
Deep deterministic policy
gradient and graph convolutional
network for bracing direction
optimization of grid shells

Chi-tathon Kupwiwat*, Kazuki Hayashi and Makoto Ohsaki

Department of Architecture and Architectural Engineering, Graduate School of Engineering, Kyoto
University, Kyoto, Japan

In this paper, we propose a method for bracing direction optimization of

grid shells using a Deep Deterministic Policy Gradient (DDPG) and

Graph Convolutional Network (GCN). DDPG allows simultaneous

adjustment of variables during the optimization process, and GCN

allows the DDPG agent to receive data representing the whole

structure to determine its actions. The structure is interpreted as a

graph where nodes, element properties, and internal forces are

represented by the node feature matrix, adjacency matrices, and

weighted adjacency matrices. DDPG agent is trained to optimize the

bracing directions. The trained agent can find sub-optimal solutions

with moderately small computational cost compared to the genetic

algorithm. The trained agent can also be applied to structures with

different sizes and boundary conditions without retraining. Therefore,

when various types of braced grid shells have to be considered in the

design process, the proposed method can significantly reduce

computational cost for structural analysis.
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1 Introduction

Structural optimization aims to obtain the best design variables that minimize/

maximize an objective function under specified constraints (Christensen and

Klarbring, 2009). For discrete structures, such as trusses and frames, typically, the

design variables are cross-sectional properties, nodal locations and/or nodal

connectivity (Ohsaki and Swan, 2002). Finding the best nodal locations is

generally called geometry optimization, and the determination of nodal

connectivity is called topology optimization. Structural optimization is important

in early-stage design of large-span grid shells because their structural performance

depends significantly on the shape and topology (Ohsaki, 2010). An optimization

problem for grid shells can be formulated to maximize the stiffness against static loads

through minimization of the compliance (i.e., elastic strain energy). Examples of such
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formulation can be found in Refs. (Topping, 1983; Wang et al.,

2002; Kociecki and Adeli, 2015).

In topology optimization of grid shells where bracing

directions are to be optimized, the optimization problem

can be formulated as a combinatorial problem and solved

using heuristic approaches such as genetic algorithm (GA)

and simulated annealing without utilizing gradient

information (Dhingra and Bennage, 1995; Ohsaki, 1995;

Kawamura et al., 2002). While this approach allows for

simple implementation, it requires many evaluations of the

structural response and therefore has a high computational

cost especially for structures made of many elements

(i.e., many design variables). In addition, the topology

optimization problem to minimize compliance can be

formulated as mixed-integer programming (MIP) which is

practical for small- to medium-size optimization problems

due to computational cost (Kanno and Fujita, 2018). Recent

advances in MINLP enable to solve very large mixed-integer

problems with quadratic and/or bilinear objective function

and constraints. However, both heuristic and mathematical

programming approaches do not allow the use of knowledge

acquired from previously obtained solutions for similar

structural configurations.

In recent years, machine learning (ML) approaches have

been applied to structural optimization problems. ML can be

classified into supervised learning, unsupervised learning, and

reinforcement learning (RL). A supervised learning model

learns to map (predict or classify) given input instances to

specific output domains using sample data for training.

Examples of this method for structural optimization can be

found in (Berke et al., 1993; Hung et al., 2019; Mai et al., 2021).

An unsupervised learning model learns to capture

relationships between instances (data). Examples of

unsupervised learning are t-distributed stochastic neighbor

embedding (t-SNE) (van der Maaten and Hinton, 2008) and

k-means clustering (MacQueen, 1967). Jeong and Yoshimura

(Jeong and Yoshimura, 2002) also applied an improved

unsupervised learning method to multi-objective

optimization of plane trusses. Applications of unsupervised

learning methods for structural design and structural damage

detection can be found in (Eltouny and Liang, 2021; Puentes

et al., 2021).

RL is a type of ML that has been developed from optimal

control and dynamic programming (Sutton and Andrew, 2018).

In RL, a model, or agent, is allowed to interact with an

environment. The agent adjusts its policy to take actions

according to given reward signals, which are designed to

encourage the agent to do actions that change the

environment into a desirable state such as winning a game or

obtaining solutions to problems. RL has been successfully applied

to various problems such as playing arcade games (Mnih et al.,

2013) and controlling vehicles (Yu et al., 2019).

Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al.,

2016) is a type of RL algorithm that uses two neural networks

(NN) (Rosenblatt, 1958; Ivakhnenko, 1968; Goodfellow et al.,

2016) as an agent. The DDPG can be used in an environment

where multiple agent actions are needed. Kupwiwat and

Yamamoto (Kupwiwat and Yamamoto, 2020) studied various

RL algorithms, using NNs as agents, and found that DDPG can

be effectively applied to the geometry optimization problem of

grid shell structures. However, the agents can only observe a

constant number of inputs. Therefore, when structural

dimensions are changed, it is difficult for the agents to detect

the change of structural characteristics.

Hayashi and Ohsaki (Hayashi and Ohsaki, 2021) proposed a

combined method of RL and graph representation for binary

topology optimization of planar trusses. Graph representation

allows an RL agent to observe the whole structure by

transforming the structure into graph data consisting of nodes

(vertices) and elements (edges) and implementing repetitive

graph embedding operations to transmit signals of adjacent

nodes and elements for estimating accumulated rewards

associated with each action. Zhu et al. (2021) studied the

applicability of RL and graph representation for stochastic

topology generation of stable trusses which can be further

used as initial structures for other topology optimization

algorithms.

Graph neural networks are types of NNs, specifically

designed for working with graph data. Graph Convolutional

Network (GCN) (Kipf and Welling, 2017) is a class of graph

neural networks that uses a convolution operator to process

graph signals to the output domain. GCN has been successfully

applied to problems such as node classification (Kipf and

Welling, 2017) and link prediction (Kipf and Welling, 2016).

This paper proposes methods for the bracing directions

optimization of grid shell structures for minimizing the strain

energy using DDPG and GCN. The RL agent is trained to

optimize the bracing directions from initial randomly

generated directions. The proposed method is considered a

part of the early-stage design of grid shells. The method takes

an input the shape of the grid-shell which must be pre-

determined. Bracing direction optimization can reduce the

structure’s strain energy without affecting the appearance of

the shape because the braces are typically covered by finishing

or ceiling. This paper is organized as follows: Section 2 gives the

optimization formulations. Sections 3, 4 introduce existing

approaches of GCN and a type of RL named DDPG,

respectively. Section 5 explains the novelty of this research

consisting of the vectors and matrices utilized in RL and the

formulation of the Markov decision process for training the RL.

Numerical examples are presented in Section 6 to benchmark the

proposed method against the enumeration method and the

genetic algorithm in terms of structural performance and

computational cost.
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2 Optimization problems of braced
grid shells

2.1 Objective function: Total strain energy

The total strain energy of the structure subjected to static

loads is chosen as the objective function to be minimized. The

main grid elements are modeled using 3-dimensional beam

elements with 12 degrees of freedom (DoFs), whereas the

bracing elements are modeled using 3-dimensional truss

elements with 6-DoFs. In the local coordinate system, the

stiffness matrices of the frame element and the bracing

element are denoted as kf ∈ R12×12 and ke ∈ R6×6, respectively.

These matrices are converted into those with respect to the global

coordinate system, and assembled into the global stiffness matrix

K ∈ RnD×nD , where nD is the number of DoFs of the structure after

assigning the boundary conditions. Every node in the structure is

subjected to a point load and every element is subjected to self-

weight per unit length. These loads and weights are collected into

the load vector p ∈ RnD with respect to the global coordinates,

and the nodal displacement vector d ∈ RnD is obtained by solving

the equilibrium and geometric compatibility equations:

Kd � p (1)

Then, the total strain energy E is computed from

E � (1/2) · dTKd (2)
where the superscript T indicates the transpose of a vector or a

matrix.

2.2 Bracing direction optimization
problem

The combinatorial problem of bracing directions

optimization is used to investigate the performance of the

proposed method in terms of solution quality and the

computational cost. Nodal coordinates and element cross-

section size are not included in the variables. Given a grid

shell with nx by ny square grids and diagonal bracing in each

grid cell k ∈ {1, . . . , nxny}, there can be two possible directions for

bracing indicated by c1,k, c2,k ∈ {0, 1} which correspond to

absence and presence of the brace in each direction as

illustrated in Figure 1.

Since only one brace should exist in the grid cell k, the

summation c1,k + c2,k is always 1. Let c1 ∈ Rnxny and c2 ∈ Rnxny ,

respectively, be vectors consisting of c1,k and c2,k for all bracing

elements. The global stiffness matrix of the structure is a function

of c1 and c2 denoted as K(c1, c2). The bracing direction

optimization problem to minimize the strain energy is

formulated as follows:

minimize E(c1, c2) � (1/2) · dTK(c1, c2)d (3a)
subject to c1,k , c2,k ∈ {0, 1}, (k � 1, 2, . . . , nxny) (3b)

c1,k + c2,k � 1, (k � 1, 2, . . . , nxny) (3c)

where d is an implicit function of c1 and c2 obtained by

solving Eq. 1.

3 Graph Convolutional Network

Consider a graph consisting of n nodes with g features in

each node. The graph data can be represented using a node

feature matrixN ∈ Rn×g representing features of each node in the

graph, an adjacency matrix M ∈ Rn×n representing the

connectivity of structural elements, a weighted adjacency

matrix P ∈ Rn×n representing the connectivity of structural

elements weighted by element forces, and a degree matrix

D ∈ Rn×n representing the number of connections of each

node in the graph. Kipf and Welling (Kipf and Welling, 2017)

proposed a GCN that can process graph input data which are

chosen from {N,M,P,D}, and map the inputs to the target

domain of the graph for tasks such as node classification or

link (connection) prediction (i.e., perform supervise learning by

comparing mapped target domain from GCN to the node

classification training data). A single GCN computation can

be considered as a layer. Multiple GCN layers can be

connected together to create a computational model for an RL

agent. A GCN layer consists of a normalized form of adjacency

matrix ~M, and converts the input instances N to the output

O ∈ Rn×h that has h embedding spaces (i.e., output for the GCN

FIGURE 1
Bracing directions in the grid cell k and corresponding values of c1,k and c2,k
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or output for a GCN layer that will be treated as N for the next

GCN layer). The GCN layer can be formulated as follows:

O � σ( ~MNw) (4)

where σ is a non-linear activation function, and w ∈ Rg×h is the

weight matrix (i.e., the convolution filter parameters) (Kipf and

Welling, 2017) in the GCN layer which is adjusted during the

training. The convolutional filter parameters w weight ~MN, an

aggregated signal of a node and its neighboring nodes. It

should be noted that w can handle any graph with any number

of nodes as long as the nodes have the same number of

features.

The normalized adjacency matrix ~M can be computed using

the following equation:

~M � D−1/2[M + I]D−1/2 (5)

where I ∈ Rn×n is the identity matrix, and D−1/2 is the inverse of
the matrix D1/2 satisfying. D1/2D1/2 � D

In this paper, we utilize GCN to build an RL agent. The

original GCN does not utilize the weighted adjacency matrix.

However, for the structural optimization problem, the internal

forces (i.e., the forces taken by the structural elements) should be

utilized to guide the actions of the RL agent. Therefore, we

propose a novel GCN-DDPG architecture that employs weighted

adjacency matrices constructed from the internal forces for

solving the bracing direction optimization problem. Details of

the formulation are given in Section 5.

4 Reinforcement learning and Deep
Deterministic Policy Gradient

RL is a type of ML that trains an agent to perform actions in

an environment using reward signals. An RL algorithm consists

of three main elements: a policy that determines the agent

behavior, a reward signal that defines how good/bad the agent

behavior is, according to the policy, and a value function that

predicts how the agent performs based on the policy (Sutton and

Andrew, 2018). The interaction of an agent and the environment

is formulated using a Markov Decision Process (MDP) (Bellman,

1954; Bellman, 1957) as follows:

In a discrete step t:

The agent receives a representation of the environment as

state St.

The agent performs actions At.

The agent receives quantitative reward Rt+1 and next state St+1
from the environment.

The diagram of the MDP can be represented as shown in

Figure 2.

DDPG (Lillicrap et al., 2016) is a type of RL policy gradient

algorithm that utilizes a parameterized policy function (Actor)

πθ1 to determine the probability of taking action Ai
t in a state St,

denoted by P(Ai
t|St), and another parameterized value function

Qθ2 (Critic) to predict the accumulated reward (Q-Value) from

the actions of the agent follows:

πθ1(St) � P(Ai
t

∣∣∣∣St) (6)
Qθ2(St, πθ1(St)) � ∑∞

v�1γ
v−1Rt+v (7)

where θ1 and θ2 are parameters of policy and value functions to

be adjusted during the training, respectively. γ ∈[0, 1) is a

discount factor for the reward.

During training, the value function adjusts its parameter θ2
to increase the accuracy of its prediction of accumulated reward

using a replay buffer that stores data of {St,At,Rt+1, St+1}, whereas
the policy function adjusts its parameter θ1 to increase the value

predicted by the value function, which is equivalent to the

obtained rewards, using the gradient ∇Jθ1 as described in the

following DDPG algorithm. Since using the online policy and

value functions will make the learning unstable, Haarnoja et al.

(Haarnoja et al., 2018) proposed a tau updatemethod that trains

a surrogate policy function πθ′1
′ and a surrogate value function Qθ′2

′ ,

and then gradually updates the parameters of these functions into

the online functions using a small value of τ (τ≪ 1) at every tau
update interval. Note that the agent interacts with the

environment to collect data for the replay buffer using the

online policy function.

LetL(y, ŷ) be a loss function between ywhich represents the

correct value of training data and a predicted value ŷ. The

training algorithm of DDPG is as follows:

DDPG algorithm:

1. Sample u training data {St,At,Rt+1, St+1} from the replay

buffer and convert them into a set of vectors {St,At,Rt+1, St+1}.
2. Update the parameters as follows:

πθ′1
′(St) � Ât # Surrogate policy function πθ′1

′ decides actions

from St
πθ1(St+1) � Ât+1 # Online policy function πθ1 decides actions

from St+1
Qθ′2

′ (St,At) � Q̂t # Surrogate value function Qθ′2
′ predicts

reward from St , At

Qθ2(St+1, Ât+1) � Qt+1 # Online value function Qθ2 predicts

reward from St+1 , Ât+1

FIGURE 2
Diagram of the MDP
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∇Qθ′2
′ � ∇θ′2

Qθ′2
′(St,At)∇Q̂t

L(Rt+1 + Qt+1, Q̂t) # Gradient of

Qθ′2
′ to the loss function

∇Jθ′1
′ � −E[∇θ′1

πθ′1
′(St)∇Ât

Qθ′2
′(St, Ât)|Ât�πθ′

1

′(St)] # Gradient of πθ′1
′

to the Q-Value.

Update θ2′ in Qθ2′
′ using ∇Qθ2′

′

Update θ1′ in πθ′1
′ using ∇Jθ′1

′

If tau update interval is reached:

θ1 � (1 − τ)θ1 + τθ1′ # Update parameters of πθ1
θ2 � (1 − τ)θ2 + τθ2′ # Update parameters of Qθ2

In order to reduce training time of adjusting the weights in

each layer of GCN using the gradients, optimizers such as

stochastic gradient descent (SGD) (Robbins and Monro, 1951;

Kiefer andWolfowitz, 1952; Ruder, 2016) or Adam (Kingma and

Ba, 2015), is used for updating θ1 and θ2. The exploration of

DDPG’s policy is activated by adding small Ornstein-Uhlenbeck

noise (Uhlenbeck and Ornstein, 1930) into the output value of

the policy function.

5 Reinforcement learning for
structural optimization

5.1 State

This research utilizes the graph representation to express

structural data, such as nodal coordinates, boundary conditions,

and internal forces, at each optimization step which is equivalent

to a step t in the MDP formulation.

Suppose we have five node features, and the ith row of the

node feature matrix N ∈ Rn×5 is represented as

ni � {xi/max
p

xp yi/max
p

yp zi/zmax kifree kifix }, in which

xi, yi, and zi are the coordinates of node i, zmax is the pre-

determined upper-bound value of zi, max
p

xp and max
p

yp are

the maximum coordinate values in each axis. Note that the

minimum coordinate values are assumed to be 0 for all

coordinates. kifree and kifix are determined depending on

the boundary condition. (kifree, kifix) � (0, 1) if node i is

fixed support, and (kifree, kifix) � (1, 0) if node i is not

supported.

In the adjacency matrix for frame elements M1 ∈ Rn×n, the

existence of a frame element e connecting nodes i and j is

denoted as m1ij � m1ji � keframe where m1ij indicates (i, j)
component of matrix M1. keframe indicates the existence and

non-existence of a 12-DoFs frame element e that connects

nodes i and j by keframe � 1 and 0, respectively. In the

adjacency matrix for truss elements M2 ∈ Rn×n, the existence

of a truss element e connecting nodes i and j is represented as

m2ij � m2ji � ketruss. ketruss indicates the existence and non-

existence of a 6-DoFs truss element e that connects nodes i

and j by ketruss � 1 and 0, respectively. The combined adjacency

matrix for frame and truss elements M3 ∈ Rn×n is obtained by

M3 � M1 +M2.

In order to evaluate the efficiency of the structural

configuration, this paper proposes weighted adjacency

matrices to represent the element internal forces. For the

frame element, only a single weighted adjacency matrix

P1 ∈ Rn×n is determined using the ratio between the bending

moment and the axial force, which for this type of structure is a

useful index that helps minimizing the strain energy. Suppose

frame element e connects nodes i and j, the entry p1ij in P1 is

determined as follows:

p1ij � keframebei
′/(a′e + 1) (8a)

bei
′ � (|bei| − bmax

f )/(bmax
f − bmin

f ) (8b)
a′e � (|ae| − amax

f )/(amax
f − amin

f ) (8c)

where bei is the bending moment around the horizontal axis on

the section at node i, and ae is the axial force of frame element e.

bmax
f and bmin

f are the maximum and minimum absolute values of

bending moments at the element ends. amax
f and amin

f are the

maximum and minimum absolute axial forces of frame elements.

For the truss elements, weighted adjacency matrix (P2 ∈ Rn×n) is
a normalized form of the truss axial force. The entry p2ij in P2

corresponding to element e connecting nodes i and j is

determined as follows:

p2ij � ketrussa
′
e (9a)

a′e � (|ae| − amax
q )/(amax

q − amin
q ) (9b)

where ae is the axial force in the truss element e. amax
q and amin

q are

the maximum and minimum absolute values of axial forces for

truss elements, respectively. All values in these weighted

adjacency matrices are in the range of [0, 1], which helps

avoiding numerical instabilities during training.

The degree matrices for frame, truss, and combined frame

and truss elements are denoted by D1 ∈ Rn×n, D2 ∈ Rn×n, and

D3 ∈ Rn×n, respectively. Entries in each degree matrix Du (u �
1, 2, 3) are computed using the associated adjacency matrix Mu

(u � 1, 2, 3) as duij � δij × ∑n
i�1muij, where δij is the Kronecker

delta which is 0 if i ≠ j and 1 if i � j. The normalized adjacency

matrices of frame, truss, and combined frame and truss elements

are ~M1 ∈ Rn×n, ~M2 ∈ Rn×n, and ~M3 ∈ Rn×n, respectively, which

are computed using Eq. 5. The GCN-DDPG agent for bracing

direction optimization uses ~M1, ~M2, ~M3, P1, P2, M2, and N as a

representation of the environment St which will be further

explained in Section 5.2.

5.2 GCN-DDPG agent

Policy and value functions (i.e., Actor and Critic networks of

a GCN-DDPG agent) consist of multiple GCN layers. The policy

function takes state data described in Section 5.1 as input to

compute the output denoted as O ∈ Rn×h which has the same

number of rows as those of the node feature matrix N ∈ Rn×g.
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This output is used to determine bracing directions, explained in

Section 5.3.

The inputs of the value function are state data and the output

from the policy function to compute an estimation of the

accumulated reward. In the value function, another matrix for

prediction of the bracing directions denoted as Mo ∈ Rn×n is

internally computed from the output of the policy function

O ∈ Rn×h, multiplied element-wise with M2 to exclude non-

bracing elements, and normalized within the range [0,1]

through dividing by h as Mo � (O ·OT) ⊙ M2/h, where ⊙ is

the element-wise multiplication.

When multiple GCN layers are connected, a node feature

matrix is replaced with an output from the prior GCN layer.

To represent internal forces in the structure, a normalized

adjacency matrix in a GCN layer can be replaced with a

weighted adjacency matrix. The output of a GCN layer is

transformed by the Rectified Linear Unit (ReLU) activation

function (Nair and Hinton, 2010) similar to the original

GCN (Kipf and Welling, 2017) for all layers of both policy

and value functions. ReLU is a nearly linear function that is

computationally efficient for gradient-based optimization

(i.e., SGD or Adam) (Chigozie et al., 2020). ReLU is

applied to all layers of both policy and value functions

except the last layer of the policy function which is

processed by the Sigmoid activation function for predicting

probability-based output (i.e., probability of taking action Ai
t

in a state St) (Chigozie et al., 2020). Eq. 10a and Eq. 10b

represent GCN layers with ReLU and Sigmoid activation

functions, respectively, where N′ ∈ Rn×g denotes a node

feature matrix or an output from a prior GCN layer and

M′ ∈ Rn×n denotes ~M1, ~M2, ~M3, P1, P2, orMo with sizeRn×n. Eq.

10c represents multiple computing loops using the same

GCN layer.

μ(N′,M′) � ReLU(N′M′wμ) (10a)
σ(N′,M′) � Sigmoid(N′M′wσ) (10b)

iterϕ[μ(N′,M′)] � μ(M′(μ(M′( . . . )wμ))wμ)︸










︷︷










︸
ϕtimes (10c)

where ReLU(·) � max(0, ·), Sigmoid(·) � 1/(1 + e−(·)), and ϕ in

iterϕ[ ] indicates the number of computing loops.

Since the output of a GCN layer is a matrix but the value

function output is a scalar representing the estimation of

accumulated reward, two operations are used for transforming

the output matrix of the last GCN layer of the value function into

a scalar value. The first operation is a global sum pooling

operation (GSP) (Aich and Stavness, 2018) which transforms

the output matrix into a vector by summing up all entries in each

column of the output matrix. Let V ∈ Rn×g be a matrix, the GSP

operation to transform V into a vector can be represented as

Pool(V) � [∑n
i�1
vi,1 / ∑n

i�1
vi,g ] ∈ R1×g (11)

The second operation is to compute the estimation of

accumulated reward (i.e., Q-value ∈ R1×1) from the vector

output of the GSP operation using a neural network which

consists of approximation functions that have adjustable

weight parameters and activation functions (Goodfellow et al.,

2016). These approximation functions are connected together so

that the output of the prior approximation function is the input

of the next approximation function, similarly to how the GCN

layers are connected, where every approximation function,

except the last one, is called a hidden layer (Goodfellow et al.,

2016). Eq. 12 represents an NN with two hidden layers, used in

this work, for computing the estimation of accumulated reward

from the vector output of the GSP operation H ∈ R1×g with

adjustable internal weight matrices W1, W2, Wout, adjustable

internal bias vectors B1 and B2, and adjustable internal bias

scalar Bout as

fNN(H) � Wout(ReLU(W2(ReLU(W1H
T + B1))T +B2))T

+ Bout ∈ R1×1

(12)
Table 1 summarizes the computation processes of the policy

and value functions of the GCN-DDPG agent for bracing

direction optimization. In each column, the 1st row indicates

if the computation belongs to the policy or the value function.

The 2nd row denotes input data used for the computation. The

3rd row indicates the computation process using GCN layers,

GSP operation, and NN in Eqs 10a–12a–Eqs 10a–12.

In the policy function, inputs from state data of frame and

truss elements are separately processed in Steps 1 and 2,

respectively. Output matrices in Steps 1 and 2 are combined

to compute the output of the policy function in Step 3. In the

value function, inputs from state data of frame and truss are also

processed separately in Steps 1 and 2. Step3 computes the matrix

for element direction predictionMo which is used for processing

TABLE 1 Policy and value functions of GCN-DDPG for bracing
direction optimization.

Policy function π Value function Q

Inputs: ~M1, ~M2, ~M3, P1, P2, N Inputs: ~M1, ~M2, ~M3, P1, P2, N, M2, O

Computation: Computation:

Step 1: N1.1 � μ(μ(N,P1), ~M1)
N2.1 � iter2[μ(N1.1 ,P1)] Step 1: N1.1 � μ(μ(N,P1), ~M1)

N2.1 � iter2[μ(N1.1 ,P1)]
Step 2: N1.2 � μ(μ(N,P2), ~M2)

N2.2 � iter2[μ(N1.2 ,P2)] Step 2: N1.2 � μ(μ(N,P2), ~M2)
N2.2 � iter2[μ(N1.2 ,P2)]

Step 3:
N3 � N2.1 + N2.2

O � σ(N3 , ~M3) Step 3: Mo � (O ·OT) ⊙ M2/h

Step 4: N1.3 � μ(μ(O,Mo), ~M2)
N2.3 � iter2[μ(μ(N1.3 ,Mo), ~M2)]

Step 5:
N3 � N2.1 + N2.2 + N2.3

N4 � μ(N3 , ~M3)
Step 6: N5 � Pool(N4)
Step 7: Q � fNN(N5)

Output: O ∈ Rn×h Output: Q ∈ R1×1
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action data in Step 4. Output matrices from the Steps 1, 2, and 4 are

combined and re-processed by another GCN layer in Step 5. In Steps

6 and 7, the output matrix is converted into a vector using the GSP

operation and the vector is finally converted to the Q-value by the

NN. The last row denotes the output of the functions.

5.3 Action

The bracing direction in each grid cell is determined from a

dot product of each row of O ∈ Rn×h from the policy function

output, similarly to the link prediction using GCN (Kipf and

Welling, 2016) for the existence of a connection between

two nodes in the graph. In this paper, the structural nodes

are represented as graph nodes. Therefore, the prediction of a

link or connection between two structural nodes is equivalent

to a structural element (bracing element) that connects those

nodes. Figure 3 shows a 4-node structure in a grid cell with two

possible diagonal braces which connect node i to node j and

node n to nodem, respectively. The dot product of each output

matrix is used to predict the value of lij and lnm. lij is equivalent

to lji and lnm is also equivalent to lmn as shown in the matrix in

FIGURE 3
Bracing directions and associate link predictions in a grid cell.

FIGURE 4
Algorithms of the proposed method; (A) Training phase, (B) Test phase.
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Figure 3. The bracing direction optimization formulation in

Eqs 3a–ca–cEqs 3a–c allows only one brace in each grid cell.

Therefore, lij and lnm are compared to determine the bracing

direction in a grid cell.

The number of nodal embedding output dimensions

is 100; i.e., h � 100. From the output of the policy function

O ∈ Rn×100, the brace in grid cell k is determined as

Ak
t �

⎧⎨⎩ (c1,k, c2,k) � (1, 0) (if lij > lmn)(c1,k, c2,k) � (0, 1) (if lij < lmn) (13a)

lij � lji � ∑100

u�1 oi,uoj,u (13b)

lmn � lnm � ∑100

u�1 on,uom,u (13c)

At each step, the agent can change any number of brace

directions.

5.4 Reward

In RL, a reward signal is used for training an agent. The

reward signal Rt+1 that the agent receives after executing action

At in a state St at step t is formulated from the change of the

strain energy as follows:

Rt+1 � (Et − Et+1)/E0 (14)

where Et and E0 are the strain energy of the structure at step t and

the strain energy of the initial structure.

FIGURE 5
Structural models for bracing direction optimization during training phase; (A) Support condition 1, (B) Support condition 2.

FIGURE 6
Variation of reward and its moving average in training phase.
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6 Numerical examples

6.1 General experiment setting and
structural model

The agent is trained to optimize the structure in the

training phase during which the ability to improve

performance is assessed. In the test phase, the agent

performance is evaluated on structural configurations other

than those used in training. The method is implemented using

Python 3.6 environment. A PC with CPU Intel Core i5-6600

(3.3 GHz, 4 cores) and GPU AMD Radeon R9 M395 2 GB is

employed for computation.

Training is carried out on a grid shell structure with 4 ×

4 grids and diagonal truss braces. Each grid cell has dimensions of

1.0 m by 1.0 m. To simplify the problem, the 12-DoFs frame

element has a hollow cylindrical section with an external

diameter of 100 mm and an internal diameter of 90 mm. The

6-DoFs truss element has a solid circular section with a diameter

of 43.6 mm. Both elements have Young’s modulus of 205 kN/

FIGURE 7
Structural models for test phase: Support condition 1.

FIGURE 8
Structural models for test phase: Support condition 2.
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mm2 and a similar weight of 12 kg/m. All structural nodes are

subjected to a vertical point load of 10 kN.

Results obtained in the test phase using the proposed method

are compared with those of the enumeration method (EM) and

the genetic algorithm (GA); EM is used for the benchmark when

it is feasible to compute all possible solutions, and GA is used for

the benchmark when computing all possible solution is not

feasible due to the large search space.

The algorithm flowcharts for training and test phases are

given in Figure 4. During the optimization, each MDP is denoted

as a step. The loop of MDPs or a game is terminated when the

final step is reached.

FIGURE 9
Structural models for test phase: Support condition 3.

FIGURE 10
Structural models for test phase: Support condition 4.
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6.2 Training phase

In each game of training, a dome-shaped structural model is

initialized with supports assigned to two pre-determined

structural shapes indicated in Figure 5. The maximum and

minimum nodal height is 1 and 0 m, respectively. Note that

structural shapes and size of structural elements are not adjusted

during the optimization process. The brace directions are

randomly initialized at every game.

The final step in each game is 200. At each step, the directions

of braces are adjusted according to the agent actions. The agent

surrogate functions are adjusted using the Adam optimizer. The

mini-batch size is set to 32 and the learning rates are 10−7 and

10−6 for policy and value function, respectively. In the value

function, the NN in Eq. 12 in Section 5.2 has two hidden layers,

each consisting of 200 neurons. The mean square error is

used as the loss function, and learning rates are reduced by

a factor of β = 0.1 every 200 games (20,000 steps). Weights

and biases of the surrogate functions are synchronized with

those of the online functions every 100 steps using τ = 0.05.

The GCN-DDPG agent is trained for 1,000 games. In

Figure 6, the vertical axis represents the cumulative

reward obtained during training, and the horizontal axis

is the game number. The thick line shows the moving

average of the reward with a window size set to 50. From

Figure 6, the cumulative reward increases during the

first 200 games and then remains stable around a certain

value. Because support and bracing directions are changed

at every training game, the fact that the cumulative

reward stabilizes indicates that the agent has the learning

TABLE 2 Test results.

Support conditions Grid size Min. (N·m) Mean (N·m) Std. (N·m) Reduction (%)

1 4 × 4 4.38 4.53 0.19 16.83

4 × 6 15.71 16.01 0.38 13.21

6 × 6 63.15 67.40 2.56 18.10

4 × 8 72.49 73.72 0.69 5.55

10 × 6 450.47 459.92 7.89 12.89

10 × 10 2,242.26 2,288.05 40.79 19.80

20 × 20 213,715.82 217,120.90 1742.84 10.08

2 4 × 4 77.88 89.35 10.02 19.94

4 × 6 284.81 290.09 3.98 20.21

6 × 6 818.14 896.06 46.93 19.71

4 × 10 2,124.56 2,142.64 17.10 20.76

10 × 6 4,642.28 4,713.70 37.63 19.79

10 × 10 17,683.39 17,966.80 181.50 24.36

20 × 20 1,275,569.06 1,312,975.69 42,317.86 19.66

3 4 × 4 32.11 32.78 0.53 6.43

4 × 6 70.09 72.40 1.44 5.29

6 × 6 345.73 356.54 6.92 12.59

4 × 10 193.91 198.18 2.84 6.69

10 × 6 2,841.17 2,869.52 18.50 10.95

10 × 10 8,219.87 8,333.38 101.09 12.28

20 × 20 589,997.91 596,066.09 4,460.72 9.38

4 4 × 4 40.81 41.34 0.46 17.71

4 × 6 156.09 161.09 3.61 22.68

6 × 6 527.56 535.43 5.95 17.30

4 × 10 1,192.81 1,213.16 11.94 21.76

10 × 6 3,466.03 3,542.59 47.95 11.63

10 × 10 12,629.96 12,762.32 109.98 16.49

20 × 20 920,936.67 931,040.36 8,426.17 16.35
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capability to optimize structural configurations of different

topology and support conditions.

6.3 Test phase

In the test phase, 4 × 4, 4 × 6, 6 × 6, 4 × 10, 10 × 6, 10 × 10, and

20 × 20-grid shells with pre-determined geometries are employed

to investigate the capability of the trained agent on configurations

that have not been tested in the training phase. In Figures 7–10,

four support conditions denoted as 1, 2, 3, and 4 are considered

for each frame model. The bracing directions are initialized

randomly.

Similarly to the training phase, the number of steps for the

test phase is 100. However, in the test phase, only actions

improving the objective function value are accepted at each

step. The agent optimizes each structural model 10 times.

Table 2 shows the minimum (Min.), mean, and standard

deviation (Std.) for the strain energy, and mean energy

reduction rate (Reduction) for each structural model.

TABLE 3 Total computational cost of structural analysis of each method.

Support conditions Grid size Size of the
global stiffness matrix
nD × nD

Number of structural analyses (times)

GCN-DDPG (test phase) Benchmarks

EM GA

1 4 × 4 54 × 54 1,000 65,536 5,000

4 × 6 90 × 90 1,000 — 5,000

6 × 6 150 × 150 1,000 — 5,000

4 × 10 198 × 198 1,000 — 5,000

10 × 6 270 × 270 1,000 — 5,000

10 × 10 486 × 486 1,000 — 5,000

20 × 20 2,166 × 2,166 1,000 — 5,000

2 4 × 4 126 × 126 1,000 65,536 5,000

4 × 6 186 × 186 1,000 — 5,000

6 × 6 270 × 270 1,000 — 5,000

4 × 10 306 × 306 1,000 — 5,000

10 × 6 438 × 438 1,000 — 5,000

10 × 10 702 × 702 1,000 — 5,000

20 × 20 2,622 × 2,622 1,000 — 5,000

3 4 × 4 90 × 90 1,000 65,536 5,000

4 × 6 138 × 138 1,000 — 5,000

6 × 6 210 × 210 1,000 — 5,000

4 × 10 234 × 234 1,000 — 5,000

10 × 6 378 × 378 1,000 — 5,000

10 × 10 594 × 594 1,000 — 5,000

20 × 20 2,394 × 2,394 1,000 — 5,000

4 4 × 4 102 × 102 1,000 65,536 5,000

4 × 6 150 × 150 1,000 — 5,000

6 × 6 234 × 234 1,000 — 5,000

4 × 10 246 × 246 1,000 — 5,000

10 × 6 402 × 402 1,000 — 5,000

10 × 10 642 × 642 1,000 — 5,000

20 × 20 2,502 × 2,502 1,000 — 5,000

Total computational cost of structural analysis including the training phase 128,000 140,000
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In the test phase, the strain energy of the structure can be

reduced using the proposed method by 5–25%, depending on the

structure size and support conditions. For all cases, the minimum

andmean of strain energy obtained from 10 tests are very similar,

and the standard deviations are low compared with the mean.

The trained agent is capable to optimize the bracing directions to

reduce the strain energy on configurations that were not tested in

the training phase.

6.4 Comparison of computation cost and
performance with EM and GA

For the 4×4-grid structure, the global optimal solution can

be obtained using the EM which generates 2k combinations of

bracing directions for k grid cells. For structures with a greater

number of grids, it is not feasible to use EM. Therefore, the GA

is employed to obtain optimal solutions (global optimum

cannot be guaranteed). GA is a meta-heuristic method

inspired by the process of natural evolution which can be

used to solve combinatorial optimization problems. The key

operations in GA are selection to transfers good solutions from

one generation to the next generation, crossover to generate

new solutions, and mutation to modify solutions with a

certain probability, which can be helpful to avoid local

minima. In this research, bracing directions in each grid

cell are represented through binary strings and the GA

algorithm is taken from the GA python library named

Distributed Evolutionary Algorithms in Python (DEAP)

(Fortin et al., 2012). The comparison is made to

TABLE 4 Comparison of results obtained by GCN-DDPG (test phase) and benchmarks.

Support conditions Grid size Min. (N·m) Method Benchmarks (N·m) Diff

1 4 × 4 4.38 EM/GA 4.38/4.38 0.00

4 × 6 15.71 GA 15.66 0.00

6 × 6 63.15 61.55 0.03

4 × 10 72.49 71.88 0.01

6 × 10 450.47 422.35 0.07

10 × 10 2,242.26 2,135.28 0.05

20 × 20 213,715.82 202,566.99 0.06

2 4 × 4 77.88 EM/GA 77.88/77.88 0.00

4 × 6 284.81 GA 279.67 0.02

6 × 6 818.14 777.99 0.05

4 × 10 2,124.56 2046.13 0.04

6 × 10 4,642.28 4,342.47 0.07

10 × 10 17,683.39 16,294.39 0.09

20 × 20 1,275,569.06 1,170,860.54 0.09

3 4 × 4 32.11 EM/GA 31.59/31.59 0.02

4 × 6 70.09 GA 66.69 0.05

6 × 6 345.73 342.38 0.01

4 × 10 193.91 182.56 0.06

6 × 10 2,841.17 2,725.89 0.04

10 × 10 8,219.87 7,697.87 0.07

20 × 20 589,997.91 553,614.84 0.07

4 4 × 4 40.81 EM/GA 40.77/40.77 0.00

4 × 6 156.09 GA 150.95 0.03

6 × 6 527.56 485.53 0.09

4 × 10 1,192.81 1,140.11 0.05

6 × 10 3,466.03 3,150.67 0.10

10 × 10 12,629.96 11,462.31 0.10

20 × 20 920,936.67 850,282.94 0.08
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benchmark both the performance and computational

efficiency of GCN-DDPG and GA for the early-stage design

of grid shells where several configurations are to be evaluated.

Therefore, the number of population and generation of GA are

determined based on feasibility of computational cost. In the

following examples, the numbers of population and

generations are 50 and 100, respectively.

The number of structural analyses carried out with GCN-

DDPG in the training phase is equal to the number of training

games multiplied by the number of steps in each training

game, which is 100,000. A trained agent can be used in the test

phase and in other problems without re-training. The

computational cost of GCN-DDPG in the test phase, EM,

and GA for each problem, and the size of the global stiffness

FIGURE 11
GCN-DDPG result of the 6×6-grid structure in the test phase; (A) Support condition 1, (B) Support condition 2, (C) Support condition 3, (D)
Support condition 4.
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matrix are shown in Table 3 where the last row indicates the

total computational cost. The total number of structural

analyses required by GCN-DDPG is less than that required

by GA. Since a significant computation time is required for the

analysis of large-size structures, the GCN-DDPG is more efficient

than the GA when applied to bracing direction optimization of

grid shell structures that comprise many elements.

Benchmark results are compared in Table 4. The ratio of the

difference between the minimum strain energy solution obtained

by RL and that obtained by GA (and EM) is shown in the column

labeled ‘Diff’, which is computed as follows:

Diff � (min(ResultRL) − ResultGA)/ResultGA (15)

From Table 4, the solution quality and the efficiency of the

GCN-DDPG agent can be verified. In most cases, results

obtained by the GCN-DDPG agent are comparable to those

obtained by EM and GA within a margin of 10% difference using

less computational cost. The proposed method is useful in early-

stage design, which typically requires testing several structures,

and therefore an efficient computational process is needed. The

RL agent could be further trained using other structural

configurations to improve its performance.

Figure 11 shows initial brace topology, final brace topology,

and the change of strain energy of GCN-DDPG best results for

6 × 6-grid structural models. Although the structural

configurations differ considerably from those used in the

training phase in terms of support conditions and size, the

agent is capable to minimize the strain energy by adjusting

the bracing directions. Therefore, it is possible to train the

agent using small-size structural models and use it to optimize

structures with different support conditions and sizes.

From Figures 11A,C where the support locations are

symmetric, the agent obtains solutions with symmetrical

layouts, despite the fact that a symmetrical feature is not

explicitly represented.

7 Conclusion

A combined method of DDPG and GCN has been

formulated for bracing direction optimization of grid shell

structures to minimize the strain energy. The proposed DDPG

framework allows the agent to modify the bracing direction in

all grid cells simultaneously at each optimization step. The

node feature matrix, adjacency matrices, and weighted

adjacency matrices are formulated to encode the structural

configuration and internal forces as graph representations.

The agent is trained using Markov Decision Process (MDP) in

the RL framework whereby training data are collected by

interacting with the environment. The value function or

critic network updates internal weights and biases to

minimize the prediction loss for the accumulated reward or

Q-value so that it can predict the long-term accumulated

reward from state and action. The policy function or actor

network updates weights and biases to maximize the

equivalent reward calculated by the value function.

Numerical examples show that the trained agent can

effectively optimize bracing directions to minimize the

strain energy in the test phase. The agent is capable to

optimize the bracing direction of structural configurations

with size and support conditions different than those in the

training phase. The proposed method produces solutions

that compare, albeit of marginally lower quality, with those

produced through the enumeration method (EM) and the

genetic algorithm (GA). However, the trained agent can be

employed for additional configurations to those tested in this

work. The agent performs well for relatively large structural

models without the re-training, thereby significantly

reducing the computational cost of optimization. Future

work should investigate whether the RL method can be

applied without re-training to design significantly larger-

size structural configurations (e.g., 200 × 200 grid size)

compared to those employed for training. Therefore, The

proposed method has good potential to be employed

effectively in early-stage design, which typically requires

testing several configurations.
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