is the
number of samples. The residual displacement was calculated
after the largest displacement in the positive and negative loading
directions for each run. The average error of the two loading
directions was reported for the residual displacement and peak
lateral force. As the magnitude of the applied excitations
increased throughout the shake table test, the average errors
across Runs 1 — 4 and Runs 5 - 7 are reported to compare
performance after mid- and high-amplitude excitations.

3.6 Testing Trained Networks With

Experimental Data

The model parameters for the composite column system were
obtained by prompting the trained network with the lateral load,
displacement, and axial load measured during the experimental
shake table test. To evaluate the objectivity and sensitivity of the
predicted model parameters, the experimental input data was
varied by adding GWN with a SNR of 30 dB to the measured
time-histories. A total of 10 variations of the experimental data
were generated for prompting the trained network. The averages
of the predicted values were used in an analytical model to predict
the lateral force response of the column system. Finally, the
engineering metrics were calculated from the analytical
responses and compared to the experimental results to
evaluate the accuracy. These steps were completed for each
trained network.

4 RESULTS AND DISCUSSION

4.1 Performance of the Networks on
Synthetic Data

The performance of the four trained networks was assessed using
the accuracy capturing the individual model parameters and the
defined engineering metrics. The accuracy in predicting the
individual model parameters revealed five parameters were not
captured by all four of the trained networks. These parameters
include the FRP hoop stiffness, Exgp, hoop rupture strain, eggp,
and unloading coefficient, A, defined for the FRP-confined

MAPE (%) = 100 " Ya=Jp (1)  concrete model, as well as the damping coefficient, C;, defined
n “EH oy, in the FRP longitudinal model and the rotational stiffness, kg,
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FIGURE 8 | Comparison of each trained network in capturing the
engineering metrics when prompted with the evaluation dataset. The size and
color of the circles are proportional to the error values.

defined in the FRP-to-concrete bond model. The R* values for
these parameters were less than 0.10 across the four networks.
The uniform low prediction accuracy for these parameters
indicates there was insufficient information in the training
data, likely due to the small effect the parameters had on the
global response. If calibration of parameters controlling localized
behavior is required, additional measurements capturing these
effects can be included when training, such as strain gauge
measurements. These parameters were not removed from the
training data as the small effect on the generated responses served
as an additional source of noise, mitigating overfitting. The
accuracy capturing the individual model parameters is
discussed further in relation to the engineering metrics. The
cumulative MSE for the 25 model parameters were 1.11, 1.02,
1.55,and 1.16 for TS-1D, TS-1D, TF-SP, and TF-SC, respectively.
The engineering metrics were calculated from the simulated
responses given the network predicted parameters, as
previously discussed. The MAPE values for the trained
networks are compared in Figure 8 for Runs 1—4 and Runs
5—7. The TS-2D network had the lowest average error for the
engineering metrics as well as the individual model parameters,
followed by TS-1D, TF-SC, and TF-SP, respectively.

The time-series networks performed notably better on the
peak lateral force and residual displacement than the time-
frequency networks. Residual displacement is the displacement
corresponding to zero force, which requires maintaining
information on the relationship between the force and
displacement signals, in addition to adequate time resolution
that is also required to capture the peak lateral force. This can be
accomplished by preserving the order or phase information of the
signals. The time-series inputs maintain temporal information as
the order and increment of the signals are preserved. While the
time-frequency inputs maintain some temporal information, the
resolution is limited due to the time-frequency resolution trade-
off. As previously discussed, scalograms mitigate this by applying
a variable-sized wavelet, allowing TF-SC to outperform TF-SP for
residual displacement. The overlapping window length for

CNNs for Nonlinear Model Calibration

spectrograms lessens information loss at peaks but does not
improve temporal resolution. As such, the accuracy of the
time-frequency networks was comparable for the peak
lateral force.

The energy dissipation mechanisms in the analytical model
were the material hysteretic relationships and Rayleigh
damping, which is a form of viscous damping commonly
used to approximate the non-hysteretic sources of energy
dissipation in structures (Priestley and Grant, 2005; Petrini
et al.,, 2008). Energy dissipation can be measured by the lag
between when the displacement reaches its maximum and
when the force does, which can be identified in the inputs
through temporal shifts between the force and displacement
signals. As the Rayleigh damping is also frequency dependent,
the time-frequency representations contain additional
information that can be used for identification. In the
analytical model, the level of Rayleigh damping was
primarily controlled by the critical damping ratio, & The
hysteretic sources of energy dissipation were controlled by
the inelastic material properties, such as the post-cracking
shear stiffness, G, and unloading coefficient, §,, for the shear
deformation model. The accuracy in capturing these three
model parameters as well as the cumulative energy dissipation,
E, is provided in Figure 9, which includes the actual versus
predicted values and the corresponding R* value.

As shown in Figure 9, the four networks had comparable
accuracy for the parameters impacting the hysteretic sources of
energy dissipation (G,, and f5;), which are frequency independent
and can be clearly characterized by the force-displacement
relationship. However, the time-frequency networks performed
considerably better than the time-series networks for the critical
damping ratio, as expected due to the frequency-dependent
behavior. Despite this, the time-series networks captured the
cumulative energy dissipation with comparable accuracy to the
time-frequency networks due to the large contribution of material
nonlinearity. As such, the time-series networks had higher
accuracy for the energy dissipation after the high-amplitude
excitation than after the mid-amplitude excitation when there
was less material plasticity. This allowed them to outperform the
time-frequency networks after the high-level excitation, as shown
in Figure 8. The sources of energy dissipation should be
considered when selecting the input method.

4.2 Performance in Capturing the

Experimentally Measured Response

The model parameters for the composite column system were
obtained by prompting the trained network with the
experimental data with added random noise as previously
discussed. The predicted parameters for the four trained
networks were within the range of estimated values from
material testing, constitutive equations, or manufacturer
specifications. This indicates that the networks did not
compensate with unrealistically large or small values when
prompted with experimental data. Table 4 includes the
predicted values for 11 parameters. These parameters strongly
influence the global response and demonstrate key sources of
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FIGURE 9 | Actual versus predicted post-cracking shear stiffness, G, shear deformation unloading coefficient, s, damping ratio, £ and cumulative energy
dissipation, E, for each representation method.

TABLE 4 | Predicted values of key model parameters for experimental data with added noise.

Analytical Component Model Parameter Predicted Parameter Values (Mean + SD) Units
TS-1d TS-2d TF-SP TF-SC
Longitudinal behavior of FRP tube Backbone stress 1, f; 255 + 0.1 221 +0.1 421 +0.5 251 £ 0.6 MPa
Backbone stress 2, f» 50.0 £ 0.2 50.3 £+ 0.3 54.4 + 0.4 37.2+04 MPa
Backbone stress 3, f3 85.3 + 0.1 88.4 +0.3 87.5+0.6 92.6 + 0.5 MPa
Unloading stiffness degradation, frre 0.34 + 0.01 0.30 + 0.01 0.01 £ 0.02 0.54 + 0.02 -
FRP-confined concrete Compressive strength, f'¢o 65.5 + 0.4 62.7 + 0.8 552 +1.7 55.4 + 0.7 MPa
Steel rebar Yield strength, f,, 475 £ 1 465 + 2 437 + 6 503 + 3 MPa
Shear deformation Shear cracking strength, Fe, 1.01 + 0.01 1.16 + 0.01 1.50 + 0.04 0.64 + 0.02 KkN/mm
Post-cracking stiffness, G, 10.2 £ 0.1 10.3 £ 0.1 2.8 £ 0.1 9.8+0.2 KN/mm
Unloading stiffness degradation, fs 0.68 + 0.002 0.66 + 0.005 0.74 + 0.005 0.59 + 0.007 -
Construction misalignment Initial gap length, Bs 1.7 £ 01 1.5 +0.1 -02+03 25+0.2 mm
Rayleigh damping Damping ratio, & 21 +01 1.8 £ 0.1 34 +02 46+02 %

discrepancy between the trained networks. This discrepancy is
discussed below in relation to the global response and engineering
metrics. The accuracy of the calibrated models in capturing the
engineering metrics was also compared to an analytical model
previously developed by (Zaghi et al., 2012), referred to herein as
the “Reference Model”. The model was developed in OpenSees
using conventional calibration approaches, with the full details

found in (Zaghi, 2009). The lateral displacement was applied
directly to the Reference Model instead of the ground acceleration
to facilitate comparison to the current study.

The average predicted parameters were fed to the OpenSees
analytical model to simulate the response of the composite
column. The resulting force-displacement response and
corresponding energy dissipation are shown in Figure 10A
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FIGURE 10 | Analytical model response given network predicted parameters including (A) global lateral force-displacement and (B) energy dissipation.
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FIGURE 11 | Performance of the CNN-predicted model parameters in
capturing the engineering metrics when prompted with the experimental data.
The size and color of the circles are proportional to the error values.

and Figure 10B, respectively. The energy dissipation was
calculated by integrating the measured force-displacement
hysteresis curves. The time between cycles was removed for
presentation purposes. The R* values were calculated using the
predicted force and energy and the measured lateral force and
dissipated energy to demonstrate the accuracy across the time
histories. The R* values for the lateral force were 0.947, 0.976,
0.852, 0.926, and 0.936 for TS-1D, TS-1D, TF-SP, TF-SC, and the
Reference Model, respectively. The R* values for the dissipated
energy were 0.993, 0.997, 0.996, 0.924, and 0.831 for TS-1D, TS-

1D, TE-SP, TF-SC, and the Reference Model, respectively.
Additionally, the engineering metrics were calculated from the
analytical responses and compared to the experimental values.
The percent error for each metric is compared in Figure 11,
including the accuracy of the Reference Model developed by
(Zaghi et al., 2012). The color scale axis was set to 50 to facilitate
comparison of the smaller errors. Errors over this are reported on
the figure.

The accuracy capturing the engineering metrics was
generally lower for the experimental data than for the
synthetic dataset, which was anticipated as no experimental
data was included in training and the analytical model is
limited by the approximations in the experimental setup
and constitutive relationships. Overall, the trends in
performance across the engineering metrics and between
the four networks were largely comparable to what was
observed for the synthetic dataset. The predicted responses
were reasonable for TS-1D, TS-2D, and TF-SC, demonstrating
the ability of the networks to generalize to experimental data
after training on a synthetic dataset. Additionally, the strong
performance of the time-series networks and TF-SC indicate
that the framework is applicable to both time-domain and
time-frequency domain inputs. The poor performance of TF-
SP is likely due to differences between the high frequency
artifacts present in the experimental data and synthetic data.
This may be mitigated by additional filtering of the predicted
responses; however, this may remove information useful
during training and is not a necessary step for the other
inputs methods. While the strong performance of TF-SC
proved the framework is applicable to time-frequency
inputs, scalograms require substantially more computation
time than the time-series inputs and did not provide
substantial improvement in accuracy to justify the use for
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this application. However, if the objective is calibration of
frequency-dependent parameters, using scalograms may be
warranted.

The TS-2D network had the lowest errors across the
engineering metrics, as shown in Figure 11. Additionally, the
difference in performance from the synthetic dataset was
smaller for TS-2D than TS-1D. This suggests the 2D kernel
provided additional benefit for generalizing to experimental
data that was not observed or necessary for the synthetic
dataset. The 2D kernel provides information at multiple
cycles, such as the loading and unloading slope, which allows
TS-2D to balance the contribution of parameters to multiple
points of the signal and likely provide more robust feature
extraction.

Despite the stronger performance of TS-2D, the time-series
networks had comparable predicted parameters with low
standard deviations, as shown in Table 4. The time-
frequency networks, in contrast, had less consistency
between predicted values. A key difference in the predicted
parameters is the source of energy dissipation. The time-series
networks relied on a similar balance between the hysteretic and
non-hysteretic sources of energy dissipation. This is
demonstrated by the predicted values for & which controls
Rayleigh damping, in comparison to G, f3s, and Brrp, Which
control material nonlinearity, shown in Table 4. As the energy
dissipation is not provided during training, the time-series
networks rely on the relationship between force and
displacement to accurately capture the energy dissipation.
The time-frequency inputs use frequency-dependent
behavior of Rayleigh damping, which allowed for higher
accuracy on the synthetic dataset. However, Rayleigh
damping is a mathematically convenient method of
approximating non-hysteretic sources of energy dissipation
and is not directly related to one physical process. To ensure
the contribution of hysteretic sources of nonlinearity is
accurate, local measurements, such as strain gauges, can be
used. Future application of the trained network could be
feasible through the wuse of transfer-learning, which
repurposes the trained network to perform a second related
task. This could be done to calibrate parameters for a different
experimental setup or column geometry. As this requires less
training data, this may also be done with experimental data, if
available.

The errors for the Reference Model are larger in the early
cycles. This was attributed to an underestimation of hysteretic
damping at low amplitudes in the analytical model, as noted in
(Zaghi et al., 2012). This hysteretic damping is largely due to
concrete cracking under small deformations, which was
accounted for in the current study through the nonlinear
shear model. As a result, the energy dissipation as well as the
residual displacements in the low-amplitude cycles were
predicted with higher accuracy. Additionally, a high
damping ratio of 15% was used in the Reference Model to
account for the high damping of the FRP tube and other
sources of damping; however, the energy dissipation was still
under-predicted. The current model incorporated individual
components to represent this (i.e., viscoelastic behavior of the
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FRP shell and FRP-concrete composite action) and was able to
calibrate the additional parameters with the framework. As a
result, the energy dissipation was captured across the entire
time history with higher accuracy than the Reference Model.
Overall, the performance of the Reference Model validates the
strong performance of the network predicted parameters.

5 CONCLUSION

This work proposed a novel supervised learning framework to
calibrate the model parameters of complex structural systems with
limited experimental data. The framework was evaluated by
calibrating the parameters of an analytical model representing the
shake table response of a composite column. A CNN was trained
using a synthetic dataset to learn the relationships between the
analytical model parameters and the displacement, axial load, and
analytical lateral load time histories. The applicability of the
framework to presenting the signals in both the time-domain and
time-frequency domain was investigated. The time-domain input
was used to train two CNNs to compare 1D and 2D convolutional
kernels. The time-frequency inputs were used to train two CNNs to
compare scalograms and spectrograms. Each trained network was
prompted with the experimental data from the shake table test to
obtain analytical model parameters for the composite column system.
The results of the study demonstrated a CNN can perform
parameter calibration for nonlinear dynamic models of
structures. When prompted with the experimental data,
the trained CNN predicted reasonable model parameters
and captured the measured seismic response of the
composite column. The accuracy capturing the measured
lateral force-displacement response and dissipated energy
was higher than the previously developed analytical model
for the composite column system. The results demonstrate
that a synthetic dataset can be sufficient for training a CNN
and the train network can be subsequently used with
experimental data without requiring additional training.
This indicates additional potential for transfer learning
applications using the framework, where it can be
retrained with small datasets to performance a related task,
such as calibration of a different structural system.
Additionally, the results demonstrated image
representations of engineering signals are suitable for
training CNNs for model calibration of nonlinear
structural systems. Presenting the input signals in both the
time-domain and time-frequency domain both proved to be a
feasible and effective approach for parameter calibration. The
networks trained with time-series inputs had lower errors for
both the synthetic dataset and the experimental data than for
the time-frequency inputs. The time-series inputs also
required fewer preprocessing steps and less computation
time. Additionally, the time-series inputs benefitted from
2D convolution kernels in place of 1D kernels, which are
typically used for signal-processing applications of CNNs. In
conclusion, CNN-based parameter calibration presents an
effective way of calibrating many parameters of complex
structural models with limited experimental data.
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